1
|
Wang J, Liu Q, Huang S, Mertens KN, Pospelova V, Shen X, Gu H. High-resolution DNA metabarcoding of modern surface sediments uncovers a diverse assemblage of dinoflagellate cysts in the Pacific and Arctic Oceans. MARINE POLLUTION BULLETIN 2025; 215:117899. [PMID: 40199003 DOI: 10.1016/j.marpolbul.2025.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Resting cysts of dinoflagellates can persist in sediments, seeding harmful algal blooms (HABs). A DNA metabarcoding approach was employed, targeting the large subunit ribosomal (LSU D1-D2) and the internal transcribed spacer (ITS1) to investigate the diversity and biogeography of dinoflagellate cysts from the South China Sea to the Chukchi Sea. The LSU and ITS1 datasets identified 196 and 118 species, respectively, with only 59 dinoflagellate cyst species revealed by both approaches. Eleven cyst species of potentially toxic dinoflagellates and 82 species previously unknown as cyst producers were detected. Cysts of Heterocapsa cf. horiguchii, Heterocapsa minima, Heterocapsa iwatakii, Heterocapsa rotundata, and Heterocapsa steinii were documented through germination for the first time, with the latter three species also detected via metabarcoding. This study provides critical insights into the diversity and biogeography of dinoflagellate cysts by highlighting the complementary detection capabilities of LSU and ITS1 molecular markers and their trans-latitudinal distribution patterns. The identification of potentially toxic cysts and their ecological distributions offers crucial information on the ecology of harmful dinoflagellates. These findings underscore the importance of molecular techniques in monitoring dinoflagellate cysts.
Collapse
Affiliation(s)
- Junyue Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qian Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shuning Huang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | | - Vera Pospelova
- Department of Earth and Environmental Sciences, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA
| | - Xin Shen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
2
|
Deng Y, Yue C, Yang H, Li F, Hu Z, Shang L, Chai Z, Lin S, Tang YZ. Broad active metabolic pathways, autophagy, and antagonistic hormones regulate dinoflagellate cyst dormancy in marine sediments. SCIENCE ADVANCES 2025; 11:eads7789. [PMID: 39919173 PMCID: PMC11804902 DOI: 10.1126/sciadv.ads7789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
This work aimed to reveal the molecular machinery regulating the dormancy of dinoflagellate resting cysts buried in marine sediments. Dinoflagellates play pivotal roles in marine ecosystems, particularly as major contributors of harmful algal blooms. Despite vital roles of cysts in blooming cycles and dinoflagellate ecology, the molecular processes controlling cyst dormancy have largely remained unexplored due to technological difficulties. Using DinoSL as a dinoflagellates-specific mRNA "hook" and SMRT sequencing, we analyzed metatranscriptomes of sediment-buried dinoflagellate cyst assemblages. The data show that most major metabolic and regulatory pathways, except photosynthesis, were transcriptionally active. This suggests the crucial importance of broad metabolic pathways in sustaining cyst viability and germination potential. Further expression analyses of 11 genes (relevant to autophagy and phytohormone gibberellin), lysosome/autolysosome staining, and germination experiments revealed vital roles of autophagy in energy generation, nutrient recycling, and of phytohormones abscisic acid/gibberellin in modulating dormancy/germination of resting cysts. Our findings lay a cornerstone for elucidating the molecular machinery regulating dinoflagellate cyst dormancy.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huijiao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088 China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Senjie Lin
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
3
|
Li R, Deng Y, Shang L, Liu Y, Tao Z, Chai Z, Tang YZ. Evidence for the production of asexual resting cysts in a free-living species of Symbiodiniaceae (Dinophyceae). HARMFUL ALGAE 2024; 137:102658. [PMID: 39003022 DOI: 10.1016/j.hal.2024.102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/15/2024]
Abstract
Coral reef ecosystems are the most productive and biodiverse marine ecosystems, with their productivity levels highly dependent on the symbiotic dinoflagellates belonging to the family Symbiodiniaceae. As a unique life history strategy, resting cyst production is of great significance in the ecology of many dinoflagellate species, those HABs-causing species in particular, however, there has been no confirmative evidence for the resting cyst production in any species of the family Symbiodiniaceae. Based on morphological and life history observations of cultures in the laboratory and morpho-molecular detections of cysts from the marine sediments via fluorescence in situ hybridization (FISH), cyst photography, and subsequent singe-cyst PCR sequencing, here we provide evidences for the asexual production of resting cysts by Effrenium voratum, the free-living, red tide-forming, and the type species of the genus Effrenium in Symbiodiniaceae. The evidences from the marine sediments were obtained through a sequential detections: Firstly, E. voratum amplicon sequence variants (ASVs) were detected in the cyst assemblages that were concentrated with the sodium polytungstate (SPT) method from the sediments collected from different regions of China Seas by high-throughput next generation sequencing (NGS); Secondly, the presence of E. voratum in the sediments was detected by PCR using the species-specific primers for the DNA directly extracted from sediment; Thirdly, E. voratum cysts were confirmed by a combined approach of FISH using the species-specific probes, light microscopic (LM) photography of the FISH-positive cysts, and a subsequent single-cyst PCR sequencing for the FISH-positive and photographed cysts. The evidences from the laboratory-reared clonal cultures of E. voratum include that: 1) numerous cysts formed in the two clonal cultures and exhibited a spherical shape, a smooth surface, absence of ornaments, and a large red accumulation body; 2) cysts could maintain morphologically intact for a storage of two weeks to six months at 4 °C in darkness and of which 76-92 % successfully germinated through an internal development processes within a time period of 3-21 days after being transferred back to the normal culturing conditions; 3) two or four germlings were released from each cyst through the cryptopylic archeopyle in all cysts with continuous observations of germination processes; and 4) while neither sexual mating of gametes nor planozygote (cells with two longitudinal flagella) were observed, the haploidy of cysts was proven with flow cytometric measurements and direct LM measurements of fluorescence from cells stained with either propidium iodide (PI) or DAPI, which together suggest that the cysts were formed asexually. All evidences led to a conclusion that E. voratum is capable of producing asexual resting cysts, although its sexuality cannot be completely excluded, which guarantees a more intensive investigation. This work fills a gap in the knowledge about the life cycle, particularly the potential of resting cyst formation, of the species in Symbiodiniaceae, a group of dinoflagellates having unique life forms and vital significance in the ecology of coral reefs, and may provide novel insights into understanding the recovery mechanisms of coral reefs destructed by the global climate change and suggest various forms of resting cysts in the cyst assemblages of dinoflagellates observed in the field sediments, including HABs-causing species.
Collapse
Affiliation(s)
- Ruoxi Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China
| | - Zhe Tao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences Qingdao, 266071 China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
4
|
Deng Y, Li F, Shang L, Hu Z, Yue C, Tang YZ. The resting cyst of dinoflagellate Scrippsiella acuminata host bacterial microbiomes with more diverse trophic strategies under conditions typically observed in marine sediments. Front Microbiol 2024; 15:1407459. [PMID: 39104580 PMCID: PMC11298437 DOI: 10.3389/fmicb.2024.1407459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Variation in the condition of marine sediments provides selective preservation milieus, which act as a key determinant for the abundance and distribution of dinoflagellate resting cysts in natural sediments. Microbial degradation is an understudied biological factor of potential importance in the processes. However, gaps remain in our knowledge about the fundamental information of the bacterial consortia associated with dinoflagellate resting cysts both in laboratory cultures and in the field. Here we used Scrippsiella acuminata as a representative of cyst-producing dinoflagellates to delineate the diversity and composition of bacterial microbiomes co-existing with the laboratory-cultured resting cysts, and to explore possible impacts of low temperature, darkness, and anoxia (the mock conditions commonly observed in marine sediments) on the associated bacterial consortia. Bacterial microbiome with high diversity were revealed associated with S. acuminata at resting stage. The mock conditions could significantly shift bacterial community structure and exert notably inhibitory effects on growth-promoting bacteria. Resting cysts under conditions typically observed in marine sediments fostered bacterial microbiomes with more diverse trophic strategies, characteristic of prominently enriched anaerobic chemotrophic bacteria generating energy via respiration with several different terminal electron acceptors, which yielded more acidic milieu unfavorable for the preservation of calcareous resting cysts. Our findings suggest that there is complex and dynamic interaction between dinoflagellates resting cysts and the associated bacterial consortia in natural sediments. This intrinsic interaction may influence the maintenance and/or accumulation of dinoflagellate resting cysts with potential of germination and initiation blooms in the field.
Collapse
Affiliation(s)
- Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Lixia Shang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Ying Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
5
|
Kaleli A, Gozde Ozbayram E, Akcaalan R. Environmental DNA metabarcoding reveals diverse phytoplankton assemblages and potentially harmful algal distribution along the urban coasts of Türkiye. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106623. [PMID: 38917660 DOI: 10.1016/j.marenvres.2024.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Marine phytoplankton are widely used to monitor the state of the water column due to their rapid changes in response to environmental conditions. In this study, we aimed to investigate the coastal phytoplankton assemblages, including bloom-forming species using high-throughput sequencing of 18S rRNA genes targeting the V4 region and their relationship with environmental variables along the Istanbul coasts of the Sea of Marmara. A total of 118 genera belonging to six phyla were detected. Among them, Dinoflagellata (36) and Bacillariophyta (26) were represented with the highest number of genera. According to the relative abundance of DNA reads, the most abundant taxa were Dinoflagellata_phylum (18.1%), Emiliania (8.4%), Biecheleria (8.4), and Noctiluca (8.1%). The ANOSIM test showed that there was a significant temporal difference in the assemblages, while the driving environmental factors were pH, water temperature, and salinity. According to the TRIX index, the trophic state of the coasts was highly mesotrophic and eutrophic. In addition, 45 bloom-forming and HAB taxa were detected and two species of Noctiluca and Emiliania, which frequently cause blooms in the area, were recorded in high abundance. Our results provide insight into the phytoplankton assemblages along the urbanized coastlines by analysing the V4 region of 18S rRNA. This data can support future studies that use both traditional methods and metabarcoding, employing various primers and targeting different genes and regions.
Collapse
Affiliation(s)
- Aydın Kaleli
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| | - Emine Gozde Ozbayram
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| | - Reyhan Akcaalan
- Istanbul University, Faculty of Aquatic Sciences, Department of Marine and Freshwater Resources Management, 34134, Istanbul, Türkiye.
| |
Collapse
|
6
|
Chai Z, Liu Y, Jia S, Li F, Hu Z, Deng Y, Yue C, Tang YZ. DNA and RNA Stability of Marine Microalgae in Cold-Stored Sediments and Its Implications in Metabarcoding Analyses. Int J Mol Sci 2024; 25:1724. [PMID: 38339002 PMCID: PMC10855355 DOI: 10.3390/ijms25031724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The ever-increasing applications of metabarcoding analyses for environmental samples demand a well-designed assessment of the stability of DNA and RNA contained in cells that are deposited or buried in marine sediments. We thus conducted a qPCR quantification of the DNA and RNA in the vegetative cells of three microalgae entrapped in facsimile marine sediments and found that >90% of DNA and up to 99% of RNA for all microalgal species were degraded within 60 days at 4 °C. A further examination of the potential interference of the relic DNA of the vegetative cells with resting cyst detection in sediments was performed via a metabarcoding analysis in artificial marine sediments spiked with the vegetative cells of two Kareniaceae dinoflagellates and the resting cysts of another three dinoflagellates. The results demonstrated a dramatic decrease in the relative abundances of the two Kareniaceae dinoflagellates in 120 days, while those of the three resting cysts increased dramatically. Together, our results suggest that a positive detection of microalgae via metabarcoding analysis in DNA or RNA extracted from marine sediments strongly indicates the presence of intact or viable cysts or spores due to the rapid decay of relic DNA/RNA. This study provides a solid basis for the data interpretation of metabarcoding surveys, particularly in resting cyst detection.
Collapse
Affiliation(s)
- Zhaoyang Chai
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yuyang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Siyang Jia
- Yellow Sea and East Sea Buoy Observation Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
| | - Fengting Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhangxi Hu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Yunyan Deng
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Caixia Yue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Zhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (Z.C.); (Y.L.); (F.L.); (Z.H.); (Y.D.); (C.Y.)
- Laoshan Laboratory, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Yu Z, Tang Y, Gobler CJ. Harmful algal blooms in China: History, recent expansion, current status, and future prospects. HARMFUL ALGAE 2023; 129:102499. [PMID: 37951615 DOI: 10.1016/j.hal.2023.102499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 11/14/2023]
Abstract
The impacts of harmful algal blooms (HABs) on economies, public health, ecosystems, and aquaculture across the globe have all increased in recent decades, and this has been acutely the case in China. Here, we review the history of HABs and HABs research in China, as well as recent trends in HABs and future prospects of HAB science in China. The most updated analyses demonstrated that the number of HAB events, the number of HAB species, the aerial coverage of HABs, and the impacts of HABs in Chinese waters during the 21st century were all higher than that during the last two decades of the 20th century. The increase in the number of HABs in China has been significantly correlated with the increased discharge of ammonium and total phosphorus into coastal waters (p < 0.01 for both). Notable newly recognized events this century have included chronic HABs caused by Prorocentrum donghaiense and Karenia mikimotoi, a paralytic shellfish poisoning event caused by Gymnodinium catenatum that sickened 80 people, brown tides caused by Aureococcus anophagefferens, green tides caused by Ulva prolifera, golden tides caused by Sargassum horneri, and the disruption of a nuclear power plant caused by a bloom of Phaeocystis globosa. A series of key discoveries regarding HABs has been made this century including documentation of nearly all known HAB toxins in Chinese waters, discovery of novel cyst-formation and/or life stages of multiple HABs-causing species, identification of the chemical and physical oceanographic drivers of multiple HABs including those formed by P. donghaiense, K. mikimotoi, and U. prolifera, and the successful mitigation of HABs via the use of modified clay approaches. Future research prospects highlighted include the use of macroalgae as a means to prevent, mitigate, and control (PCM) HABs and the process by which multi-disciplinary studies involving molecular approaches (omics), remote in situ detection, artificial intelligence, and mega-data analyses might be used to develop refined and realistic HAB forecasting platforms. Collectively, this review demonstrates the significant evolution of HAB science since the 20th century in China and demonstrates that while HABs in China are complex and widespread, recent and on-going discoveries make the development of detailed understanding and effective measures to mitigate the negative effects of HABs a hopeful outcome in the coming years.
Collapse
Affiliation(s)
- Zhiming Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Yingzhong Tang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11790, United States of America
| |
Collapse
|