1
|
Ma X, Song Z, Wang YP, Wang S, Zhan ZW, He D. Heavy metal dynamics in riverine mangrove systems: A case study on content, migration, and enrichment in surface sediments, pore water, and plants in Zhanjiang, China. MARINE ENVIRONMENTAL RESEARCH 2025; 203:106832. [PMID: 39531745 DOI: 10.1016/j.marenvres.2024.106832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Mangroves serve a crucial role as metal accumulators in tropical and subtropical marine ecosystems, particularly in riverine mangroves, which frequently interact with terrestrial sources. In this study, we focused on the Gaoqiao and Jiuzhou Rivers within the Zhanjiang mangrove forest in Guangdong, China, and collected leaves and surface sediments from the dominant mangrove plant, Aegiceras corniculatum, near the riverbanks. We focused on seven heavy metals (Cr, Cu, Zn, As, Cd, Pb, and Hg) in mangrove leaves, surface sediments, and pore water due to their environmental significance and frequent occurrence in mangrove ecosystems. We employed multivariate statistical methods and pollution indicators to assess the potential sources and risk levels of heavy metals in these sediments. Our results reveal that the concentrations of the seven heavy metals in the sediments of the Gaoqiao and Jiuzhou Rivers varied significantly, ranging from 0.03 mg/kg to 100.00 mg/kg. Cd posed the highest ecological risk, followed by Hg and As. The comprehensive potential ecological risk in the Gaoqiao River was lower than that in the Jiuzhou River, likely due to the distribution of industrial enterprises (such as printing and cement plants) in the upper reaches of the Jiuzhou River. Additionally, the heavy metal content in the leaves of A. corniculatum and in pore water within surface sediments ranged from 0.01 to 51.58 mg/kg and 0.001 to 133.70 μg/L, respectively. A significant correlation was observed between the heavy metal concentrations in the A. corniculatum leaves and those in the pore water. Notably, the leaves of A. corniculatum exhibited a remarkable Hg-enrichment capability, highlighting its potential as a mercury accumulator. Most heavy metals in A. corniculatum leaves, pore water, and sediment were concentrated in the middle and upper reaches of the river, primarily due to anthropogenic terrestrial inputs from residential production activities upstream. Consequently, heavy metal pollution in riverine mangroves is primarily associated with human activities such as aquaculture, agricultural planting, and industrial production.
Collapse
Affiliation(s)
- Xuemei Ma
- College of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhiguang Song
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Yao-Ping Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China.
| | - Sibo Wang
- Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Zhao-Wen Zhan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Ding He
- Department of Ocean Science and the Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Dey G, Maity JP, Banerjee P, Sharma RK, Das K, Gnanachandrasamy G, Wang CW, Lin PY, Wang SL, Chen CY. Evaluation and mitigation of potentially toxic elements contamination in mangrove ecosystem: Insights into phytoremediation and microbial perspective. MARINE POLLUTION BULLETIN 2024; 209:117035. [PMID: 39393228 DOI: 10.1016/j.marpolbul.2024.117035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 10/13/2024]
Abstract
Mangroves, essential coastal ecosystems, are threatened by human-induced Potentially-toxic-elements (PTEs) pollution. This study analyzed PTEs distribution, phytoremediation potential, and rhizosphere microbial communities in Taiwan's Xinfeng mangrove forest. Significant variations in physicochemical and PTEs concentrations were observed across adjacent water bodies, with moderate contamination in the river, estuary, and overlying water of mangroves sediment. The partition-coefficient showed the mobility of Bi, Pb, Co, and Sr at the water-sediment interface. The geochemical-indices revealed high Bi and Pb contamination and moderate Zn, Sr, Cu, and Cd contamination in sediment. The overall pollution indices indicated the significant contamination, while moderate ecological risk was found for Cd (40 ≤ Eri < 80). Mangroves Kandelia obovata and Avicennia marina exhibited promising PTEs phytoremediation potential (Bi, Cd, Mn, Sr, and Co). Metagenomics indicated a diverse microbial community with N-fixation, P-solubilization, IAA synthesis, and PTEs-resistance genes. These findings underscore the need for targeted conservation to protect these critical habitats.
Collapse
Affiliation(s)
- Gobinda Dey
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan; Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Jyoti Prakash Maity
- Environmental Science Laboratory, Department of Chemistry, Biological Laboratory, School of Applied Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Pritam Banerjee
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan
| | - Koyeli Das
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Chiayi County, Ming-Shung, 62102, Taiwan; Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Gopalakrishnan Gnanachandrasamy
- Department of Earth Sciences, School of Physical, Chemical, and Applied Sciences, Pondicherry University, Puducherry 605104, India
| | - Chin-Wen Wang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County 62102, Taiwan
| | - Shan-Li Wang
- Department of Agricultural Chemistry, National Taiwan University, Taipei 106319, Taiwan.
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Rd., Chiayi County, Min-Hsiung, 62102, Taiwan; Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, Chiayi 62102, Taiwan; You-Cheng Engineering & Technology Co., Ltd, Chiayi 62102, Taiwan.
| |
Collapse
|
3
|
Tao Z, Xia T, Chen F, Zhang L, Wei R, Chen S, Jia L, Lan W, Pan K. Cadmium contamination in sediments from a mangrove wetland: Insights from lead isotopes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135667. [PMID: 39226682 DOI: 10.1016/j.jhazmat.2024.135667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
Cadmium (Cd) pollution has gained significant attention in mangrove sediments due to its high toxicity and mobility. However, the sources of Cd and the factors influencing its accumulation in these sediments have remained elusive. In this study, we utilized lead (Pb) isotopic signatures for the first time to assess Cd contamination in mangrove sediments from the northern region of the Beibu Gulf. A strong correlation was observed between Cd and Pb concentrations in the mangrove sediments, suggesting a shared source that can be estimated using Pb isotopic signatures. By employing a Bayesian mixing model, we determined that 70.1 ± 8.2 % of Cd originated from natural sources, while 12.9 ± 4.9 %, 9.8 ± 3.7 %, and 7.1 ± 3.4 % were attributed to agricultural activities, non-ferrous metal smelting, and coal combustion, respectively. Our study clearly suggests that natural Cd could also dominate the high Cd content. Agricultural activities were the most important anthropogenic Cd sources, and the increased anthropogenic Cd accumulation in mangrove sediment was related to organic matter. This study introduces a novel approach for assessing Cd contamination in mangrove sediment, providing useful insights into Cd pollution in coastal wetlands.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianxiang Xia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lina Zhang
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shanshan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Lin Jia
- Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Wenlu Lan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Gibaga CRL, Samaniego JO, Tanciongco AM, Quierrez RNM, Gervasio JHC, Reyes RCG. Assessment of potentially toxic element contamination in wetland sediments of Boracay Island, Philippines. MARINE POLLUTION BULLETIN 2024; 208:117079. [PMID: 39361993 DOI: 10.1016/j.marpolbul.2024.117079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Boracay Island, Philippines, famous for its white sand beaches, has wetlands increasingly threatened by human activities. This study evaluated the ecological state of Boracay Island's wetlands and assessed the consequences of anthropogenic activities on sediment quality. Results showed that sediments from Wetland Nos. 3 and 4 have higher concentrations of potentially toxic elements (PTEs) than Wetland No. 1. Comparative analysis with other Southeast Asian wetlands revealed that Boracay's sediments contain the highest average values of As, Cd, Cu, Ni, Zn. Enrichment factor values suggest that the moderate enrichment of Cd, Cr, Cu, Mo, Pb, and Zn in the wetland sediments can be attributed to anthropogenic activities on the island. Elevated concentrations of Cr, Cu, and Zn above interim sediment quality guidelines indicate occasional adverse biological effects on aquatic biota. These findings provide a crucial baseline for future pollution monitoring and highlight the need for ongoing conservation efforts in Boracay's wetlands.
Collapse
Affiliation(s)
- Cris Reven L Gibaga
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines.
| | - Jessie O Samaniego
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines
| | - Alexandria M Tanciongco
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines
| | - Rico Neil M Quierrez
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines
| | - John Henry C Gervasio
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines
| | - Rachelle Clien G Reyes
- Department of Science and Technology - Philippine Nuclear Research Institute (DOST-PNRI), Quezon City 1101, Philippines
| |
Collapse
|
5
|
Deng S, Luo S, Lin Q, Shen L, Gao L, Zhang W, Chen J, Li C. Analysis of heavy metal and arsenic sources in mangrove surface sediments at Wulishan Port on Leizhou Peninsula, China, using the APCS-MLR model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116788. [PMID: 39067073 DOI: 10.1016/j.ecoenv.2024.116788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mangrove forests are sources and sinks for various pollutants. This study analyzed the current status of heavy metal and arsenic (As) pollution in mangrove surface sediments in rapidly industrializing and urbanizing port cities. Surface sediments of mangroves at Wulishan Port on the Leizhou Peninsula, China, were analyzed using inductively coupled plasma emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) for the presence of Cr, Pb, Ni, Zn, Cd, Cu, As, and Hg. The Pollution load index, Nemerow pollution index, and Potential ecological risk index were employed to evaluate the pollutant. Multivariate statistical methods were applied for the qualitative analysis of pollutant sources, and the APCS-MLR receptor model was used for quantification. This study indicated the following results: (1) The average content of eight pollutants surpassed the local background level but did not exceed the Marine Sediment Quality standard. The pollution levels across the four sampling areas were ranked as Ⅲ > Ⅳ > Ⅰ > Ⅱ. The area Ⅱ exhibited relatively lower pollution levels with the grain size of the sediments dominated by sand, which was not conducive to pollutant adsorption and enrichment. (2) The factor analysis and cluster analyses identified three primary sources of contamination. As, Cr, Ni, and Pb originated from nearby industrial activities and their associated wastewater, suggesting that the primary source was the industrial source. Cd, Cu, and Zn stem from the cement columns utilized in oyster farming, alongside discharges from mariculture and pig farming, establishing a secondary agricultural source. Hg originated from ship exhaust burning oil and vehicle emissions in the vicinity, representing the third traffic source. (3) The APCS-MLR receptor model results demonstrated industrial, agricultural, and traffic sources contributing 47.19 %, 33.13 %, and 13.03 %, respectively, with 6.65 % attributed to unidentified sources.
Collapse
Affiliation(s)
- Suyan Deng
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Faculty of Geography, Yunnan Normal University, Kunming, China
| | - Songying Luo
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China; Mangrove Institute, Lingnan Normal University, Zhanjiang, China.
| | - Qiance Lin
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linli Shen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Linmei Gao
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Wei Zhang
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Jinlian Chen
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China
| | - Chengyang Li
- School of Geographical Sciences, Lingnan Normal University, Zhanjiang, China.
| |
Collapse
|
6
|
Chen M, Neupane B, Zhan X, Liu T, Lin Z, Gao C, Zaccone C, Bao K. Three thousand years of Hg pollution recorded in mangrove wetland sediments from South China. ENVIRONMENTAL RESEARCH 2024; 252:118866. [PMID: 38580002 DOI: 10.1016/j.envres.2024.118866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Mercury (Hg) is known to affect aquatic, terrestrial ecosystems as well as human health, through biomagnification. Mangrove wetlands are potential Hg sinks because of their low tidal velocity, fast sedimentation rate, strong reducing condition and high organic matter content. The spatial and temporal distribution of Hg has been a hot topic of recent studies in mangrove wetlands. In this study, we investigated Hg concentration, accumulation rate and isotopes to reconstruct the Hg pollution history and to differentiate its potential sources in the Gaoqiao mangrove wetland (Guangdong province), which is part of the largest mangrove area in China. We reconstructed a first, continuous, high-resolution Hg pollution history over the last 3000 years in South China. Our findings show that mangrove wetland sediments are more enriched in Hg than the adjacent grasslands. The increased Hg concentration and δ202Hg in recent sediments mirror the enhanced anthropogenic impacts; Hg concentrations in areas with high levels of anthropogenic disturbance are up to 5× higher than the average background value (9.9 ± 1.2 μg kg-1). Compared to mangroves in coastal areas of South China and around the world, the Hg concentration in Gaoqiao is much lower. The significant increase of Hg since the 1950s and the major Hg peak since the 1980s were the evidence of the human activities influences and indicated the possible start date of Anthropocene. After 2007 CE, a decline in Hg pollution occurs due to the effective implementation of the mangrove protection policy. Three potential sources were identified by the Hg isotope traces including urban gaseous Hg, industrial Hg, and regional soil and leaf litter Hg input.
Collapse
Affiliation(s)
- Minqi Chen
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Bigyan Neupane
- School of Geography, South China Normal University, Guangzhou, 510631, China; Institute of Fundamental Research and Studies (InFeRS), Kathmandu, 44600, Nepal
| | - Xuan Zhan
- Eco-Environmental Monitoring and Research Center, Pearl River Valley and South China Sea Ecology and Environment Administration, Ministry of Ecology and Environment, Guangzhou, 510611, China
| | - Ting Liu
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Zhanyi Lin
- School of Geography, South China Normal University, Guangzhou, 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Verona, 37134, Italy.
| | - Kunshan Bao
- School of Geography, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
7
|
Liu T, Bao K, Chen M, Neupane B, Gao C, Zaccone C. Human activity has increasingly affected recent carbon accumulation in Zhanjiang mangrove wetland, South China. iScience 2024; 27:109038. [PMID: 38361628 PMCID: PMC10867414 DOI: 10.1016/j.isci.2024.109038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Mangrove wetlands are an important component of blue carbon (C) ecosystems, although the anthropogenic impact on organic C accumulation rate (OCAR) in mangrove wetlands is not yet clear. Three sediment cores were collected from Zhanjiang Gaoqiao Mangrove Reserve in Southern China, dated by 210Pb and 137Cs, and physico-chemical parameters measured. Results show that the OCARs in mangroves and grasslands have significantly increased by 4.4 and 1.3 times, respectively, since 1950, which is consistent with the transformation of organic C sources and the increase of sedimentation rate. This increment is due to increased soil erosion and nutrient enrichment caused by land use change and the discharge of fertilizer runoff and aquaculture wastewater. This study provides clear evidence for understanding the changes in organic C accumulation processes during the Anthropocene and is conducive to promoting the realization of C peak and neutrality targets.
Collapse
Affiliation(s)
- Ting Liu
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Kunshan Bao
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Minqi Chen
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Bigyan Neupane
- School of Geographical Sciences, South China Normal University, Guangzhou 510631, China
| | - Changjun Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Claudio Zaccone
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
8
|
Xing S, Shen Q, Ji C, You L, Li J, Wang M, Yang G, Hao Z, Zhang X, Chen B. Arbuscular mycorrhizal symbiosis alleviates arsenic phytotoxicity in flooded Iris tectorum Maxim. dependent on arsenic exposure levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122841. [PMID: 37940019 DOI: 10.1016/j.envpol.2023.122841] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Arsenic (As) pollution in wetlands has emerged as a serious global concern, posing potential threat to the growth of wetland plants. Arbuscular mycorrhizal fungi (AMF) can alleviate As phytotoxicity to host plants, but their ecological functions in wetland plants under flooding conditions remain largely unknown. Thus, a pot experiment was conducted using Rhizophagus irregularis and Iris tectorum Maxim. exposed to light (15 and 30 mg/kg As) and high (75 and 100 mg/kg As) levels of As, to investigate the intrinsic mechanisms underlying the effects of mycorrhizal inoculation on plant As tolerance under flooding conditions. The mycorrhizal colonization rates ranged from 31.47 ± 3.92 % to 60.69 ± 5.58 %, which were higher than the colonization rate (29.55 ± 13.60%) before flooding. AMF significantly increased biomass of I. tectorum under light As levels, together with increased phosphorus (P) and As uptake. Moreover, expression of arsenate reductase gene RiarsC and a trace of dimethylarsenic (1.87 mg/kg in shoots) were detected in mycorrhizal plants, suggesting As transformation and detoxification by AMF exposed to light levels of As. However, under high As levels, AMF inhibited As translocation from roots to shoots, and facilitated the formation of iron plaque. The immobilized As concentrations in iron plaque of mycorrhizal plants were respectively 1133.68 ± 179.17 mg/kg and 869.11 ± 248.90 mg/kg at 75 and 100 mg/kg As addition level, both significantly higher than that in non-inoculated plants. Irrespective of As exposure levels, mycorrhizal symbiosis decreased soil As bioavailability. Overall, the study provides insights into the alleviation of As phytotoxicity in natural wetland plants through mycorrhizal symbiosis, and potentially indicates function diversity of AMF under flooding conditions and As stress, supporting the subsequent phytoremediation and restoration of As-contaminated wetlands.
Collapse
Affiliation(s)
- Shuping Xing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qihui Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuning Ji
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; China University of Mining and Technology, Xuzhou, 221116, China
| | - Luhua You
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Jinglong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Meng Wang
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Liu J, Zheng Q, Pei S, Li J, Ma L, Zhang L, Niu J, Tian T. Ecological and health risk assessment of heavy metals in agricultural soils from northern China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:99. [PMID: 38157088 DOI: 10.1007/s10661-023-12255-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Soil pollution by heavy metals can cause continuing damage to ecosystems and the human body. In this study, we collected nine fresh topsoil samples and 18 maize samples (including nine leaf samples and nine corn samples) from agricultural soils in the Baiyin mining areas. The results showed that the order of heavy metal concentrations (mg/kg) in agricultural soils was as follows: Zn (377.40) > Pb (125.06) > Cu (75.06) > Ni (28.29) > Cd (5.46) > Hg (0.37). Cd, Cu, Zn, and Pb exceeded the Chinese risk limit for agricultural soil pollution. The average the pollution load index (4.39) was greater than 3, indicating a heavy contamination level. The element that contributed the most to contamination and high ecological risk in soil was Cd. Principal component analysis (PCA) and Pearson's correlation analysis indicated that the sources of Ni, Cd, Cu, and Zn in the soil were primarily mixed, involving both industrial and agricultural activities, whereas the sources of Hg and Pb included both industrial and transportation activities. Adults and children are not likely to experience non-carcinogenic impacts from the soil in this region. Nonetheless, it was important to be aware of the elevated cancer risk presented by Cd, Pb, and especially Ni. The exceedance rates of Cd and Pb in corn were 66.67% and 33.3%, respectively. The results of this research provide data to improve soil protection, human health monitoring, and crop management in the Baiyin district.
Collapse
Affiliation(s)
- Jiangyun Liu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Qiwen Zheng
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Shuwei Pei
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jia Li
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China
| | - Jingping Niu
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| | - Tian Tian
- School of Public Health, Lanzhou University, Lanzhou, Gansu, 730000, The People's Republic of China.
| |
Collapse
|
10
|
Li H, Wu J, Huang Q, Lin L, Yuan B, Wang Q, Lu H, Liu J, Hong H, Yan C. Combined use of positive matrix factorization and 13C 15N stable isotopes to trace organic matter-bound potential toxic metals in the urban mangrove sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166684. [PMID: 37652389 DOI: 10.1016/j.scitotenv.2023.166684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Coastal sediments act as sinks of sediment organic matter (SOM) and metals because of their special land-sea location and depositional properties. However, there are few reports on the correlation between the sources of organic matter (OM) and associated potential toxic metals (PTMs). In this study, we combined CN stable isotope analysis and positive matrix factorization to identify the matter and metal sources of OM and glomalin-related soil protein (GRSP) in an estuary under several decades of urbanization. The results of the positive matrix factorization (PMF) reveal a correlation between the sources of total sediment metals and the sources of OM-related metals. The sources of both SOM-bound PTMs and GRSP-bound PTMs are significantly related to the sources of total PTMs. OM sources were elucidated through 13C-15 N stable isotopes, and the potential sources of different types of OM differed. In addition, there is a significant correlation between OM-associated PTMs and organic matter sources. Interestingly, the functional groups of SOM were mainly influenced by multiple PTM sources but no OM source, while the functional groups of GRSP were regulated by a single metal source and OM source. This study deepened the understanding of the coupling between PTMs and SOM. The possibility of combined use of positive matrix factorization and 13C-15 N stable isotope tracing of metals as well as the sources of each metal fractions has been evaluated, which will provide new insights for the transportation of PTMs.
Collapse
Affiliation(s)
- Hanyi Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Jiajia Wu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Qian Huang
- Institute of Geosciences, University of Mainz, Johann-Joachim-Becher-Weg 21, Mainz 55128, Germany.
| | - Lujian Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Bo Yuan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Qiang Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730020, China.
| | - Haoliang Lu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Jingchun Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Hualong Hong
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| | - Chonglin Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
11
|
Zheng R, Liu Y, Zhang Z. Trophic transfer of heavy metals through aquatic food web in the largest mangrove reserve of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165655. [PMID: 37478931 DOI: 10.1016/j.scitotenv.2023.165655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Understanding the mechanism of trophic transfer of heavy metal through the aquatic food web is critical to ecological exposure risk assessments in mangrove ecosystems. Zhanjiang Mangrove National Nature Reserve (ZMNNR) is the largest and biologically richest mangrove reserve in China, but has been exposed to heavy metal pollutants caused by the progressive industrialization and urbanization. We collected a variety of aquatic consumers, and primary producers, as well as sediments from the ZMNNR and analyzed them for heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) concentrations, and for both δ13C and δ15N values to establish the trophic levels. The trophic magnification factors (TMF) of Cd, Cu and Zn are 0.19 (p < 0.01), 0.07 (p < 0.01) and 0.33 (p < 0.05), respectively, indicating significant biodilution in a simplified food web composed of bivalves, crustaceans and fish. There are also potential tendencies of biodilution for Cr, Ni and Pb. Comparison of heavy metals in representative fish and shrimp in the ZMNNR with those in worldwide mangroves indicate a low risk level for aquatic consumers in our ecosystem. Quantitative source tracking is conducted based on principal component analysis and cluster analysis, which indicate that Cr, Ni and Pb are mainly originated from natural geological processes, Cu and Zn from shrimp farming and agriculture activities, and Cd from the deposition of aerosol released by regional metal smelting industry.
Collapse
Affiliation(s)
- Renyu Zheng
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China
| | - Yarong Liu
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China
| | - Zhaohui Zhang
- Donghai Laboratory, Zhoushan 316021, China; Institute of Marine Chemistry and Environment, Ocean College, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China.
| |
Collapse
|
12
|
Tao Z, Hu J, Guo Q, Wei R, Jiao L, Li Y, Chen F, Fan B, Lan W, Pan K. Coupling isotopic signatures and partial extraction method to examine lead pollution in mangrove sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132252. [PMID: 37604039 DOI: 10.1016/j.jhazmat.2023.132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/08/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Elevated lead (Pb) has been widely observed in mangrove sediments due to human activities, yet understanding the sources of Pb in these sediments and the factors influencing Pb accumulation is challenging. Here, we combined Pb isotopes with partial extraction methods to study Pb contamination levels in mangrove sediments from the eastern and western parts of the Maowei Sea, China. Our results showed that the Pb in the leachate and residual fraction was mainly from anthropogenic and natural sources, respectively. The use of 204Pb isotope analysis can reveal some overlooked differences between anthropogenic and natural sources. Calculation by Bayesian mixing model showed no significant difference in the total anthropogenic contribution between the two sites, but the relative contribution of each end member differed. The contribution of Pb/Zn ores was much higher in the eastern sites (30.9 ± 5.1%) than in the west (18.4 ± 5.5%), while that of agricultural activities was much lower in the east (5.2 ± 3.1%) than in the west (13.5 ± 4.6%). The elevated anthropogenic Pb accumulation in mangrove sediments was ascribed to organic matter. This study provides more data on Pb isotopic composition and new insights into Pb biogeochemistry in the mangrove environment.
Collapse
Affiliation(s)
- Zhenghua Tao
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Linlin Jiao
- College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Bailing Fan
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Wenlu Lan
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|