1
|
Ahmadi B, Gholamalifard M, Ghasempouri SM, Kutser T. Comparative analysis of k-nearest neighbors distance metrics for retrieving coastal water quality based on concurrent in situ and satellite observations. MARINE POLLUTION BULLETIN 2025; 214:117816. [PMID: 40086087 DOI: 10.1016/j.marpolbul.2025.117816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/08/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
It is time consuming and expensive to monitor extensive areas of coastal waters with sufficient frequency using in situ (ship based) methods. Satellite remote sensing is much more cost effective. Satellites can detect Optically Active Constituents (OACs) in water. Therefore, it is crucial to know the concentrations of OACs in the study area in order to develop and validate remote sensing methods suitable for assessing water quality in this region. The Pars Special Economic Energy Zone (PSEEZ), a major hub of natural gas extraction in the Persian Gulf, has undergone rapid industrial expansion since 1998, intensifying environmental pressures and necessitating high-resolution, frequent water quality assessments. However, a structured, long-term monitoring framework is absent despite the significance of this region. In order to develop satellite-based remote sensing methods for this region we carried out measurements of different OACs (chlorophyll-a, coloured dissolved organic matter (CDOM) and turbidity) and tested Landsat 8, Sentinel-2, and Sentinel-3 performance in retrieving the OACs. We tested the k-Nearest Neighbors machine learning algorithm. The selection of distance metrics demonstrated a significant influence on the accuracy of retrieving OACs. In turbidity retrieval, the Euclidean Distance (ED) enhanced the regression slope to 0.90 (a 55.17 % improvement over Fuzzy Mahalanobis Distance (FD)) and reduced the RMSLE to 0.51, corresponding to an approximate 160 % enhancement in precision. For CDOM, RMSLE values for ED and FD were 0.39 and 0.48, respectively, indicating an 18.75 % improvement favoring ED. Furthermore, bias analysis revealed deviations of 1-6 % compared to reference data, with the lowest values observed for Mahalanobis Distance (MD) with MSI and FD with OLCI. In chlorophyll-a retrieval, the choice of distance metric directly impacted the accuracy of the OLCI sensor, inducing bidirectional bias, comprising both overestimation and underestimation, which varied depending on the selected metric. These results underscore the critical importance of optimizing distance metric selection to enhance prediction accuracy and mitigate systematic errors in remote sensing applications. Furthermore, the results revealed that the implementation of this algorithm exhibited substantially superior performance compared to other evaluated algorithms within the study area, achieving significantly higher accuracy metrics. Thereby establishing k-NN as the optimal framework for satellite-based water quality monitoring in environmentally sensitive regions like PSEEZ.
Collapse
Affiliation(s)
- Bonyad Ahmadi
- Department of Environment, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University (TMU), Noor 46414-356, Iran
| | - Mehdi Gholamalifard
- Department of Environment, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University (TMU), Noor 46414-356, Iran.
| | - Seyed Mahmoud Ghasempouri
- Department of Environment, Faculty of Natural Resources & Marine Sciences (FNRMS), Tarbiat Modares University (TMU), Noor 46414-356, Iran
| | - Tiit Kutser
- Estonian Marine Institute, University of Tartu, Mäealuse 14, 12618 Tallinn, Estonia
| |
Collapse
|
2
|
Zhang W, Pan S, Yu L, Zhang H, Chen F, Song G, Hu J, Wei Q, Zhao H, Chen J, Zhou F. Dissolved oxygen depletion in Chinese coastal waters. WATER RESEARCH 2025; 272:123004. [PMID: 39729912 DOI: 10.1016/j.watres.2024.123004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/29/2024]
Abstract
Estuarine and coastal environments have experienced dissolved oxygen (DO hereafter) depression and hypoxia due to increasingly intensified anthropogenic eutrophication and climate warming. This review compared diverse systems in Chinese coastal waters that experience DO depletion or hypoxia, aiming to identify essential aspects in advancing the abilities in comprehensively understanding DO dynamics across systems that span wide ranges of physical and biogeochemical environments. The coastal DO depression and relevant ecological consequences around the world are generally overviewed. DO depression in specific systems around Chinese coastal waters, ranging from large estuarine-coastal system to small embayment, are selected to synthetically understand the environment, the controlling processes, the evolution of eutrophication level, and the potential environmental changes under warming trend. Stressed ecosystems would be put at higher risks with high confidence due to increased complexity and uncertainty caused by future socioeconomic transformation and climate warming. This review proposes key aspects to advancing the abilities in predicting, managing, and mitigating DO stress for marine ecosystems in Chinese coastal waters, potentially providing a framework to discuss future DO changes in the coastal waters worldwide.
Collapse
Affiliation(s)
- Wenxia Zhang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| | - Song Pan
- National Marine Data and Information Service, Ministry of Natural Resources, Tianjin, China
| | - Liuqian Yu
- Earth, Ocean and Atmospheric Sciences Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Haiyan Zhang
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Fajin Chen
- College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Guisheng Song
- Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin, China
| | - Jiatang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China
| | - Qinsheng Wei
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Huade Zhao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Jianfang Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Feng Zhou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China.
| |
Collapse
|
3
|
Zhang L, Wu Y, Li J, Ni Z, Ren Y, Lin J, Huang X. Hydrodynamics and dissolved organic matter components shaped the fate of dissolved heavy metals in an intensely anthropogenically disturbed estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:173293. [PMID: 38759925 DOI: 10.1016/j.scitotenv.2024.173293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/31/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Anthropogenic activities and natural erosion caused abundant influx of heavy metals (HMs) and organic matter (OM) into estuaries characterized by the dynamic environments governed by tidal action and river flow. Similarities and differences in the fate of HM and OM as well as the influences of OM on HMs remain incomplete in estuaries with seasonal human activity and hydrodynamic force. To address this gap, dissolved HMs (dHMs) and fluorescence dissolved OM (FDOM) were investigated in the Pearl River Estuary, a highly seasonally anthropogenic and dynamic estuary. It aimed to elucidate the effects of hydrodynamic conditions and DOM on the seasonal fate of dHMs via the multivariate statistical methods. Our findings indicated dHMs and FDOM exhibited consistently higher levels in the upper estuarine and coastal waters in both seasons, predominantly controlled by the terrestrial/anthropogenic discharge. In the wet season, dHMs and humic-like substances (HULIS) were positively correlated, showing that dHMs readily combined with HULIS. This association led to a synchronous decrease offshore along the axis of the estuary and the transport following the river plume in the surface affected by the salt wedge. Contrarily, dHMs were prone to complex with protein-like components impacted by the hydrodynamics during the dry season. Principal component analysis (PCA) results revealed the terrestrial/anthropogenic inputs and the fresh-seawater mixing process were the most crucial factors responsible for the fate of dHM in wet and dry seasons, respectively, with DOM identified as a secondary but significant influencing factor in both seasons. This study holds significance in providing valuable insights into the migration, transformation, the ultimate fate of dHMs in anthropogenically influenced estuaries, as well as the intricate dynamics governing coastal ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Yunchao Wu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China
| | - Jinlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixin Ni
- Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; South China Sea Environmental Monitoring Center, South China Sea Bureau, Ministry of Natural Resources, Guangzhou 510300, China
| | - Yuzheng Ren
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jizhen Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Li Y, Zhang K, Apell J, Ruan Y, Huang X, Nah T. Photoproduction of reactive intermediates from dissolved organic matter in coastal seawater around an urban metropolis in South China: Characterization and predictive modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170998. [PMID: 38365044 DOI: 10.1016/j.scitotenv.2024.170998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Chromophoric dissolved organic matter (CDOM) is an important photochemical precursor to reactive intermediates (RIs) (e.g., excited triplet states of chromophoric dissolved organic matter (3CDOM⁎), hydroxyl radicals (·OH), and singlet oxygen (1O2)) in aquatic systems to drive the photodegradation of contaminants. There have been limited studies on the photoproduction of RIs in coastal seawater CDOM in Asia, which impedes our ability to model the lifetimes and fates of contaminants in these coastal seawater systems. Hong Kong is an urban metropolis in South China, whose coastal seawater is susceptible to anthropogenic activities from the surrounding areas and the nearby Pearl River. We investigated the photoproduction of RIs in seawater around Hong Kong during the wet vs. dry season. Higher intensities of fluorescent components, dissolved organic carbon concentration ([DOC]), apparent quantum yields of RIs (ΦRIs), and steady-state concentrations of photogenerated RIs ([RIs]ss) were observed for samples collected in the areas closest to the Pearl River during the wet season. Lower humification degrees and ΦRIs but higher intensities of fluorescent components and [RIs]ss were generally observed for the wet season samples compared to the dry season samples. Statistical analysis revealed strong significant correlations (Spearman |r| > 0.6, p < 0.05) between ΦRIs and the absorbance properties (including the absorbance ratio E2:E3, spectral slope coefficients S350-400, and spectral slope ratio SR) of CDOM, and between [RIs]ss and the quantity-reflected properties (including the fluorescence intensity of humic-like components) of CDOM. Our modeling analyses combining orthogonal partial least squares and stepwise multiple linear regression showed excellent prediction strengths for [1O2]ss and [3CDOM⁎]ss (R2adj > 0.7) when [DOC] and the chemical and optical properties of CDOM were used as predictor variables. These modeling results demonstrate the feasibility of predicting the concentrations and quantum yields of RIs in seawater around Hong Kong, and potentially other coastal cities in South China, from easily measurable chemical and optical properties.
Collapse
Affiliation(s)
- Yitao Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Kai Zhang
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao.
| | - Jennifer Apell
- Department of Civil and Urban Engineering, New York University Tandon School of Engineering, 6 Metrotech Center, Brooklyn, New York, USA.
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xinming Huang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Li J, Wu Y, Yang J, Li P, Jiang Z, Liu S, Huang X. Estuarine hydrodynamic processes driving the molecular changes of terrestrial dissolved organic nitrogen: From mixing to biological modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170489. [PMID: 38301785 DOI: 10.1016/j.scitotenv.2024.170489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Estuaries receive substantial amounts of terrestrial dissolved organic nitrogen (tDON), which will be transported from the freshwater to the oceanic terminus through vigorous exchange processes. However, the intricate migration and transformation dynamics of tDON during this transportation, particularly at a molecular level, remain constrained. To address this knowledge gap, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) was used for the analysis of DON molecular composition in the Pearl River Estuary (PRE), a river-dominated estuarine system influenced by intensified anthropogenic activities in southern China. The results showed a pronounced spatial-temporal variation in DON concentration in the study area. At the molecular level, tDON exhibited reduced unsaturation and aromaticity, coupled with an elevated abundance of DON compounds containing one‑nitrogen atom (1 N-DON, 53.17 %) and compounds containing carbon, hydrogen, oxygen, nitrogen, and sulfur (CHONS) (27.46 %). It was evident that lignin was depleted while more oxygenated tannin compounds were generated in the freshwater-seawater mixing zone. This transformation is attributed to heightened biological activities, likely influenced by the priming effect of terrestrial nutrient inputs. In summer, the prevailing plume combined with biological activities in the strong mixing area and outer estuary increased the abundance of 3 N-DON molecules and a concurrent rise in the abundance of DON compounds containing only carbon, hydrogen, oxygen, and nitrogen (CHON), DON compounds containing carbon, hydrogen, oxygen, nitrogen, sulfur, and phosphorus (CHONSP), and CHONS. This trend also underscores the expanding role of marine plankton and microbes in the utilization of DON compounds containing carbon, hydrogen, oxygen, nitrogen, and phosphorus (CHONP). These findings provide details of tDON transformation processes at the molecular level in a river-dominated estuary and underline the estuarine hydrodynamics involved in transporting and altering DON within the estuary.
Collapse
Affiliation(s)
- Jinlong Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China.
| | - Jia Yang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengju Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Song X, Zhao Y, Xie L, Zhang G, Wei Z, Gao W, Dong G, Li J. Origin, distribution and spatial characteristics of dissolved organic matter in the Heilongjiang River. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118881. [PMID: 37659372 DOI: 10.1016/j.jenvman.2023.118881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
The Heilongjiang River Basin is a vast area with significant DOM sources and composition differences. The mechanism of DOM degradation under spatial variation remains unclear. This research investigated the degradation characteristics of DOM in different watersheds of the Heilongjiang River. DOM levels were higher in midstream waters, while DOM degradation rates were higher in midstream and downstream waters. The parallel factor analysis (PARAFAC) results showed that the upstream amino acid fraction was significantly depleted, the midstream was dominated by the degradation of DOM of terrestrial origin, and the downstream humic acid fraction was decreased considerably. Gene sequencing results indicated that the upstream, middle, and downstream water bodies' microbial community composition and structure differed significantly. The network analysis results revealed microorganisms in upstream water bodies mainly utilized amino acid-like substances and small molecule humic acids. Microorganisms in the middle and lower reaches of the water column were characterized by the utilization of humic acid-like fractions. In this study, we further screened the key driving microorganisms (e.g., Flavobacterium and Lacibacter) responsible for the difference in the DOM utilization function of upstream-to-midstream and midstream-to-downstream microorganisms in the Heilongjiang River. These findings will help identify the cycling process of DOM under spatial variation and predict the succession pattern of microbial communities.
Collapse
Affiliation(s)
- Xinyu Song
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guogang Zhang
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China.
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, 300387, China
| | - Guanhong Dong
- Mudanjiang Natural Resources Comprehensive Survey Center, China Geological Survey, Mudanjiang, 157000, China
| | - Jinxuan Li
- Mudanjiang Natural Resources Comprehensive Survey Center, China Geological Survey, Mudanjiang, 157000, China
| |
Collapse
|
7
|
Zhao C, Hou Y, Wang Y, Li P, He C, Shi Q, Yi Y, He D. Unraveling the photochemical reactivity of dissolved organic matter in the Yangtze river estuary: Integrating incubations with field observations. WATER RESEARCH 2023; 245:120638. [PMID: 37742401 DOI: 10.1016/j.watres.2023.120638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/26/2023]
Abstract
Dissolved organic matter (DOM) sustains a substantial part of the organic matter transported seaward in large estuaries, where photochemical reactions significantly influence its transformation and fate. Irradiation experiments can provide valuable information on the photochemical reactivity (photo-labile, photo-resistant, and photo-product) of molecules. However, previous research paid less attention to exploring the controls of the initial DOM chemistry to irradiation experiments and examining the applicability of their further integration with field research. Here, we conducted irradiation experiments for samples from the freshwater and seawater endmember of the Yangtze River Estuary (YRE), which receives organic matter transport from the largest river in China, the Yangtze River. Molecules that occurred before and after irradiation experiments were characterized by the Fourier transform ion cyclotron resonance mass spectrometry. Results show that both post-irradiation samples have the lower aromaticity degree and reduced oxidation state, while the freshwater endmember sample exhibits more dramatic changes, indicating the controls of parent molecules to the effect of irradiation experiments. Integrating with the "molecular matching" approach, we compared the molecules occurring in field samples with the classified molecules (photo-resistant, photo-labile, and photo-product) acquired from performed irradiation experiments and correlated the relative intensity of photochemical reactivity types with salinity. When applying results from different experiments to conduct "molecular matching", the photo-resistant and photo-labile relative intensity possess consistently positive and negative trends with increasing salinity, respectively. This suggests their reliability for molecular matching applications, while the inconsistent trends for the photo-product relative intensity with salinity suggest its uncertainty in assessing the photo-induced effects. Moreover, the molecular composition within the photochemical reactivity types in field samples also evolved along the salinity gradient and showed similar trends with the DOM changes after experimental irradiation. Despite various factors influencing estimations, it is revealed that a fraction of aromatic molecules and majority of carboxyl-rich alicyclic molecules considered with biologically persistent nature in the YRE freshwater zone are simultaneously not susceptible to photochemical transformation to potentially constitute a long-term marine carbon sink. This study emphasizes the importance and limitations of the combination of field research and laboratory-controlled experiments to provide a better understanding of the crucial role of photochemical reactions in affecting carbon cycling in large estuaries.
Collapse
Affiliation(s)
- Chen Zhao
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yifu Hou
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Penghui Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai 519082, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Yuanbi Yi
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ding He
- Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Li M, Tuo Y, Wu Q, Lin H, Feng Q, Duan Y, Wei J, Chen Z, Lv J, Li L. One-step synthesis of thiol-functionalized metal coordination polymers: effective and superfast removal of Hg (II) in the different matrices to ppb level. CHEMOSPHERE 2023; 338:139618. [PMID: 37487976 DOI: 10.1016/j.chemosphere.2023.139618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The mercury in water bodies has posed a great threat to the environment and humans, and removing mercury and purifying wastewater has become a global environmental issue. Adopting Zn(II) coordination polymers (Zn-CPs) emerged as a new approach, however, the kind of Zn-CPs, which solely consisted of amino groups, exhibited unsatisfactory performance in capturing Hg(II) at a low level and causing the subsequent leaching of Zn(II) after adsorption. In this study, we fabricated the thiol-modified Zn-based coordination polymers (Zn-CPs-SH) through a one-step solvothermal reaction to efficiently capture Hg(II) from wastewater. Its preeminent adsorption performance could be maintained across a broad range of pH (2-7), ion strength (Cl-, SO42-, and NO3- at 0-10,000 mg/L), and dissolved organic matter (0-100 mg/L). The impressive properties, including fast kinetics (k2∼1.01 × 10-4 L/min), outstanding adsorption capacity (1278.72 mg/g, 298 K), superior selectivity (Kd∼2.3 × 104 mL/g), and excellent regeneration capability (Re = 93.54% after 5 cycles), were attributed to the ultra-abundance of adsorption sites donating from thiol groups, which was revealed by XPS analysis, DFT calculations, and molecular orbital theory. Noteworthy, the high practical application potential of Zn-CPs-SH was demonstrated by its outstanding Hg(II) removal efficiency (Re ≥ 99.10%) in various Hg(II)-spiked water matrices, e.g., tap water, river water, and industrial wastewater. Importantly, the residual Hg(II) in the treated water declined to the ppb level without any Zn(II) leaching. Overall, it is highly anticipated that the incorporation of Zn-CPs-SH would facilitate the practical implementation of highly efficient Hg(II) removal in wastewater treatment owing to its exhibiting high selective affinity, superior adsorption capacity, and enhanced efficiency.
Collapse
Affiliation(s)
- Mingzhi Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Yongjie Tuo
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Qiuxia Wu
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Haiying Lin
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China.
| | - Qingge Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning, China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, China
| | - Yu Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Junqi Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Zixuan Chen
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Jiatong Lv
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Lianghong Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| |
Collapse
|
9
|
Cai L, Huang H, Li Q, Deng J, Ma X, Zou J, Li G, Chen G. Formation characteristics and acute toxicity assessment of THMs and HAcAms from DOM and its different fractions in source water during chlorination and chloramination. CHEMOSPHERE 2023; 329:138696. [PMID: 37062392 DOI: 10.1016/j.chemosphere.2023.138696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/22/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
The formation characteristics of trihalomethanes (THMs) and haloacetamides (HAcAms) from dissolved organic matter and its fractions were investigated during chlorine-based disinfection processes. The relationships between water quality parameters, fluorescence parameters, and the formation levels of THMs and HAcAms were analyzed. The fractions contributing most to the acute toxicity were identified. The trichloromethane (TCM) generation level (72 h) generally followed the order of Cl2 > NH2Cl > NHCl2 process. The NHCl2 process was superior to the NH2Cl process in controlling TCM formation. Hydrophobic acidic substance (HOA), hydrophobic neutral substance (HON), and hydrophilic substance (HIS) were identified as primary precursors of 2,2-dichloroacetamide and trichloroacetamide during chlorination and chloramination. The formation of TCM mainly resulted from HOA, HON and HIS fractions relatively uniformly, while HOA and HIS fractions contributed more to the formation of bromodichloromethane and dibromomonochloromethane. UV254 could be used as an alternative indicator for the amount of ΣTHMs formed during chlorination and chloramination processes. Dissolved organic nitrogen was a potential precursor of 2,2-dichloroacetamide during chlorination process. The fractions with the highest potential acute toxicity after the chlorination were water-dependent.
Collapse
Affiliation(s)
- Litong Cai
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Fujian Metrology Institute, Fujian, Fuzhou, 350003, China.
| | - Huahan Huang
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China; Xiamen Key Laboratory of Water Resources Utilization and Protection, Xiamen, 361005, China.
| | - Jing Deng
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Xiaoyan Ma
- College of Civil Engineering and Architecture, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jing Zou
- College of Civil Engineering, Huaqiao University, Xiamen, 361021, China.
| | - Guoxin Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| | - Guoyuan Chen
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, 361005, China.
| |
Collapse
|
10
|
He J, Yang Y, Wu X, Zhi G, Zhang Y, Sun X, Jiao L, Deng W, Zhou H, Shao Z, Zhu Q. Responses of dissolved organic matter (DOM) characteristics in eutrophic lake to water diversion from external watershed. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:119992. [PMID: 36029904 DOI: 10.1016/j.envpol.2022.119992] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication is an important water environment issue facing global lakes. Diversion of water from external watersheds into lakes is considered as effective in ameliorating eutrophication and reducing algal blooms. Nevertheless, the changes in lake water environment caused by external water diversion, especially the influence of water diversion on the characteristics of dissolved organic matters (DOM), are still poorly understood. We therefore used a combination of EEM-PARAFAC, Principal Component Analysis (PCA), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to investigate the effects of water diversion from the Niulan River on DOM characteristics in Lake Dianchi. The results showed that the water diversion from the Niulan River significantly improved the water quality of Lake Dianchi, the concentrations of TN, TP, COD and Chla decreased rapidly, and the degree of humification of dissolved organic matter (DOM) increased, which was in sharp contrast with that of pre-implementation. Firstly, the diversion of water from the Niulan River mainly led to changes in the structure of pollution sources. The load of influent rivers and sewage treatment plants rich in lignin and tannins increased, and the input of terrestrial humus increased. Second, the improved water quality reduced algal enrichment and frequency of blooms, and reduced the release of lipid- and protein-riched algal-derived DOM. Finally, the hydraulic retention time of Lake Dianchi caused by water diversion was shortened, the hydrodynamic conditions were significantly improved, and the dissolved oxygen (DO) level gradually recovered, which played a positive role in improving the humification degree of DOM. Our findings provide new insights for exploring the improvement of eutrophic lake eco-environmental quality caused by water diversion projects.
Collapse
Affiliation(s)
- Jia He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Yan Yang
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Xue Wu
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Guoqiang Zhi
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Ying Zhang
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Xiaoneng Sun
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Lixin Jiao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Institute of Water Environment Research, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Weiming Deng
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Hongbin Zhou
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Zhi Shao
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| | - Qifeng Zhu
- Kunming Institute of Eco-Environmental Sciences, Kunming, 650032, China
| |
Collapse
|