1
|
Deng P, Hu X, Wang R, Dong X, Hu K, Mu L. Spatial Risks of Microplastics in Soils and the Cascading Effects Thereof. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40397046 DOI: 10.1021/acs.est.4c14505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Microplastic (MP) pollution has become a significant global concern in soil systems. The spatial risk of MPs in soils, the cascading effects of climate, human activities, and air quality, and the ecosystem gradients from natural habitats, agricultural lands, and urban soils remain largely unknown. We compile a comprehensive data set of more than 3000 site-year field observations across agricultural, natural, and urban soil ecosystems in China. By using interpretable machine learning models and statistical approaches, our findings reveal that approximately 4.32% of soil ecosystems in China face potential ecological risks from MPs, with agricultural soils being the most vulnerable (e.g., 14.7% of agricultural soils are at risk). Climate factors (e.g., temperature and precipitation), human activities (e.g., agricultural plastic film use), and air quality (e.g., concentrations of atmospheric particulate matter) have been identified as the primary drivers of MP risk. The cascading effects of climate factors and air quality (p < 0.001) significantly impact the ecological risk of MPs in agricultural and urban soils. This work highlights the urgent need for the coordinated management of human activities, climate, and air quality to mitigate the ecological risks posed by MPs in soils, especially in agricultural lands.
Collapse
Affiliation(s)
- Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiqi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xu Dong
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Kai Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Li Mu
- Key Laboratory for Environmental Factors Control of Agro-product Quality Safety (Ministry of Agriculture and Rural Affairs), Tianjin Key Laboratory of Agro-environment and Safe-product, Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| |
Collapse
|
2
|
Czerner N, Windt C, Goseberg N. Transport mechanisms of particulate emissions from artificial marine structures - A review. MARINE POLLUTION BULLETIN 2025; 214:117728. [PMID: 40058326 DOI: 10.1016/j.marpolbul.2025.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
A vast number of artificial marine structures are currently installed offshore, and the rate of new installation is increasing. Especially offshore wind farms, a sub-type of artificial marine structures, are expected to grow significantly due to ambitious installation targets from international decision-makers. With increasing numbers of installed artificial marine structures, an assessment of possible adverse effects is more important than ever. To improve the environmental friendliness of artificial marine structures, an in-depth assessment of the transport and environmental fate of particle emissions is needed. The present work provides an overview of the involved processes of particle transport in the marine environment using the example of an offshore wind turbine. In this work, a first estimation on emission quantities is given for particulate emissions from marine structures, from which it is evident that emissions will increase in the next years due to an increasing number of marine structures.
Collapse
Affiliation(s)
- Niklas Czerner
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Dept. of Hydromechanics, Coastal and Ocean Engineering, Beethovenstr. 51a, Braunschweig, 38106, Germany.
| | - Christian Windt
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Dept. of Hydromechanics, Coastal and Ocean Engineering, Beethovenstr. 51a, Braunschweig, 38106, Germany
| | - Nils Goseberg
- Technische Universität Braunschweig, Leichtweiß-Institute for Hydraulic Engineering and Water Resources, Dept. of Hydromechanics, Coastal and Ocean Engineering, Beethovenstr. 51a, Braunschweig, 38106, Germany; Coastal Research Center, Joint Research Facility of Leibniz Universität Hannover and Technische Universität Braunschweig, Merkurstr. 11, Hannover, 30419, Germany
| |
Collapse
|
3
|
Oswald SB, Ragas AMJ, Schoor MM, Collas FPL. Plastic transport in rivers: Bridging the gap between surface and water column. WATER RESEARCH 2025; 269:122768. [PMID: 39566334 DOI: 10.1016/j.watres.2024.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 11/06/2024] [Indexed: 11/22/2024]
Abstract
Rivers act as an important transportation pathway for land-based plastic litter to the ocean. Recently, rivers have also been identified as potential sinks and reservoirs for plastics. Knowledge of plastic transport over different depth profiles in rivers remains limited. In this study, we evaluated the vertical distribution of macro- and mesoplastics, using a larvae net and a trawl net in the river Rhine and its two major branches, i.e. Waal and IJssel. Subsequently, to estimate the relationship between the surface transport of plastic items, i.e., floating items, compared to the transport in deeper layers in the water column, including suspended and bed-transported plastic, an extrapolation factor was derived per day for the middle and bottom nets divided by those found in the surface net. The observed macro- and mesoplastic OSPAR categories collected in different layers in the water column were rather consistent between different sampling techniques. Fragments of soft mesoplastic falling under the category "Plastic film plastics 0-2.5 cm (soft)" were recorded most frequently in the investigated rivers with our monitoring techniques. During larvae net monitoring, hard plastics were more frequently found at the river surface than at the middle or bottom of the river for both macroplastic and mesoplastics, while soft plastics were more frequently detected near the bottom. For larvae net monitoring, the extrapolation factor, reflecting the concentration ratio of macroplastic items transport at different depths, i.e., from the surface downwards to the middle and the bottom ranged between 0.38 to 2.2 and 0.36 to 5.7, respectively. The extrapolation factor of mesoplastic transport from the surface downwards to the middle and the bottom ranged between 0.70 to 1.84 and 0.69 to 2.57. During trawl net monitoring, the extrapolation factor, reflecting the concentration ratio, for macroplastic ranged between 0.82 and 1.30, and for mesoplastic between 0.52 and 1.40. Overall, the findings of this study show that estimates of plastic concentrations solely based on surface transport could result in an under- or overestimation of riverine plastic transport.
Collapse
Affiliation(s)
- Stephanie B Oswald
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science (RIBES), Radboud University, Nijmegen. P.O. Box 9100, 6500 GL, Nijmegen, the Netherlands.
| | - Ad M J Ragas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science (RIBES), Radboud University, Nijmegen. P.O. Box 9100, 6500 GL, Nijmegen, the Netherlands
| | - Margriet M Schoor
- Rijkswaterstaat, Ministry of Infrastructure and Water Management, The Hague, the Netherlands
| | - Frank P L Collas
- Department of Environmental Science, Radboud Institute for Biological and Environmental Science (RIBES), Radboud University, Nijmegen. P.O. Box 9100, 6500 GL, Nijmegen, the Netherlands; Rijkswaterstaat, Ministry of Infrastructure and Water Management, The Hague, the Netherlands
| |
Collapse
|
4
|
Chanda M, Bathi JR, Khan E, Katyal D, Danquah M. Microplastics in ecosystems: Critical review of occurrence, distribution, toxicity, fate, transport, and advances in experimental and computational studies in surface and subsurface water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122492. [PMID: 39307085 DOI: 10.1016/j.jenvman.2024.122492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 11/17/2024]
Abstract
Microplastics (MPs), particles under 5 mm, pervade water, soil, sediment, and air due to increased plastic production and improper disposal, posing global environmental and health risks. Examining their distribution, quantities, fate, and transport is crucial for effective management. Several studies have explored MPs' sources, distribution, transport, and biological impacts, primarily focusing on the marine environment. However, there is a need for a comprehensive review of all environmental systems together for enhanced pollution control. This review critically examines the occurrence, distribution, fate, and transport of MPs in the following environments: freshwater, marine, and terrestrial ecosystems. The concentration of MPs is highly variable in the environment, ranging from negligible to significant amounts (0.003-519.223 items/liter in water and 0-18,000 items/kg dry weight sediment, respectively). Predominantly, these MPs manifest as fibers and fragments, with primary polymer types including polypropylene, polystyrene, polyethylene, and polyethylene terephthalate. A complex interplay of natural and anthropogenic actions, including wastewater treatment plant discharges, precipitation, stormwater runoff, inadequate plastic waste management, and biosolid applications, influences MPs' presence and distribution. Our critical synthesis of existing literature underscores the significance of factors such as wind, water flow rates, settling velocities, wave characteristics, plastic morphology, density, and size in determining MPs' transport dynamics in surface and subsurface waters. Furthermore, this review identifies research gaps, both in experimental and simulation, and outlines pivotal avenues for future exploration in the realm of MPs.
Collapse
Affiliation(s)
- Mithu Chanda
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States
| | - Jejal Reddy Bathi
- Civil and Chemical Engineering Department, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, United States.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV, 89154, United States
| | - Deeksha Katyal
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, 110078, New Delhi, India
| | - Michael Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| |
Collapse
|
5
|
Iuppa C, Passalacqua G, Faraci C. An equilibrium criterion for plastic debris fate in wave-driven transport. MARINE POLLUTION BULLETIN 2024; 206:116758. [PMID: 39098135 DOI: 10.1016/j.marpolbul.2024.116758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 07/20/2024] [Indexed: 08/06/2024]
Abstract
The nearshore zone turns out to be the area with the higher concentration of plastic debris and, for this reason, it is important to know the processes that affect the transport and the fate of this type of litter. This study focuses on investigating the dynamics of various plastic types under several hydrodynamic conditions primarily induced by waves. 2D tests were carried out at the Hydraulic Laboratory of the University of Messina reproducing the main phenomena that occurred during the wave propagation on a planar beach. More than 200 different conditions were tested changing the wave characteristics, the water depth, the plastic debris characteristics (density and shape), and the roughness of the fixed bottom. In general, it can be observed that the reduction in particle displacement occurs due to: i) a decrease in wave steepness; ii) an increase in depth; iii) an increase in particle size; iv) an increase in plastic density. However, the experimental investigation shows that some plastic characteristics and bed roughness, even when hydraulically smooth, can alter these results. The experimental data analysis identified a criterion for predicting the short-term fate of plastic debris under wave action. This criterion to determine equilibrium conditions, based on an empirical relationship, takes into account the wave characteristics, the bed roughness and slope, and the weight of the debris.
Collapse
Affiliation(s)
- Claudio Iuppa
- Department of Engineering, University of Messina, Contrada di Dio, Messina 98166, Italy.
| | - Giovanni Passalacqua
- Department of Engineering, University of Messina, Contrada di Dio, Messina 98166, Italy
| | - Carla Faraci
- Department of Engineering, University of Messina, Contrada di Dio, Messina 98166, Italy
| |
Collapse
|
6
|
Kim S, Kim DH. Short-term buoyant microplastic transport patterns driven by wave evolution, breaking, and orbital motion in coast. MARINE POLLUTION BULLETIN 2024; 201:116248. [PMID: 38479323 DOI: 10.1016/j.marpolbul.2024.116248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/07/2024]
Abstract
Recently, there has been a notable rise in social and scientific interest regarding microplastic pollution in coasts where waves significantly influence flow patterns and material transport. This study explores typical short-term movement of buoyant microplastics driven by surf zone processes including wave transformation, breaking, and orbital motion. To track microplastics, Lagrangian Particle Tracking Model (PTM) coupled with Eulerian wave-current interaction model appropriate for coastal hydrodynamics was used. From the simulations, several important findings were observed. (i) In alongshore uniform beaches, lighter and larger buoyant microplastics tended to reach beach more readily. (ii) Accurate predictions of microplastic transport in the surf zone required the consideration of wave breaking. (iii) In alongshore non-uniform coastal bathymetry, rip-currents can send buoyant microplastics offshore, beyond the surf zone.
Collapse
Affiliation(s)
- Soyoung Kim
- Department of Civil Engineering, The University of Seoul, Seoul 02504, Republic of Korea; Department of Civil and Environmental Engineering, Texas A&M University, College Station 77843, USA
| | - Dae-Hong Kim
- Department of Civil Engineering, The University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Jiang J, He L, Zheng S, Liu J, Gong L. A review of microplastic transport in coastal zones. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106397. [PMID: 38377936 DOI: 10.1016/j.marenvres.2024.106397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/13/2024] [Accepted: 02/05/2024] [Indexed: 02/22/2024]
Abstract
Transport of microplastics (MPs) in coastal zones is influenced not only by their own characteristics, but also by the hydrodynamic conditions and coastal environment. In this article, we first summarized the source, distribution and abundance of MPs in coastal zones around the world through the induction of in-situ observation literature, and then comprehensively reviewed the different transports of MPs in coastal zones, including sedimentation, vertical mixing, resuspension, drift and biofouling. Afterwards, we conducted a comparative analysis of relevant experimental literature, and found that the current experimental research on microplastic transport mainly focused on the settling velocity under static water and the transport distribution under dynamic water. Based on the relevant literature on numerical simulation of microplastic transport in coastal zones, it was also found that the Euler-Lagrange method is the most widely used. The main influencing factor in the Euler method is hydrodynamic, while the Lagrange method and Euler-Lagrange method is hydrodynamic and microplastic particle characteristics. Tides in hydrodynamics are mentioned the most frequently, and the role of turbulence in almost all the literature. The density of MPs is the most influencing factor on transport results, followed by size, while shape is only studied in small-scale models. Some literature has also found that the influence of biofilms is mainly reflected in the changes in the density and size of MPs.
Collapse
Affiliation(s)
- Jianhao Jiang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lulu He
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China.
| | - Shiwei Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China; Zhejiang Design Institute of Water Conservancy and Hydroelectric Power, Hangzhou, 310002, Zhejiang, China
| | - Junping Liu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Lixin Gong
- The Eighth Geological Brigade, Hebei Bureau of Geology and Mineral Resources Exploration, Qinhuangdao, 066001, Hebei, China; Marine Ecological Restoration and Smart Ocean Engineering Research Center of Hebei Province, Qinhuangdao, 066001, Hebei, China
| |
Collapse
|
8
|
Kerpen NB, Larsen BE, Schlurmann T, Paul M, Guler HG, Goral KD, Carstensen S, Christensen ED, Fuhrman DR. Microplastic retention in marine vegetation canopies under breaking irregular waves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169280. [PMID: 38128667 DOI: 10.1016/j.scitotenv.2023.169280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/07/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The present study provides indications and underlying drivers of wave-induced transport and retention potential of microplastic particles (MP) in marine vegetation canopies having different densities. The anthropogenic occurrence of MP in coastal waters is well documented in the recent literature. It is acknowledged that coastal vegetation can serve as a sink for MP due to its energy dissipating features, which can mimic a novel ecosystem service. While the transport behavior of MP in vegetation has previously been investigated to some extent for stationary flow conditions, fundamental investigations for unsteady surf zone flow conditions under irregular waves are still lacking. Herein, we demonstrate by means of hydraulic model tests that a vegetation's retention potential of MP in waves increases with the vegetation shoot density, the MP settling velocity and decreasing wave energy. It is found that particles migrating by traction (predominantly in contact with the bed) are trapped in the wake regions around a canopy, whereas suspended particles are able to pass vegetated areas more easily. Very dense canopies can also promote the passage of MP with diameters larger than the plant spacing, as the canopies then show characteristics of a solid sill and avoid particle penetration. The particle migration ability through a marine vegetation canopy is quantified, and the key drivers are described by an empirical expression based on the particle settling velocity, the canopy length and density. The findings of this study may contribute to improved prediction and assessment of MP accumulation hotspots in vegetated coastal areas and, thus, may help in tracing MP sinks. Such knowledge can be considered a prerequisite to develope methods or new technologies to recover plastic pollutants and rehabilitate valuable coastal environments.
Collapse
Affiliation(s)
- Nils B Kerpen
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Bjarke Eltard Larsen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Torsten Schlurmann
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Maike Paul
- Gottfried Wilhelm Leibniz University Hannover, Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Nienburger Str. 4, D-30167 Hannover, Germany
| | - Hasan Gokhan Guler
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark; Middle East Technical University, Department of Civil Engineering, Ocean Engineering Research Center, Cankaya, Ankara, Turkey
| | - Koray Deniz Goral
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Stefan Carstensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Damgaard Christensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - David R Fuhrman
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
9
|
Núñez P, Misic C, Cutroneo L, Capello M, Medina R, Besio G. Biofilm-induced effect on the buoyancy of plastic debris: An experimental study. MARINE POLLUTION BULLETIN 2023; 193:115239. [PMID: 37459835 DOI: 10.1016/j.marpolbul.2023.115239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/26/2023]
Abstract
Plastic floating on the ocean surface represents about 1 % of all plastic in the ocean, despite the buoyancy of most plastics. Biofouling can help to sink debris, which could explain this discrepancy. A set of laboratory experiments was conducted to investigate biofilm-induced effects on the buoyancy of different plastic debris. Ten materials of different densities (buoyant/non-buoyant), sizes (micro/meso/macro), and shapes (irregular/spherical/cylindrical/flat), including facemasks and cotton swabs, were evaluated. Biofilm was incubated in these materials from a few weeks to three months to investigate the effect of different growth levels on their buoyancy. Biofilm levels and rising/settling velocities were measured and compared at seven time-points. The results show a hindered buoyancy for solid materials, while hollow and open materials showed the opposite trend in early biofilm colonization stages. A relationship was established between biofilm-growth and equivalent sphere diameter that can be used to improve predictive modeling of plastic-debris transport.
Collapse
Affiliation(s)
- Paula Núñez
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain.
| | - Cristina Misic
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Laura Cutroneo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Marco Capello
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132, Genoa, Italy
| | - Raúl Medina
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Giovanni Besio
- Dipartimento di Ingegneria Civile, Chimica e Ambientale, Università degli studi di Genova, Via Montallegro 1, 16145 Genoa, Italy
| |
Collapse
|
10
|
Goral KD, Guler HG, Larsen BE, Carstensen S, Christensen ED, Kerpen NB, Schlurmann T, Fuhrman DR. Settling velocity of microplastic particles having regular and irregular shapes. ENVIRONMENTAL RESEARCH 2023; 228:115783. [PMID: 37028533 DOI: 10.1016/j.envres.2023.115783] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/16/2023]
Abstract
The settling velocities of 66 microplastic particle groups, having both regular (58) and irregular (eight) shapes, are measured experimentally. Regular shapes considered include: spheres, cylinders, disks, square plates, cubes, other cuboids (square and rectangular prisms), tetrahedrons, and fibers. The experiments generally consider Reynolds numbers greater than 102, extending the predominant range covered by previous studies. The present data is combined with an extensive data set from the literature, and the settling velocities are systematically analyzed on a shape-by-shape basis. Novel parameterizations and predictive drag coefficient formulations are developed for both regular and irregular particle shapes, properly accounting for preferential settling orientation. These are shown to be more accurate than the best existing predictive formulation from the literature. The developed method for predicting the settling velocity of irregularly-shaped microplastic particles is demonstrated to be equally well suited for natural sediments in the Appendix.
Collapse
Affiliation(s)
- Koray Deniz Goral
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark.
| | - Hasan Gokhan Guler
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark; Middle East Technical University, Department of Civil Engineering, Ocean Engineering Research Center, Cankaya, Ankara, Turkey
| | - Bjarke Eltard Larsen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Stefan Carstensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Damgaard Christensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Nils B Kerpen
- Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Hannover, Germany
| | - Torsten Schlurmann
- Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Hannover, Germany
| | - David R Fuhrman
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Feng Q, Chen Z, An C, Yang X, Wang Z. Tide-induced infiltration and resuspension of microplastics in shorelines: Insights from tidal tank experiments. WATER RESEARCH 2023; 236:119970. [PMID: 37084574 DOI: 10.1016/j.watres.2023.119970] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/04/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
In the present study, the infiltration and resuspension of microplastics (MPs) in a slope substrate under the influence of repeated tidal forces were investigated using a tidal tank. In the scenario in which MPs were placed on the top of the slope, increasing numbers of particles were observed on the water surface with the increase in tidal cycles. More particles of smaller equivalent particle diameter (dMP) and low density floated to the water surface. The horizontal positions (positive toward the lower tide zone) of MPs showed significant positive correlation with the shortest length c of MPs, MP density, MP weight, dMP, and Corey shape factor, whereas they showed significant negative correlation with the rate of tidal level change and the longest length a of MPs. The vertical positions (positive in the downward direction) of MPs showed significant positive correlation with the shortest length c of MPs, MP density, MP weight, dMP, and Corey shape factor, while they demonstrated significant negative correlation with the largest cross-section area and surface tension of MPs. In the scenario in which MPs were placed at the bottom of the tank, the smaller and low-density particles had a higher possibility of moving upward to the water surface under repeated tidal forces. High-density particles also migrated to the water surface due to the surface tension force. Further, a lower rate of tidal level change contributed to more floating of particles. The horizontal positions of MPs showed significant positive correlation with MP density, while they demonstrated significant negative correlation with the largest cross-section area and surface tension of MPs. The vertical positions of MPs showed significant positive correlation with the longest length a of MPs, MP density, MP weight, and dMP. These results imply that large, high-density, and less flatty particles tend to be distributed in the lower tidal zone and deeper substrate layers. These findings can help understand the redistribution of MPs and assess their risk in the shoreline environment.
Collapse
Affiliation(s)
- Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada.
| | - Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| | - Zheng Wang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal H3G 1M8, Canada
| |
Collapse
|
12
|
Larsen BE, Al-Obaidi MAA, Guler HG, Carstensen S, Goral KD, Christensen ED, Kerpen NB, Schlurmann T, Fuhrman DR. Experimental investigation on the nearshore transport of buoyant microplastic particles. MARINE POLLUTION BULLETIN 2023; 187:114610. [PMID: 36669300 DOI: 10.1016/j.marpolbul.2023.114610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper presents experimental measurements of beaching times for buoyant microplastic particles released, both in the pre-breaking region and within the surf zone. The beaching times are used to quantify cross-shore Lagrangian transport velocities of the microplastics. Prior to breaking the particles travel onshore with a velocity close to the Lagrangian fluid particle velocity, regardless of particle characteristics. In the surf zone the Lagrangian velocities of the microplastics increase and become closer to the wave celerity. Furthermore, it is demonstrated that particles having low Dean numbers (dimensionless fall velocity) are transported at higher mean velocities, as they have a larger tendency to be at the free-surface relative to particles with higher Dean numbers. An empirical relation is formulated for predicting the cross-shore Lagrangian transport velocities of buoyant microplastic particles, valid for both non-breaking and breaking irregular waves. The expression matches the present experiments well, in addition to two prior studies.
Collapse
Affiliation(s)
- Bjarke Eltard Larsen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark.
| | | | - Hasan Gokhan Guler
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark; Middle East Technical University, Department of Civil Engineering, Ocean Engineering Research Center, Cankaya, Ankara, Turkey
| | - Stefan Carstensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Koray Deniz Goral
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Erik Damgaard Christensen
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| | - Nils B Kerpen
- Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Hanover, Germany
| | - Torsten Schlurmann
- Ludwig-Franzius-Institute for Hydraulic, Estuarine and Coastal Engineering, Leibniz University Hannover, Hanover, Germany
| | - David R Fuhrman
- Technical University of Denmark, Department of Civil and Mechanical Engineering, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|