1
|
Schenzle L, Egger K, Spangl B, Hussein M, Ebrahimian A, Kuehnel H, Ferreira FC, Marques DMC, Berchtold B, Borth N, Fuchs A, Pichler H. Low-cost food-grade alternatives for serum albumins in FBS-free cell culture media. Sci Rep 2025; 15:15296. [PMID: 40312489 PMCID: PMC12045953 DOI: 10.1038/s41598-025-99603-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Cultivated meat may be an ethical, environmentally friendly, antibiotic-free meat alternative of the future. As of now, one of the main limiting factors for bringing cultivated meat to the market is the high cost of the cell culture media and their great dependency on serum albumins, production of which is predicted to become a major bottleneck of this industry. Here, using bovine muscle stem cells, we optimized serum free B8/B9 medium. We identified several food grade, low-price medium stabilizers, exhibiting comparable or even superior stabilization of the B8 medium in short- and long-term cultivations, as compared to recombinant human serum albumin. We show transferability of our approach to other satellite cells (porcine, chicken) and CHO cells, though significant cell-line specific differences in response to stabilizers were observed. Thus, we provide an alternative to serum albumin, enabling up to an overall 73% reduction of medium price for certain cell lines.
Collapse
Affiliation(s)
- Lisa Schenzle
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
| | - Kristina Egger
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
| | | | - Mohamed Hussein
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
- Department of Biotechnology, BOKU University, Vienna, Austria
| | - Atefeh Ebrahimian
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
- Department of Applied Life Science, FH-Campus Wien, Bioengineering, Vienna, Austria
| | - Harald Kuehnel
- Department of Applied Life Science, FH-Campus Wien, Bioengineering, Vienna, Austria
| | - Frederico C Ferreira
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Diana M C Marques
- Department of Bioengineering and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon, 1049-001, Portugal
| | - Beate Berchtold
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
| | - Nicole Borth
- Department of Biotechnology, BOKU University, Vienna, Austria
| | - Aleksandra Fuchs
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria.
| | - Harald Pichler
- acib - Austrian Centre of Industrial Biotechnology, Petersgasse 14/V, 8010, Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed Graz, Graz, Austria
| |
Collapse
|
2
|
Zhao N, Pessell AF, Chung TD, Searson PC. Brain vascular basement membrane: comparison of human and mouse brain at the transcriptomic and proteomic levels. Matrix Biol 2025:S0945-053X(25)00036-8. [PMID: 40294830 DOI: 10.1016/j.matbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The cerebrovascular basement membrane (BM) is a key component of the blood-brain barrier (BBB). The BM provides structural support for brain microvascular endothelial cells and the supporting cells of the neurovascular unit, and facilitates cell signaling through adhesion receptors, regulates the concentration of soluble factors, and serves as an additional barrier for transport. However, our understanding of the composition of BM remains incomplete. Here we analyze recent proteomic and genomic data to assess the composition of BM in human and mouse brain, and in tissue-engineered BBB models. All data sets confirm that the main components of brain BM are collagen IV a1/2, laminin, along with agrin, perlecan, and nidogen. Transcriptomic data from human BMECs suggests that the main laminin isoform is Laminin 321, while transcriptomic data from mice and proteomic data from mice and humans suggest that Laminin 521 is the predominant isoform. Transcriptomic data from iBMECs suggest that Laminin 511 is the predominant isoform. The supporting molecules agrin, perlecan, and nidogen were detected at significant levels in all studies, although only nidogen 1 was detected in the human transcriptomic data sets. No significant differences in human BM composition were observed in BMECs along the arterio-venous axis, or in comparison of healthy and AD brains.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
3
|
Wesp V, Scholz L, Ziermann-Canabarro JM, Schuster S, Stark H. Constructing networks for comparison of collagen types. J Integr Bioinform 2024; 21:jib-2024-0020. [PMID: 38997817 PMCID: PMC11602231 DOI: 10.1515/jib-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024] Open
Abstract
Collagens are structural proteins that are predominantly found in the extracellular matrix of multicellular animals, where they are mainly responsible for the stability and structural integrity of various tissues. All collagens contain polypeptide strands (α-chains). There are several types of collagens, some of which differ significantly in form, function, and tissue specificity. Because of their importance in clinical research, they are grouped into subdivisions, the so-called collagen families, and their sequences are often analysed. However, problems arise with highly homologous sequence segments. To increase the accuracy of collagen classification and prediction of their functions, the structure of these collagens and their expression in different tissues could result in a better focus on sequence segments of interest. Here, we analyse collagen families with different levels of conservation. As a result, clusters with high interconnectivity can be found, such as the fibrillar collagens, the COL4 network-forming collagens, and the COL9 FACITs. Furthermore, a large cluster between network-forming, FACIT, and COL28a1 α-chains is formed with COL6a3 as a major hub node. The formation of clusters also signifies, why it is important to always analyse the α-chains and why structural changes can have a wide range of effects on the body.
Collapse
Affiliation(s)
- Valentin Wesp
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lukas Scholz
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
4
|
Arnolds O, Stoll R. Characterization of a fold in TANGO1 evolved from SH3 domains for the export of bulky cargos. Nat Commun 2023; 14:2273. [PMID: 37080980 PMCID: PMC10119292 DOI: 10.1038/s41467-023-37705-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
Bulky cargos like procollagens, apolipoproteins, and mucins exceed the size of conventional COPII vesicles. During evolution a process emerged in metazoans, predominantly governed by the TANGO1 protein family, that organizes cargo at the exit sites of the endoplasmic reticulum and facilitates export by the formation of tunnel-like connections between the ER and Golgi. Hitherto, cargo-recognition appeared to be mediated by an SH3-like domain. Based on structural and dynamic data as well as interaction studies from NMR spectroscopy and microscale thermophoresis presented here, we show that the luminal cargo-recognition domain of TANGO1 adopts a new functional fold for which we suggest the term MOTH (MIA, Otoraplin, TALI/TANGO1 homology) domain. These MOTH domains, as well as an evolutionary intermediate found in invertebrates, constitute a distinct domain family that emerged from SH3 domains and acquired the ability to bind collagen.
Collapse
Affiliation(s)
- Oliver Arnolds
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany
- Structural Genomics Consortium, Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Raphael Stoll
- Biomolecular Spectroscopy and RUBiospek|NMR, Faculty of Chemistry and Biochemistry, Ruhr University of Bochum, Bochum, Germany.
| |
Collapse
|
5
|
Fajardo D, Saint Jean R, Lyons PJ. Acquisition of new function through gene duplication in the metallocarboxypeptidase family. Sci Rep 2023; 13:2512. [PMID: 36781897 PMCID: PMC9925722 DOI: 10.1038/s41598-023-29800-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Gene duplication is a key first step in the process of expanding the functionality of a multigene family. In order to better understand the process of gene duplication and its role in the formation of new enzymes, we investigated recent duplication events in the M14 family of proteolytic enzymes. Within vertebrates, four of 23 M14 genes were frequently found in duplicate form. While AEBP1, CPXM1, and CPZ genes were duplicated once through a large-scale, likely whole-genome duplication event, the CPO gene underwent many duplication events within fish and Xenopus lineages. Bioinformatic analyses of enzyme specificity and conservation suggested a greater amount of neofunctionalization and purifying selection in CPO paralogs compared with other CPA/B enzymes. To examine the functional consequences of evolutionary changes on CPO paralogs, the four CPO paralogs from Xenopus tropicalis were expressed in Sf9 and HEK293T cells. Immunocytochemistry showed subcellular distribution of Xenopus CPO paralogs to be similar to that of human CPO. Upon activation with trypsin, the enzymes demonstrated differential activity against three substrates, suggesting an acquisition of new function following duplication and subsequent mutagenesis. Characteristics such as gene size and enzyme activation mechanisms are possible contributors to the evolutionary capacity of the CPO gene.
Collapse
Affiliation(s)
- Daniel Fajardo
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Ritchie Saint Jean
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA
| | - Peter J Lyons
- Department of Biology, Andrews University, Berrien Springs, MI, 49104, USA.
| |
Collapse
|
6
|
Wu Y, Fu Y, Pan H, Chang C, Ao N, Xu H, Zhang Z, Hu P, Li R, Duan S, Li YY. Preparation and evaluation of stingray skin collagen/oyster osteoinductive composite scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-22. [PMID: 36644798 DOI: 10.1080/09205063.2023.2166338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The regeneration of bone defects is a major challenge for clinical orthopaedics. Herein, we designed and prepared a new type of bioactive material, using stingray skin collagen and oyster shell powder (OSP) as raw materials. A stingray skin collagen/oyster osteoinductive composite scaffold (Col-OSP) was prepared for the first time by genipin cross-linking, pore-forming and freeze-drying methods. These scaffolds were characterized by ATR-FTIR, SEM, compression, swelling, cell proliferation, cell adhesion, alkaline phosphatase activity, alizarin red staining and RT-PCR etc. The Col-OSP scaffold had an interconnected three-dimensional porous structure, and the mechanical properties of the Col-OSP composite scaffold were enhanced compared with Col, combining with the appropriate swelling rate and degradation rate, the scaffold was more in line with the requirements of bone tissue engineering scaffolds. The Col-OSP scaffold was non-toxic, promoted the proliferation, adhesion, and differentiation of MC3T3-E1 cells, and stimulated the osteogenesis-related genes expressions of osteocalcin (OCN), collagen type I (COL-I) and RUNX2 of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Yue Wu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China.,R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yingkun Fu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Hongfu Pan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Cong Chang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Hui Xu
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Zhengnan Zhang
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Ping Hu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| | - Shuxia Duan
- R&D center of Henan Yadu Industrial Co. Ltd, Xinxiang, P. R. China
| | - Yan Yan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, P. R. China
| |
Collapse
|
7
|
Mead TJ, Martin DR, Wang LW, Cain SA, Gulec C, Cahill E, Mauch J, Reinhardt D, Lo C, Baldock C, Apte SS. Proteolysis of fibrillin-2 microfibrils is essential for normal skeletal development. eLife 2022; 11:71142. [PMID: 35503090 PMCID: PMC9064305 DOI: 10.7554/elife.71142] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/13/2022] [Indexed: 01/08/2023] Open
Abstract
The embryonic extracellular matrix (ECM) undergoes transition to mature ECM as development progresses, yet few mechanisms ensuring ECM proteostasis during this period are known. Fibrillin microfibrils are macromolecular ECM complexes serving structural and regulatory roles. In mice, Fbn1 and Fbn2, encoding the major microfibrillar components, are strongly expressed during embryogenesis, but fibrillin-1 is the major component observed in adult tissue microfibrils. Here, analysis of Adamts6 and Adamts10 mutant mouse embryos, lacking these homologous secreted metalloproteases individually and in combination, along with in vitro analysis of microfibrils, measurement of ADAMTS6-fibrillin affinities and N-terminomics discovery of ADAMTS6-cleaved sites, identifies a proteostatic mechanism contributing to postnatal fibrillin-2 reduction and fibrillin-1 dominance. The lack of ADAMTS6, alone and in combination with ADAMTS10 led to excess fibrillin-2 in perichondrium, with impaired skeletal development defined by a drastic reduction of aggrecan and cartilage link protein, impaired BMP signaling in cartilage, and increased GDF5 sequestration in fibrillin-2-rich tissue. Although ADAMTS6 cleaves fibrillin-1 and fibrillin-2 as well as fibronectin, which provides the initial scaffold for microfibril assembly, primacy of the protease-substrate relationship between ADAMTS6 and fibrillin-2 was unequivocally established by reversal of the defects in Adamts6-/- embryos by genetic reduction of Fbn2, but not Fbn1.
Collapse
Affiliation(s)
- Timothy J Mead
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Daniel R Martin
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Lauren W Wang
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Stuart A Cain
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Cagri Gulec
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Elisabeth Cahill
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Joseph Mauch
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| | - Dieter Reinhardt
- Faculty of Medicine and Health Sciences and Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Cecilia Lo
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Clair Baldock
- Division of Cell-Matrix Biology and Regenerative Medicine, Wellcome Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Suneel S Apte
- Department of Biomedical Engineering and Musculoskeletal Research Center, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States
| |
Collapse
|
8
|
Revell CK, Jensen OE, Shearer T, Lu Y, Holmes DF, Kadler KE. Collagen fibril assembly: New approaches to unanswered questions. Matrix Biol Plus 2021; 12:100079. [PMID: 34381990 PMCID: PMC8334717 DOI: 10.1016/j.mbplus.2021.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
Collagen fibrils are essential for metazoan life. They are the largest, most abundant, and most versatile protein polymers in animals, where they occur in the extracellular matrix to form the structural basis of tissues and organs. Collagen fibrils were first observed at the turn of the 20th century. During the last 40 years, the genes that encode the family of collagens have been identified, the structure of the collagen triple helix has been solved, the many enzymes involved in the post-translational modifications of collagens have been identified, mutations in the genes encoding collagen and collagen-associated proteins have been linked to heritable disorders, and changes in collagen levels have been associated with a wide range of diseases, including cancer. Yet despite extensive research, a full understanding of how cells assemble collagen fibrils remains elusive. Here, we review current models of collagen fibril self-assembly, and how cells might exert control over the self-assembly process to define the number, length and organisation of fibrils in tissues.
Collapse
Affiliation(s)
- Christopher K. Revell
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Oliver E. Jensen
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Tom Shearer
- Department of Mathematics, University of Manchester, Alan Turing Building, Oxford Road, Manchester M13 9PL, UK
- Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Yinhui Lu
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - David F. Holmes
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Karl E. Kadler
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
9
|
Diehl V, Huber LS, Trebicka J, Wygrecka M, Iozzo RV, Schaefer L. The Role of Decorin and Biglycan Signaling in Tumorigenesis. Front Oncol 2021; 11:801801. [PMID: 34917515 PMCID: PMC8668865 DOI: 10.3389/fonc.2021.801801] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
The complex and adaptive nature of malignant neoplasm constitute a major challenge for the development of effective anti-oncogenic therapies. Emerging evidence has uncovered the pivotal functions exerted by the small leucine-rich proteoglycans, decorin and biglycan, in affecting tumor growth and progression. In their soluble forms, decorin and biglycan act as powerful signaling molecules. By receptor-mediated signal transduction, both proteoglycans modulate key processes vital for tumor initiation and progression, such as autophagy, inflammation, cell-cycle, apoptosis, and angiogenesis. Despite of their structural homology, these two proteoglycans interact with distinct cell surface receptors and thus modulate distinct signaling pathways that ultimately affect cancer development. In this review, we summarize growing evidence for the complex roles of decorin and biglycan signaling in tumor biology and address potential novel therapeutic implications.
Collapse
Affiliation(s)
- Valentina Diehl
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Lisa Sophie Huber
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University, Frankfurt, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung, Member of the German Center for Lung Research, University of Giessen and Marburg Lung Center, Giessen, Germany
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, United States
| | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| |
Collapse
|
10
|
A Membrane Filter-Assisted Mammalian Cell-Based Biosensor Enabling 3D Culture and Pathogen Detection. SENSORS 2021; 21:s21093042. [PMID: 33926091 PMCID: PMC8123675 DOI: 10.3390/s21093042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 11/24/2022]
Abstract
We have developed a membrane filter-assisted cell-based biosensing platform by using a polyester membrane as a three-dimensional (3D) cell culture scaffold in which cells can be grown by physical attachment. The membrane was simply treated with ethanol to increase surficial hydrophobicity, inducing the stable settlement of cells via gravity. The 3D membrane scaffold was able to provide a relatively longer cell incubation time (up to 16 days) as compared to a common two-dimensional (2D) cell culture environment. For a practical application, we fabricated a cylindrical cartridge to support the scaffold membranes stacked inside the cartridge, enabling not only the maintenance of a certain volume of culture media but also the simple exchange of media in a flow-through manner. The cartridge-type cell-based analytical system was exemplified for pathogen detection by measuring the quantities of toll-like receptor 1 (TLR1) induced by applying a lysate of P. aeruginosa and live E. coli, respectively, providing a fast, convenient colorimetric TLR1 immunoassay. The color images of membranes were digitized to obtain the response signals. We expect the method to further be applied as an alternative tool to animal testing in various research areas such as cosmetic toxicity and drug efficiency.
Collapse
|
11
|
A comparative genomic database of skeletogenesis genes: from fish to mammals. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 38:100796. [PMID: 33676152 DOI: 10.1016/j.cbd.2021.100796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/20/2022]
Abstract
Skeletogenesis is a complex process that requires a rigorous control at multiple levels during osteogenesis, such as signaling pathways and transcription factors. The skeleton among vertebrates is a highly conserved organ system, but teleost fish and mammals have evolved unique traits or have lost particular skeletal elements in each lineage. In present study, we constructed a skeletogenesis database containing 4101, 3715, 2996, 3300, 3719 and 3737 genes in Danio rerio, Oryzias latipes, Gallus gallus, Xenopus tropicalis, Mus musculus and Homo sapiens genome, respectively. Then, we found over 55% of the genes are conserved in the six species. Notably, there are 181 specific-genes in the human genome without orthologues in the other five genomes, such as the ZNF family (ZNF100, ZNF101, ZNF14, CALML6, CCL4L2, ZIM2, HSPA6, etc); and 31 genes are identified explicitly in fish species, which are mainly involved in TGF-beta, Wnt, MAPK, Calcium signaling pathways, such as bmp16, bmpr2a, eif4e1c, wnt2ba, etc. Particularly, there are 20 zebrafish-specific genes (calm3a, si:dkey-25li10, drd1a, drd7, etc) and one medaka-specific gene (c-myc17) that may alter skeletogenesis formation in the corresponding species. The database provides the new systematic genomic insights into skeletal development from teleosts to mammals, which may help to explain some of the complexities of skeletal phenotypes among different vertebrates and provide a reference for the treatment of skeletal diseases as well as for applications in the aquaculture industry.
Collapse
|
12
|
Lu X, Ye Y, Zhang Y, Sun X. Current research progress of mammalian cell-based biosensors on the detection of foodborne pathogens and toxins. Crit Rev Food Sci Nutr 2020; 61:3819-3835. [PMID: 32885986 DOI: 10.1080/10408398.2020.1809341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Foodborne diseases caused by pathogens and toxins are a serious threat to food safety and human health; thus, they are major concern to society. Existing conventional foodborne pathogen or toxin detection methods, including microbiological assay, nucleic acid-based assays, immunological assays, and instrumental analytical method, are time-consuming, labor-intensive and expensive. Because of the fast response and high sensitivity, cell-based biosensors are promising novel tools for food safety risk assessment and monitoring. This review focuses on the properties of mammalian cell-based biosensors and applications in the detection of foodborne pathogens (bacteria and viruses) and toxins (bacterial toxins, mycotoxins and marine toxins). We discuss mammalian cell adhesion and how it is involved in the establishment of 3D cell culture models for mammalian cell-based biosensors, as well as evaluate their limitations for commercialization and further development prospects.
Collapse
Affiliation(s)
- Xin Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi, Jiangsu, PR China
| |
Collapse
|
13
|
Tang VW. Collagen, stiffness, and adhesion: the evolutionary basis of vertebrate mechanobiology. Mol Biol Cell 2020; 31:1823-1834. [PMID: 32730166 PMCID: PMC7525820 DOI: 10.1091/mbc.e19-12-0709] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 01/09/2023] Open
Abstract
The emergence of collagen I in vertebrates resulted in a dramatic increase in the stiffness of the extracellular environment, supporting long-range force propagation and the development of low-compliant tissues necessary for the development of vertebrate traits including pressurized circulation and renal filtration. Vertebrates have also evolved integrins that can bind to collagens, resulting in the generation of higher tension and more efficient force transmission in the extracellular matrix. The stiffer environment provides an opportunity for the vertebrates to create new structures such as the stress fibers, new cell types such as endothelial cells, new developmental processes such as neural crest delamination, and new tissue organizations such as the blood-brain barrier. Molecular players found only in vertebrates allow the modification of conserved mechanisms as well as the design of novel strategies that can better serve the physiological needs of the vertebrates. These innovations collectively contribute to novel morphogenetic behaviors and unprecedented increases in the complexities of tissue mechanics and functions.
Collapse
Affiliation(s)
- Vivian W. Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana–Champaign, Urbana, IL 61801
| |
Collapse
|
14
|
Jensen MM, Karring H. The origins and developments of sulfation-prone tyrosine-rich and acidic N- and C-terminal extensions of class ll and lll small leucine-rich repeat proteins shed light on connective tissue evolution in vertebrates. BMC Evol Biol 2020; 20:73. [PMID: 32576155 PMCID: PMC7310474 DOI: 10.1186/s12862-020-01634-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Background Small leucine-rich repeat protein (SLRP) family members contain conserved leucine-rich repeat motifs flanked by highly variable N- and C-terminal regions. Most class II and III SLRPs have tyrosine-rich N-terminal regions and some of these are sulfated. However, the evolutionary origin and conservation of the tyrosine-rich and acidic terminal regions remain undetermined. In this study, we present the most comprehensive multiple sequence alignment (MSA) analyses of all eight class II and III SLRPs to date. Based on the level of conservation of tyrosine residues and adjacent sequences, we predict which tyrosine residues are most likely to be sulfated in the terminal regions of human class II and III SLRPs. Results Using this novel approach, we predict a total of 22 tyrosine sulfation sites in human SLRPs, of which only 8 sites had been experimentally identified in mammals. Our analyses suggest that sulfation-prone, tyrosine-rich and acidic terminal regions of the class II and III SLRPs emerged via convergent evolution at different stages of vertebrate evolution, coinciding with significant evolutionary events including the development of endochondral bones and articular cartilage, the aquatic to terrestrial transition, and the formation of an amnion. Conclusions Our study suggests that selective pressures due to changes in life conditions led to the formation of sulfotyrosine-rich and acidic terminal regions. We believe the independent emergence and evolution of sulfotyrosine-rich and acidic N- and C-terminal regions have provided each class II and III SLRP member with novel vital functions required to develop new specialized extracellular matrices and tissues in vertebrate species.
Collapse
Affiliation(s)
- Morten M Jensen
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Henrik Karring
- Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.
| |
Collapse
|
15
|
Zhang Z, Bai M, Barbosa GO, Chen A, Wei Y, Luo S, Wang X, Wang B, Tsukui T, Li H, Sheppard D, Kornberg TB, Ma DK. Broadly conserved roles of TMEM131 family proteins in intracellular collagen assembly and secretory cargo trafficking. SCIENCE ADVANCES 2020; 6:eaay7667. [PMID: 32095531 PMCID: PMC7015688 DOI: 10.1126/sciadv.aay7667] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Collagen is the most abundant protein in animals. Its dysregulation contributes to aging and many human disorders, including pathological tissue fibrosis in major organs. How premature collagen proteins in the endoplasmic reticulum (ER) assemble and route for secretion remains molecularly undefined. From an RNA interference screen, we identified an uncharacterized Caenorhabditis elegans gene tmem-131, deficiency of which impairs collagen production and activates ER stress response. We find that amino termini of human TMEM131 contain bacterial PapD chaperone-like domains, which recruit premature collagen monomers for proper assembly and secretion. Carboxy termini of TMEM131 interact with TRAPPC8, a component of the TRAPP tethering complex, to drive collagen cargo trafficking from ER to the Golgi. We provide evidence that previously undescribed roles of TMEM131 in collagen recruitment and secretion are evolutionarily conserved in C. elegans, Drosophila, and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Meirong Bai
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Guilherme Oliveira Barbosa
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Chen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuehua Wei
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Shuo Luo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Xin Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bingying Wang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tatsuya Tsukui
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dean Sheppard
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Thomas B. Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Dengke K. Ma
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Monticolo F, Palomba E, Termolino P, Chiaiese P, de Alteriis E, Mazzoleni S, Chiusano ML. The Role of DNA in the Extracellular Environment: A Focus on NETs, RETs and Biofilms. FRONTIERS IN PLANT SCIENCE 2020; 11:589837. [PMID: 33424885 PMCID: PMC7793654 DOI: 10.3389/fpls.2020.589837] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
The capacity to actively release genetic material into the extracellular environment has been reported for bacteria, archaea, fungi, and in general, for microbial communities, but it is also described in the context of multicellular organisms, animals and plants. This material is often present in matrices that locate outside the cells. Extracellular matrices have important roles in defense response and disease in microbes, animal and plants cells, appearing as barrier against pathogen invasion or for their recognition. Specifically, neutrophils extracellular traps (NETs) in animals and root extracellular traps (RETs) in plants, are recognized to be important players in immunity. A growing amount of evidence revealed that the extracellular DNA, in these contexts, plays an active role in the defense action. Moreover, the protective role of extracellular DNA against antimicrobials and mechanical stress also appears to be confirmed in bacterial biofilms. In parallel, recent efforts highlighted different roles of self (homologous) and non-self (heterologous) extracellular DNA, paving the way to discussions on its role as a "Damage-associated molecular pattern" (DAMP). We here provide an evolutionary overview on extracellular DNA in extracellular matrices like RETs, NETs, and microbial biofilms, discussing on its roles and inferring on possible novel functionalities.
Collapse
Affiliation(s)
- Francesco Monticolo
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Emanuela Palomba
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
| | - Pasquale Termolino
- Institute of Biosciences and Bioresources, National Research Council, Portici, Italy
| | - Pasquale Chiaiese
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | | | - Stefano Mazzoleni
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Portici, Italy
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica “Anton Dohrn”, Naples, Italy
- *Correspondence: Maria Luisa Chiusano,
| |
Collapse
|
17
|
Bilodeau C, Goltsis O, Rogers IM, Post M. Limitations of recellularized biological scaffolds for human transplantation. J Tissue Eng Regen Med 2019; 14:521-538. [PMID: 31826325 DOI: 10.1002/term.3004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022]
Abstract
A shortage of donor organs for transplantation and the dependence of the recipients on immunosuppressive therapy have motivated researchers to consider alternative regenerative approaches. The answer may reside in acellular scaffolds generated from cadaveric human and animal tissues. Acellular scaffolds are expected to preserve the architectural and mechanical properties of the original organ, permitting cell attachment, growth, and differentiation. Although theoretically, the use of acellular scaffolds for transplantation should pose no threat to the recipient's immune system, experimental data have revealed significant immune responses to allogeneic and xenogeneic transplanted scaffolds. Herein, we review the various factors of the scaffold that could trigger an inflammatory and/or immune response, thereby compromising its use for human transplant therapy. In addition, we provide an overview of the major cell types that have been considered for recellularization of the scaffold and their potential contribution to triggering an immune response.
Collapse
Affiliation(s)
- Claudia Bilodeau
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Olivia Goltsis
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ian M Rogers
- Lunenfeld Research Institute, Mount Sinai Health, Toronto, Ontario, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Targeting the lysyl oxidases in tumour desmoplasia. Biochem Soc Trans 2019; 47:1661-1678. [DOI: 10.1042/bst20190098] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/08/2023]
Abstract
The extracellular matrix (ECM) is a fundamental component of tissue microenvironments and its dysregulation has been implicated in a number of diseases, in particular cancer. Tumour desmoplasia (fibrosis) accompanies the progression of many solid cancers, and is also often induced as a result of many frontline chemotherapies. This has recently led to an increased interest in targeting the underlying processes. The major structural components of the ECM contributing to desmoplasia are the fibrillar collagens, whose key assembly mechanism is the enzymatic stabilisation of procollagen monomers by the lysyl oxidases. The lysyl oxidase family of copper-dependent amine oxidase enzymes are required for covalent cross-linking of collagen (as well as elastin) molecules into the mature ECM. This key step in the assembly of collagens is of particular interest in the cancer field since it is essential to the tumour desmoplastic response. LOX family members are dysregulated in many cancers and consequently the development of small molecule inhibitors targeting their enzymatic activity has been initiated by many groups. Development of specific small molecule inhibitors however has been hindered by the lack of crystal structures of the active sites, and therefore alternate indirect approaches to target LOX have also been explored. In this review, we introduce the importance of, and assembly steps of the ECM in the tumour desmoplastic response focussing on the role of the lysyl oxidases. We also discuss recent progress in targeting this family of enzymes as a potential therapeutic approach.
Collapse
|
19
|
Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801651. [PMID: 30126066 DOI: 10.1002/adma.201801651] [Citation(s) in RCA: 602] [Impact Index Per Article: 100.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/03/2018] [Indexed: 05/20/2023]
Abstract
Collagen is the oldest and most abundant extracellular matrix protein that has found many applications in food, cosmetic, pharmaceutical, and biomedical industries. First, an overview of the family of collagens and their respective structures, conformation, and biosynthesis is provided. The advances and shortfalls of various collagen preparations (e.g., mammalian/marine extracted collagen, cell-produced collagens, recombinant collagens, and collagen-like peptides) and crosslinking technologies (e.g., chemical, physical, and biological) are then critically discussed. Subsequently, an array of structural, thermal, mechanical, biochemical, and biological assays is examined, which are developed to analyze and characterize collagenous structures. Lastly, a comprehensive review is provided on how advances in engineering, chemistry, and biology have enabled the development of bioactive, 3D structures (e.g., tissue grafts, biomaterials, cell-assembled tissue equivalents) that closely imitate native supramolecular assemblies and have the capacity to deliver in a localized and sustained manner viable cell populations and/or bioactive/therapeutic molecules. Clearly, collagens have a long history in both evolution and biotechnology and continue to offer both challenges and exciting opportunities in regenerative medicine as nature's biomaterial of choice.
Collapse
Affiliation(s)
- Anna Sorushanova
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Luis M Delgado
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Zhuning Wu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Naledi Shologu
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Aniket Kshirsagar
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Rufus Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | | | - Yves Bayon
- Sofradim Production-A Medtronic Company, Trevoux, France
| | - Abhay Pandit
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Michael Raghunath
- Centre for Cell Biology and Tissue Engineering, Competence Centre Tissue Engineering for Drug Development (TEDD), Department Life Sciences and Facility Management, Institute for Chemistry and Biotechnology (ICBT), Zürich University of Applied Sciences, Wädenswil, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
20
|
Costa RA, Martins RST, Capilla E, Anjos L, Power DM. Vertebrate SLRP family evolution and the subfunctionalization of osteoglycin gene duplicates in teleost fish. BMC Evol Biol 2018; 18:191. [PMID: 30545285 PMCID: PMC6293640 DOI: 10.1186/s12862-018-1310-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteoglycin (OGN, a.k.a. mimecan) belongs to cluster III of the small leucine-rich proteoglycans (SLRP) of the extracellular matrix (ECM). In vertebrates OGN is a characteristic ECM protein of bone. In the present study we explore the evolution of SLRP III and OGN in teleosts that have a skeleton adapted to an aquatic environment. Results The SLRP gene family has been conserved since the separation of chondrichthyes and osteichthyes. Few gene duplicates of the SLRP III family exist even in the teleosts that experienced a specific whole genome duplication. One exception is ogn for which duplicate copies were identified in fish genomes. The ogn promoter sequence and in vitro mesenchymal stem cell (MSC) cultures suggest the duplicate ogn genes acquired divergent functions. In gilthead sea bream (Sparus aurata) ogn1 was up-regulated during osteoblast and myocyte differentiation in vitro, while ogn2 was severely down-regulated during bone-derived MSCs differentiation into adipocytes in vitro. Conclusions Overall, the phylogenetic analysis indicates that the SLRP III family in vertebrates has been under conservative evolutionary pressure. The retention of the ogn gene duplicates in teleosts was linked with the acquisition of different functions. The acquisition by OGN of functions other than that of a bone ECM protein occurred early in the vertebrate lineage. Electronic supplementary material The online version of this article (10.1186/s12862-018-1310-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R A Costa
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| | - E Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain
| | - L Anjos
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal
| | - D M Power
- Comparative Endocrinology and Integrative Biology Group, Centre of Marine Sciences, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
21
|
O'Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol 2018; 73:122-134. [PMID: 29649546 PMCID: PMC6177325 DOI: 10.1016/j.matbio.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
Abstract
The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Stephen J Gurczynski
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|
22
|
Sivaraman K, Shanthi C. Matrikines for therapeutic and biomedical applications. Life Sci 2018; 214:22-33. [PMID: 30449450 DOI: 10.1016/j.lfs.2018.10.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022]
Abstract
Matrikines, peptides originating from the fragmentation of extracellular matrix proteins are identified to play important role in both health and disease. They possess biological activities, much different from their parent protein. Identification of such bioactive cryptic regions in the extracellular matrix proteins has attracted the researchers all over the world in the recent decade. These bioactive peptides could find use in preparation of biomaterials and tissue engineering applications. Matrikines identified in major extracellular matrix (ECM) proteins like collagen, elastin, fibronectin, and laminin are being extensively studied for use in tissue engineering and regenerative medicine. They are identified to modulate cellular activity like cell growth, proliferation, migration and may induce apoptosis. RGD, a well-known peptide identified in fibronectin with cell adhesive property is being investigated in designing biomaterials. Collagen hexapeptide GFOGER was found to promote cell adhesion and differentiation. Laminin also possesses regions with strong cell adhesion property. Recently, cell-penetrating peptides from elastin are used as a targeted delivery system for therapeutic drugs. The continued search for cryptic sequences in the extracellular matrix proteins along with advanced peptide coupling chemistries would lead to biomaterials with improved surface properties. This review article outlines the peptides derived from extracellular matrix and some of the possible applications of these peptides in therapeutics and tissue engineering applications.
Collapse
Affiliation(s)
- K Sivaraman
- School of Biosciences and Technology, VIT, Vellore 632014, Tamilnadu, India
| | - C Shanthi
- School of Biosciences and Technology, VIT, Vellore 632014, Tamilnadu, India.
| |
Collapse
|
23
|
The nature of aspidin and the evolutionary origin of bone. Nat Ecol Evol 2018; 2:1501-1506. [PMID: 30065354 PMCID: PMC6109381 DOI: 10.1038/s41559-018-0624-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 06/27/2018] [Indexed: 11/16/2022]
Abstract
Bone is the key innovation underpinning the evolution of the vertebrate skeleton, yet its origin is mired by debate over interpretation of the most primitive bone-like tissue, aspidin. This has variously been interpreted as cellular bone, acellular bone, dentine or as an intermediate of dentine and bone. The crux of the controversy is the nature of unmineralised spaces pervading the aspidin matrix, which have alternatively been interpreted as having housed cells, cell processes, or Sharpey’s Fibres. Discriminating between these hypotheses has been hindered by the limits of traditional histological methods. Here we use Synchrotron X-ray Tomographic Microscopy (srXTM) to reveal the nature of aspidin. We show the spaces exhibit a linear morphology, incompatible with interpretations that they represent voids left by cells or cell processes. Instead, these spaces represent intrinsic collagen fibre bundles that form a scaffold, about which mineral was deposited. Aspidin is thus acellular dermal bone. We reject hypotheses that it is a type of dentine, cellular bone, or transitional tissue. Our study suggests the full repertoire of skeletal tissue types was established prior to the divergence of the earliest known skeletonising vertebrates, indicating that the corresponding cell types evolved rapidly following the divergence of cyclostomes and gnathostomes.
Collapse
|
24
|
Alex A, Antunes A. Genus-wide comparison of Pseudovibrio bacterial genomes reveal diverse adaptations to different marine invertebrate hosts. PLoS One 2018; 13:e0194368. [PMID: 29775460 PMCID: PMC5959193 DOI: 10.1371/journal.pone.0194368] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/01/2018] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Pseudovibrio have been frequently found in association with a wide variety of marine eukaryotic invertebrate hosts, indicative of their versatile and symbiotic lifestyle. A recent comparison of the sponge-associated Pseudovibrio genomes has shed light on the mechanisms influencing a successful symbiotic association with sponges. In contrast, the genomic architecture of Pseudovibrio bacteria associated with other marine hosts has received less attention. Here, we performed genus-wide comparative analyses of 18 Pseudovibrio isolated from sponges, coral, tunicates, flatworm, and seawater. The analyses revealed a certain degree of commonality among the majority of sponge- and coral-associated bacteria. Isolates from other marine invertebrate host, tunicates, exhibited a genetic repertoire for cold adaptation and specific metabolic abilities including mucin degradation in the Antarctic tunicate-associated bacterium Pseudovibrio sp. Tun.PHSC04_5.I4. Reductive genome evolution was simultaneously detected in the flatworm-associated bacteria and the sponge-associated bacterium P. axinellae AD2, through the loss of major secretion systems (type III/VI) and virulence/symbioses factors such as proteins involved in adhesion and attachment to the host. Our study also unraveled the presence of a CRISPR-Cas system in P. stylochi UST20140214-052 a flatworm-associated bacterium possibly suggesting the role of CRISPR-based adaptive immune system against the invading virus particles. Detection of mobile elements and genomic islands (GIs) in all bacterial members highlighted the role of horizontal gene transfer for the acquisition of novel genetic features, likely enhancing the bacterial ecological fitness. These findings are insightful to understand the role of genome diversity in Pseudovibrio as an evolutionary strategy to increase their colonizing success across a wide range of marine eukaryotic hosts.
Collapse
Affiliation(s)
- Anoop Alex
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
- * E-mail: (AA); (AA)
| |
Collapse
|
25
|
Farrán A, Valverde-Franco G, Tío L, Lussier B, Fahmi H, Pelletier JP, Bishop PN, Monfort J, Martel-Pelletier J. In vivo effect of opticin deficiency in cartilage in a surgically induced mouse model of osteoarthritis. Sci Rep 2018; 8:457. [PMID: 29323130 PMCID: PMC5765138 DOI: 10.1038/s41598-017-18047-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/30/2017] [Indexed: 11/18/2022] Open
Abstract
The SLRP opticin (OPTC) has been demonstrated to be produced and degraded in osteoarthritic (OA) human cartilage. Here, we investigated the in vivo effect of OPTC deficiency in OA cartilage. OA was induced in 10-week-old Optc−/− and Optc+/+ mice. Ten weeks post-surgery, cartilage was processed for histology and immunohistochemistry. SLRP expression was determined in non-operated mouse cartilage. OA Optc−/− demonstrated significant protection against cartilage degradation. Data revealed that in non-operated Optc−/− cartilage, expression of SLRPs lumican and epiphycan was up-regulated at day 3 and in 10-week-olds (p ≤ 0.039), and fibromodulin down-regulated in 10-week-olds (p = 0.001). Immunohistochemistry of OA mice showed a similar pattern. In OA Optc−/− cartilage, markers of degradation and complement factors were all down-regulated (p ≤ 0.038). In OA Optc−/− cartilage, collagen fibers were thinner and better organized (p = 0.038) than in OA Optc+/+ cartilage. The protective effect of OPTC deficiency during OA results from an overexpression of lumican and epiphycan, known to bind and protect collagen fibers, and a decrease in fibromodulin, contributing to a reduction in the complement activation/inflammatory process. This work suggests that the evaluation of the composition of the different SLRPs in OA cartilage could be applied as a new tool for OA prognosis classification.
Collapse
Affiliation(s)
- Aina Farrán
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.,Inflammation and Cartilage Cellular Research Group, IMIM (Hospital del Mar Medical Research Institute) Rheumatology Department, Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Gladys Valverde-Franco
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Laura Tío
- Inflammation and Cartilage Cellular Research Group, IMIM (Hospital del Mar Medical Research Institute) Rheumatology Department, Parc de Salut Mar, Hospital del Mar, Barcelona, Spain
| | - Bertrand Lussier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.,Faculty of Veterinary Medicine, Clinical Sciences, University of Montreal, Saint-Hyacinthe, Quebec, Canada
| | - Hassan Fahmi
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Paul N Bishop
- Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom.,School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jordi Monfort
- Inflammation and Cartilage Cellular Research Group, IMIM (Hospital del Mar Medical Research Institute) Rheumatology Department, Parc de Salut Mar, Hospital del Mar, Barcelona, Spain.,Rheumatology Department, Hospital del Mar, Barcelona, Spain
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada.
| |
Collapse
|
26
|
|
27
|
Wei J, Wang G, Li X, Ren P, Yu H, Dong B. Architectural delineation and molecular identification of extracellular matrix in ascidian embryos and larvae. Biol Open 2017; 6:1383-1390. [PMID: 28916708 PMCID: PMC5612238 DOI: 10.1242/bio.026336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The extracellular matrix (ECM) not only provides essential physical scaffolding for cellular constituents but also initiates crucial biochemical and biomechanical cues that are required for tissue morphogenesis. In this study, we utilized wheat germ agglutinin (WGA) staining to characterize the ECM architecture in ascidian embryos and larvae. The results showed three distinct populations of ECM presenting in Ciona embryogenesis: the outer layer localized at the surface of embryo, an inner layer of notochord sheath and the apical ECM secreted by the notochord. To further elucidate the precise structure of Ciona embryonic ECM, we employed scanning and transmission electron microscopy, and found that the outer membrane was relatively thick with short fibres, whereas the ECM layer in notochord sheath was not as thick as the outer membrane but more regular arranged; the lumen between notochord cells was hydrostatic and sticky. Then, we used the RNA sequencing data from the embryos and larvae of Ciona savignyi to identify ECM genes and acquire their expression patterns. We identified 115 unigenes as 67 ECM genes, and 77 unigenes showed dynamic expression changes between different stages. Our results reveal the architecture, molecular composition and dynamic expression profile of ECM in ascidian embryogenesis, and may increase understanding of the function of the ECM in chordate development. Summary: This study reveals the architecture, molecular composition and dynamic expression profile of the extracellular matrix in ascidian embryos and larvae, providing clues for its function in chordate development.
Collapse
Affiliation(s)
- Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Guilin Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiang Li
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ping Ren
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
28
|
The ADAMTS hyalectanase family: biological insights from diverse species. Biochem J 2017; 473:2011-22. [PMID: 27407170 DOI: 10.1042/bcj20160148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/29/2016] [Indexed: 12/13/2022]
Abstract
The a disintegrin-like and metalloproteinase with thrombospondin type-1 motifs (ADAMTS) family of metzincins are complex secreted proteins that have diverse functions during development. The hyalectanases (ADAMTS1, 4, 5, 8, 9, 15 and 20) are a subset of this family that have enzymatic activity against hyalectan proteoglycans, the processing of which has important implications during development. This review explores the evolution, expression and developmental functions of the ADAMTS family, focusing on the ADAMTS hyalectanases and their substrates in diverse species. This review gives an overview of how the family and their substrates evolved from non-vertebrates to mammals, the expression of the hyalectanases and substrates in different species and their functions during development, and how these functions are conserved across species.
Collapse
|
29
|
Boyd DF, Thomas PG. Towards integrating extracellular matrix and immunological pathways. Cytokine 2017; 98:79-86. [PMID: 28325629 DOI: 10.1016/j.cyto.2017.03.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/27/2022]
Abstract
The extracellular matrix (ECM) is a complex and dynamic structure made up of an estimated 300 different proteins. The ECM is also a rich source of cytokines and growth factors in addition to numerous bioactive ECM degradation products that influence cell migration, proliferation, and differentiation. The ECM is constantly being remodeled during homeostasis and in a wide range of pathological contexts. Changes in the ECM modulate immune responses, which in turn regulate repair and regeneration of tissues. Here, we review the many components of the ECM, enzymes involved in ECM remodeling, and the signals that feed into immunological pathways in the context of a dynamic ECM. We highlight studies that have taken an integrative approach to studying immune responses in the context of the ECM and studies that use novel proteomic strategies. Finally, we discuss research challenges relevant to the integration of immune and ECM networks and propose experimental and translational approaches to resolve these issues.
Collapse
Affiliation(s)
- David F Boyd
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, United States.
| |
Collapse
|
30
|
Kadler KE. Fell Muir Lecture: Collagen fibril formation in vitro and in vivo. Int J Exp Pathol 2017; 98:4-16. [PMID: 28508516 PMCID: PMC5447863 DOI: 10.1111/iep.12224] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 01/21/2017] [Indexed: 12/29/2022] Open
Abstract
It is a great honour to be awarded the Fell Muir Prize for 2016 by the British Society of Matrix Biology. As recipient of the prize, I am taking the opportunity to write a minireview on collagen fibrillogenesis, which has been the focus of my research for 33 years. This is the process by which triple helical collagen molecules assemble into centimetre-long fibrils in the extracellular matrix of animals. The fibrils appeared a billion years ago at the dawn of multicellular animal life as the primary scaffold for tissue morphogenesis. The fibrils occur in exquisite three-dimensional architectures that match the physical demands of tissues, for example orthogonal lattices in cornea, basket weaves in skin and blood vessels, and parallel bundles in tendon, ligament and nerves. The question of how collagen fibrils are formed was posed at the end of the nineteenth century. Since then, we have learned about the structure of DNA and the peptide bond, understood how plants capture the sun's energy, cloned animals, discovered antibiotics and found ways of editing our genome in the pursuit of new cures for diseases. However, how cells generate tissues from collagen fibrils remains one of the big unsolved mysteries in biology. In this review, I will give a personal account of the topic and highlight some of the approaches that my research group are taking to find new insights.
Collapse
Affiliation(s)
- Karl E. Kadler
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix ResearchManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
31
|
Abstract
Fibrillar collagens (types I, II, III, V, XI, XXIV and XXVII) constitute a sub-group within the collagen family (of which there are 28 types in humans) whose functions are to provide three-dimensional frameworks for tissues and organs. These networks confer mechanical strength as well as signalling and organizing functions through binding to cellular receptors and other components of the extracellular matrix (ECM). Here we describe the structure and assembly of fibrillar collagens, and their procollagen precursors, from the molecular to the tissue level. We show how the structure of the collagen triple-helix is influenced by the amino acid sequence, hydrogen bonding and post-translational modifications, such as prolyl 4-hydroxylation. The numerous steps in the biosynthesis of the fibrillar collagens are reviewed with particular attention to the role of prolyl 3-hydroxylation, collagen chaperones, trimerization of procollagen chains and proteolytic maturation. The multiple steps controlling fibril assembly are then discussed with a focus on the cellular control of this process in vivo. Our current understanding of the molecular packing in collagen fibrils, from different tissues, is then summarized on the basis of data from X-ray diffraction and electron microscopy. These results provide structural insights into how collagen fibrils interact with cell receptors, other fibrillar and non-fibrillar collagens and other ECM components, as well as enzymes involved in cross-linking and degradation.
Collapse
Affiliation(s)
- Jordi Bella
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - David J S Hulmes
- Tissue Biology and Therapeutic Engineering Unit (UMR5305), CNRS/Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
32
|
Rodriguez-Pascual F, Slatter DA. Collagen cross-linking: insights on the evolution of metazoan extracellular matrix. Sci Rep 2016; 6:37374. [PMID: 27876853 PMCID: PMC5120351 DOI: 10.1038/srep37374] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/28/2016] [Indexed: 12/15/2022] Open
Abstract
Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades. While LOX-generated collagen cross-linking metabolites have been detected in different metazoan families, there is limited information about when and how collagen acquired this particular modification. By analyzing telopeptide and helical sequences, we identified highly conserved, potential cross-linking sites throughout the metazoan tree of life. Based on this analysis, we propose that they have importantly contributed to the formation and further expansion of fibrillar collagens.
Collapse
Affiliation(s)
- Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.)/Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| | | |
Collapse
|
33
|
Raspanti M, Caravà E, Sgambato A, Natalello A, Russo L, Cipolla L. The collaggrecan: Synthesis and visualization of an artificial proteoglycan. Int J Biol Macromol 2016; 86:65-70. [PMID: 26797224 DOI: 10.1016/j.ijbiomac.2016.01.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 10/01/2015] [Accepted: 01/14/2016] [Indexed: 11/17/2022]
Abstract
An artificial aggrecan-like proteoglycan has been designed and synthesized in vitro. At variance with natural proteoglycans, whose glycosaminoglycan chains are always O-linked via a tetrasaccharide bridge to the serine residues of a specific protein core, the present structure consists of chondroitin-6-sulfate chains directly bound to the lysine and hydroxylysine residues of a collagen molecule backbone. The resulting macromolecule has been characterized by histochemistry, atomic force microscopy and FTIR. The number of variables involved (e.g., length and type of the collagen backbone, glycosaminoglycan species, sulfation type and pattern, molecular weight, number and length of side chains, etc.) makes possible to conceive an almost endless variety of artificial proteoglycans, each precisely tailored to a specific functional role. In addition to their use as biomaterials, glycated collagens interact with cells in complex ways and a previous study has already shown the ability of a glycated collagen to redirect fibroblastoma cells from proliferation to differentiation. The research is still underway.
Collapse
Affiliation(s)
- Mario Raspanti
- Department of Surgical & Morphological Sciences, Insubria University, Via Monte Generoso 71, 21100 Varese, Italy.
| | - Elena Caravà
- Department of Surgical & Morphological Sciences, Insubria University, Via Monte Generoso 71, 21100 Varese, Italy
| | - Antonella Sgambato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
34
|
Domene C, Jorgensen C, Abbasi SW. A perspective on structural and computational work on collagen. Phys Chem Chem Phys 2016; 18:24802-24811. [DOI: 10.1039/c6cp03403a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Collagen is the single most abundant protein in the extracellular matrix in the animal kingdom, with remarkable structural and functional diversity and regarded one of the most useful biomaterials.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry
- King's College London
- UK
- Chemistry Research Laboratory
- University of Oxford
| | | | | |
Collapse
|
35
|
Taylor SH, Yeung CYC, Kalson NS, Lu Y, Zigrino P, Starborg T, Warwood S, Holmes DF, Canty-Laird EG, Mauch C, Kadler KE. Matrix metalloproteinase 14 is required for fibrous tissue expansion. eLife 2015; 4:e09345. [PMID: 26390284 PMCID: PMC4684142 DOI: 10.7554/elife.09345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI:http://dx.doi.org/10.7554/eLife.09345.001 A scaffold of proteins called the extracellular matrix surrounds each of the cells that make up our organs and tissues. This matrix, which contains fibres made of proteins called collagens, provides the physical support needed to hold organs and tissues together. This support is especially important in the tendons—a tough tissue that connects the muscle to bone—and other ‘connective’ tissues. An enzyme called MMP14 is able to cut through chains of collagen proteins. It belongs to a family of proteins that are involved in breaking down the extracellular matrix to enable cells to divide and for other important processes in cells. Some cancer cells exploit MMP14 to enable them to leave their tissue of origin and spread around the body. Therefore, when researchers bred mutant mice that lacked MMP14, they expected to see excessive growth of collagen fibres in the connective tissues of the mice. However, these mice actually have extremely thin, fragile connective tissue and die soon after birth. Earlier in 2015, a group of researchers demonstrated that the first stage of tendon development in mice involves the formation of collagen fibres, which are attached to structures that project from tendon cells called fibripositors. Then, soon after the mice are born, the fibripositors disappear and the collagen fibres are released into the extracellular matrix where they grow longer and become thicker. Now, Taylor, Yeung, Kalson et al.—including some of the researchers from the earlier work—have used electron microscopy to investigate how a lack of MMP14 leads to fragile tendons in young mice. The experiments show that MMP14 plays a crucial role in the first stage of tendon development by detaching the collagen fibres from the fibripositors. MMP14 also promotes the formation of new collagen fibres; the tendons of mutant mice that lack MMP14 have fewer collagen fibres than normal mice. Further experiments revealed that the release of collagen fibres from fibripositors does not require MMP14 to cleave the chains of collagen proteins themselves. Instead, it appears that MMP14 cleaves another protein that is associated with the fibres, called fibronectin. Taylor, Yeung, Kalson et al.'s findings show that MMP14 plays an important role in the development of tendons by releasing collagen fibres from fibripositors and promoting the formation of new fibres. The next challenge is to find out how MMP14 regulates the number of collagen fibres in mature tendons and other tissues, and how defects in this enzyme can lead to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.09345.002
Collapse
Affiliation(s)
- Susan H Taylor
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ching-Yan Chloé Yeung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicholas S Kalson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paola Zigrino
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stacey Warwood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cornelia Mauch
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Castellano I, Ercolesi E, Romano G, Ianora A, Palumbo A. The diatom-derived aldehyde decadienal affects life cycle transition in the ascidian Ciona intestinalis through nitric oxide/ERK signalling. Open Biol 2015; 5:140182. [PMID: 25788553 PMCID: PMC4389792 DOI: 10.1098/rsob.140182] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Polyunsaturated aldehydes (PUAs) are fatty-acid-derived metabolites produced by some microalgae, including different diatom species. PUAs are mainly produced as a wound-activated defence mechanism against microalgal predators or released from senescent cells at the end of a bloom. PUAs, including 2,4-trans-decadienal (DD), induce deleterious effects on embryonic and larval development of several planktonic and benthic organisms. Here, we report on the effects of DD on larval development and metamorphosis of the ascidian Ciona intestinalis. Ciona larval development is regulated by the cross-talking of different molecular events, including nitric oxide (NO) production, ERK activation and caspase 3-dependent apoptosis. We report that treatment with DD at the competence larval stage results in a delay in metamorphosis. DD affects redox balance by reducing total glutathione and NO levels. By biochemical and quantitative gene expression analysis, we identify the NO-signalling network affected by DD, including the upregulation of ERK phosphatase mkp1 and consequent reduction of ERK phosphorylation, with final changes in the expression of downstream ERK target genes. Overall, these results give new insights into the molecular pathways induced in marine organisms after exposure to PUAs during larval development, demonstrating that this aldehyde affects key checkpoints of larval transition from the vegetative to the reproductive life stage.
Collapse
Affiliation(s)
| | - Elena Ercolesi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Giovanna Romano
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Adrianna Ianora
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Anna Palumbo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| |
Collapse
|
37
|
Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family. Genome Biol 2015; 16:113. [PMID: 26025392 PMCID: PMC4448532 DOI: 10.1186/s13059-015-0676-3] [Citation(s) in RCA: 448] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future.
Collapse
Affiliation(s)
- Richard Kelwick
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Ines Desanlis
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Grant N Wheeler
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| | - Dylan R Edwards
- School of Biological Sciences, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
38
|
Grau-Bové X, Ruiz-Trillo I, Rodriguez-Pascual F. Origin and evolution of lysyl oxidases. Sci Rep 2015; 5:10568. [PMID: 26024311 PMCID: PMC4448552 DOI: 10.1038/srep10568] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/15/2015] [Indexed: 12/31/2022] Open
Abstract
Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence. Here we have surveyed a wide selection of genomes in order to infer the evolutionary history of LOX. We identified LOX proteins not only in animals, but also in many other eukaryotes, as well as in bacteria and archaea - which reveals a pre-metazoan origin for this gene family. LOX genes expanded during metazoan evolution resulting in two superfamilies, LOXL2/L3/L4 and LOX/L1/L5. Considering the current knowledge on the function of mammalian LOX isoforms in ECM remodeling, we propose that LOXL2/L3/L4 members might have preferentially been involved in making cross-linked collagen IV-based basement membrane, whereas the diversification of LOX/L1/L5 forms contributed to chordate/vertebrate-specific ECM innovations, such as elastin and fibronectin. Our work provides a novel view on the evolution of this family of enzymes.
Collapse
Affiliation(s)
- Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Departament de Genètica, Universitat de Barcelona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Fernando Rodriguez-Pascual
- Centro de Biología Molecular “Severo Ochoa” Consejo Superior de Investigaciones Científicas (C.S.I.C.) / Universidad Autónoma de Madrid (Madrid), Madrid, Spain
| |
Collapse
|
39
|
Brekhman V, Malik A, Haas B, Sher N, Lotan T. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC Genomics 2015; 16:74. [PMID: 25757467 PMCID: PMC4334923 DOI: 10.1186/s12864-015-1320-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 02/04/2015] [Indexed: 11/11/2022] Open
Abstract
Background The moon jellyfish Aurelia aurita is a widespread scyphozoan species that forms large seasonal blooms. Here we provide the first comprehensive view of the entire complex life of the Aurelia Red Sea strain by employing transcriptomic profiling of each stage from planula to mature medusa. Results A de novo transcriptome was assembled from Illumina RNA-Seq data generated from six stages throughout the Aurelia life cycle. Transcript expression profiling yielded clusters of annotated transcripts with functions related to each specific life-cycle stage. Free-swimming planulae were found highly enriched for functions related to cilia and microtubules, and the drastic morphogenetic process undergone by the planula while establishing the future body of the polyp may be mediated by specifically expressed Wnt ligands. Specific transcripts related to sensory functions were found in the strobila and the ephyra, whereas extracellular matrix functions were enriched in the medusa due to high expression of transcripts such as collagen, fibrillin and laminin, presumably involved in mesoglea development. The CL390-like gene, suggested to act as a strobilation hormone, was also highly expressed in the advanced strobila of the Red Sea species, and in the medusa stage we identified betaine-homocysteine methyltransferase, an enzyme that may play an important part in maintaining equilibrium of the medusa’s bell. Finally, we identified the transcription factors participating in the Aurelia life-cycle and found that 70% of these 487 identified transcription factors were expressed in a developmental-stage-specific manner. Conclusions This study provides the first scyphozoan transcriptome covering the entire developmental trajectory of the life cycle of Aurelia. It highlights the importance of numerous stage-specific transcription factors in driving morphological and functional changes throughout this complex metamorphosis, and is expected to be a valuable resource to the community. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1320-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vera Brekhman
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| | - Assaf Malik
- Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Brian Haas
- Broad Institute of Massachusetts, Institute of Technology and Harvard, Cambridge, Massachusetts, USA.
| | - Noa Sher
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel. .,Bioinformatics Service Unit, University of Haifa, 31905, Haifa, Israel.
| | - Tamar Lotan
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, 31905, Haifa, Israel.
| |
Collapse
|
40
|
Cromar G, Wong KC, Loughran N, On T, Song H, Xiong X, Zhang Z, Parkinson J. New tricks for "old" domains: how novel architectures and promiscuous hubs contributed to the organization and evolution of the ECM. Genome Biol Evol 2014; 6:2897-917. [PMID: 25323955 PMCID: PMC4224354 DOI: 10.1093/gbe/evu228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2014] [Indexed: 12/15/2022] Open
Abstract
The extracellular matrix (ECM) is a defining characteristic of metazoans and consists of a meshwork of self-assembling, fibrous proteins, and their functionally related neighbours. Previous studies, focusing on a limited number of gene families, suggest that vertebrate complexity predominantly arose through the duplication and subsequent modification of retained, preexisting ECM genes. These genes provided the structural underpinnings to support a variety of specialized tissues, as well as a platform for the organization of spatio-temporal signaling and cell migration. However, the relative contributions of ancient versus novel domains to ECM evolution have not been quantified across the full range of ECM proteins. Here, utilizing a high quality list comprising 324 ECM genes, we reveal general and clade-specific domain combinations, identifying domains of eukaryotic and metazoan origin recruited into new roles in approximately two-third of the ECM proteins in humans representing novel vertebrate proteins. We show that, rather than acquiring new domains, sampling of new domain combinations has been key to the innovation of paralogous ECM genes during vertebrate evolution. Applying a novel framework for identifying potentially important, noncontiguous, conserved arrangements of domains, we find that the distinct biological characteristics of the ECM have arisen through unique evolutionary processes. These include the preferential recruitment of novel domains to existing architectures and the utilization of high promiscuity domains in organizing the ECM network around a connected array of structural hubs. Our focus on ECM proteins reveals that distinct types of proteins and/or the biological systems in which they operate have influenced the types of evolutionary forces that drive protein innovation. This emphasizes the need for rigorously defined systems to address questions of evolution that focus on specific systems of interacting proteins.
Collapse
Affiliation(s)
- Graham Cromar
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Ka-Chun Wong
- Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Noeleen Loughran
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tuan On
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Hongyan Song
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xuejian Xiong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Zhaolei Zhang
- Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Computer Science, University of Toronto, Ontario, Canada Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | - John Parkinson
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Ontario, Canada Department of Biochemistry, University of Toronto, Ontario, Canada
| |
Collapse
|
41
|
Perlecan antagonizes collagen IV and ADAMTS9/GON-1 in restricting the growth of presynaptic boutons. J Neurosci 2014; 34:10311-24. [PMID: 25080592 DOI: 10.1523/jneurosci.5128-13.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the mature nervous system, a significant fraction of synapses are structurally stable over a long time scale. However, the mechanisms that restrict synaptic growth within a confined region are poorly understood. Here, we identified that in the C. elegans neuromuscular junction, collagens Type IV and XVIII, and the secreted metalloprotease ADAMTS/GON-1 are critical for growth restriction of presynaptic boutons. Without these components, ectopic boutons progressively invade into the nonsynaptic region. Perlecan/UNC-52 promotes the growth of ectopic boutons and functions antagonistically to collagen Type IV and GON-1 but not to collagen XVIII. The growth constraint of presynaptic boutons correlates with the integrity of the extracellular matrix basal lamina or basement membrane (BM), which surrounds chemical synapses. Fragmented BM appears in the region where ectopic boutons emerge. Further removal of UNC-52 improves the BM integrity and the tight association between BM and presynaptic boutons. Together, our results unravel the complex role of the BM in restricting the growth of presynaptic boutons and reveal the antagonistic function of perlecan on Type IV collagen and ADAMTS protein.
Collapse
|
42
|
Gardiner M, Hoke DE, Egan S. An ortholog of the Leptospira interrogans lipoprotein LipL32 aids in the colonization of Pseudoalteromonas tunicata to host surfaces. Front Microbiol 2014; 5:323. [PMID: 25071736 PMCID: PMC4080168 DOI: 10.3389/fmicb.2014.00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/12/2014] [Indexed: 11/25/2022] Open
Abstract
The bacterium Pseudoalteromonas tunicata is a common surface colonizer of marine eukaryotes, including the macroalga Ulva australis.Genomic analysis of P. tunicata identified genes potentially involved in surface colonization, including genes with homology to bacterial virulence factors that mediate attachment. Of particular interest is the presence of a gene, designated ptlL32, encoding an ortholog to the Leptospira lipoprotein LipL32, which has been shown to facilitate the interaction of Leptospira sp. with host extracellular matrix (ECM) structures and is thought to be an important virulence trait for pathogenic Leptospira. To investigate the role of PtlL32 in the colonization by P. tunicata we constructed and characterized a ΔptlL32 mutant strain. Whilst P. tunicata ΔptlL32 bound to an abiotic surface with the same capacity as the wild type strain, it had a marked effect on the ability of P. tunicata to bind to ECM, suggesting a specific role in attachment to biological surfaces. Loss of PtlL32 also significantly reduced the capacity for P. tunciata to colonize the host algal surface demonstrating a clear role for this protein as a host-colonization factor. PtlL32 appears to have a patchy distribution across specific groups of environmental bacteria and phylogenetic analysis of PtlL32 orthologous proteins from non-Leptospira species suggests it may have been acquired via horizontal gene transfer between distantly related lineages. This study provides the first evidence for an attachment function for a LipL32-like protein outside the Leptospira and thereby contributes to the understanding of host colonization in ecologically distinct bacterial species.
Collapse
Affiliation(s)
- Melissa Gardiner
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Monash University Clayton, VIC, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biotechnology and Biomolecular Sciences, The University of New South Wales Sydney, NSW, Australia
| |
Collapse
|
43
|
Williams F, Tew HA, Paul CE, Adams JC. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol 2014; 37:60-8. [PMID: 24561726 DOI: 10.1016/j.matbio.2014.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/15/2014] [Accepted: 02/16/2014] [Indexed: 12/27/2022]
Abstract
The extracellular matrix (ECM) is a major mediator of multi-cellularity in the metazoa. Multiple ECM proteins are conserved from sponges to human, raising questions about the evolutionary origin of ECM. Choanoflagellates are the closest unicellular relatives of the metazoa and proteins with domains characteristic of metazoan ECM proteins have been identified from the genome-predicted proteome of the choanoflagellate Monosiga brevicollis. However, a systematic analysis of M. brevicollis secretory signal peptide-containing proteins with ECM domains has been lacking. We analysed all predicted secretory signal-peptide-containing proteins of M. brevicollis for ECM domains. Nine domains that are widespread in metazoan ECM proteins are represented, with EGF, fibronectin III, laminin G, and von Willebrand Factor_A domains being the most numerous. Three proteins contain more than one category of ECM domain, however, no proteins correspond to the domain architecture of metazoan ECM proteins. The fibronectin III domains are all present within glycoside hydrolases and none contain an integrin-binding motif. Glycosaminoglycan-binding motifs identified in animal thrombospondin type 1 domains are conserved in some M. brevicollis representatives of this domain, whereas there is little evidence of conservation of glycosaminoglycan-binding motifs in the laminin G domains. The identified proteins were compared with the predicted secretory ECM domain-containing proteins of the integrin-expressing filasterean, Capsaspora owczarzaki. C. owczarzaki encodes a smaller number of secretory, ECM domain-containing proteins and only EGF, fibronectin type III and laminin G domains are represented. The M. brevicollis and C. owczarzaki proteins have distinct domain architectures and all proteins differ in their domain architecture to metazoan ECM proteins. These identifications provide a basis for future experiments to validate the extracellular location of these proteins and uncover their functions in choanoflagellates and C. owczarzaki. The data strengthen the model that ECM proteins are metazoan-specific and evolved as innovations in the last common metazoan ancestor.
Collapse
Affiliation(s)
| | - Hannah A Tew
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Catherine E Paul
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
44
|
Banerjee P, Mehta A, Shanthi C. Screening for novel cell adhesive regions in bovine Achilles tendon collagen peptides. Biochem Cell Biol 2014; 92:9-22. [DOI: 10.1139/bcb-2013-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Collagen, a major structural protein of the ECM, is known for its high cell adherence capacity. This study was conducted to identify regions in collagen that harbour such bioactivity. Collagen from tendon was hydrolysed and the peptides fractionated using ion-exchange chromatography (IEC). Isolated peptide fractions were coated onto disposable dishes and screened for cell adherence and proliferative abilities. Active IEC fractions were further purified by chromatography, and two peptides, C2 and E1 with cell adhesion ability, were isolated. A cell adhesion assay done with different amounts of C2 coated onto disposable dishes revealed the maximum adhesion to be 94.6%, compared with 80% for collagen coated dishes and an optimum peptide coating density of 0.507 nmoles per cm2 area of the dish. Growth of cells on C2, collagen, and E1 revealed a similar pattern and a reduction in the doubling time compared with cells grown on uncoated dishes. C2 had a mass of 2.046 kDa with 22 residues, and sequence analysis revealed a higher percentage occurrence of hydrophilic residues compared with other regions in collagen. Docking studies revealed GDDGEA in C2 as the probable site of interaction with integrins α2β1 and α1β1, and stability studies proved C2 to be mostly protease-resistant.
Collapse
Affiliation(s)
- Pradipta Banerjee
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Alka Mehta
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C. Shanthi
- School of Bio Science and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| |
Collapse
|
45
|
Diverse roles of prostaglandins in blastocyst implantation. ScientificWorldJournal 2014; 2014:968141. [PMID: 24616654 PMCID: PMC3925584 DOI: 10.1155/2014/968141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/18/2013] [Indexed: 01/14/2023] Open
Abstract
Prostaglandins (PGs), derivatives of arachidonic acid, play an indispensable role in embryo implantation. PGs have been reported to participate in the increase in vascular permeability, stromal decidualization, blastocyst growth and development, leukocyte recruitment, embryo transport, trophoblast invasion, and extracellular matrix remodeling during implantation. Deranged PGs syntheses and actions will result in implantation failure. This review summarizes up-to-date literatures on the role of PGs in blastocyst implantation which could provide a broad perspective to guide further research in this field.
Collapse
|
46
|
Dong Z, Zhao P, Wang C, Zhang Y, Chen J, Wang X, Lin Y, Xia Q. Comparative Proteomics Reveal Diverse Functions and Dynamic Changes of Bombyx mori Silk Proteins Spun from Different Development Stages. J Proteome Res 2013; 12:5213-22. [DOI: 10.1021/pr4005772] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhaoming Dong
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ping Zhao
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Chen Wang
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Yan Zhang
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Jianping Chen
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Xin Wang
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Ying Lin
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm
Genome Biology, Southwest University, 216, Tiansheng Road, Beibei, Chongqing 400716, China
| |
Collapse
|
47
|
Jung JP, Sprangers AJ, Byce JR, Su J, Squirrell JM, Messersmith PB, Eliceiri KW, Ogle BM. ECM-incorporated hydrogels cross-linked via native chemical ligation to engineer stem cell microenvironments. Biomacromolecules 2013; 14:3102-11. [PMID: 23875943 PMCID: PMC3880157 DOI: 10.1021/bm400728e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Limiting the precise study of the biochemical impact of whole molecule extracellular matrix (ECM) proteins on stem cell differentiation is the lack of 3D in vitro models that can accommodate many different types of ECM. Here we sought to generate such a system while maintaining consistent mechanical properties and supporting stem cell survival. To this end, we used native chemical ligation to cross-link poly(ethylene glycol) macromonomers under mild conditions while entrapping ECM proteins (termed ECM composites) and stem cells. Sufficiently low concentrations of ECM were used to maintain constant storage moduli and pore size. Viability of stem cells in composites was maintained over multiple weeks. ECM of composites encompassed stem cells and directed the formation of distinct structures dependent on ECM type. Thus, we introduce a powerful approach to study the biochemical impact of multiple ECM proteins (either alone or in combination) on stem cell behavior.
Collapse
Affiliation(s)
- Jangwook P. Jung
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Anthony J. Sprangers
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - John R. Byce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Su
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| | - Jayne M. Squirrell
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Phillip B. Messersmith
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208
- Institute for Bionanotechnology in Medicine, Northwestern University, Chicago, IL 60611
| | - Kevin W. Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
| | - Brenda M. Ogle
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706
- Material Sciences Program, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
48
|
Cota CD, Segade F, Davidson B. Heart genetics in a small package, exploiting the condensed genome of Ciona intestinalis. Brief Funct Genomics 2013; 13:3-14. [PMID: 24005910 DOI: 10.1093/bfgp/elt034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Defects in the initial establishment of cardiogenic cell fate are likely to contribute to pervasive human congenital cardiac abnormalities. However, the molecular underpinnings of nascent cardiac fate induction have proven difficult to decipher. In this review we explore the participation of extracellular, cellular and nuclear factors in comprehensive specification networks. At each level, we elaborate on insights gained through the study of cardiogenesis in the invertebrate chordate Ciona intestinalis and propose productive lines of future research. In-depth discussion of pre-cardiac induction is intended to serve as a paradigm, illustrating the potential use of Ciona to elucidate comprehensive networks underlying additional aspects of chordate cardiogenesis, including directed migration and subspecification of cardiac and pharyngeal lineages.
Collapse
|
49
|
|
50
|
Baratta CA, Brown TJ, Al-Dhalaan F, Ringuette MJ. Evolution and Function of SPARC and Tenascins: Matricellular Counter-Adhesive Glycoproteins with Pleiotropic Effects on Angiogenesis and Tissue Fibrosis. EVOLUTION OF EXTRACELLULAR MATRIX 2013. [DOI: 10.1007/978-3-642-36002-2_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|