1
|
Nienaber-Rousseau C. Understanding and applying gene-environment interactions: a guide for nutrition professionals with an emphasis on integration in African research settings. Nutr Rev 2025; 83:e443-e463. [PMID: 38442341 PMCID: PMC11723160 DOI: 10.1093/nutrit/nuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Noncommunicable diseases (NCDs) are influenced by the interplay between genetics and environmental exposures, particularly diet. However, many healthcare professionals, including nutritionists and dietitians, have limited genetic background and, therefore, they may lack understanding of gene-environment interactions (GxEs) studies. Even researchers deeply involved in nutrition studies, but with a focus elsewhere, can struggle to interpret, evaluate, and conduct GxE studies. There is an urgent need to study African populations that bear a heavy burden of NCDs, demonstrate unique genetic variability, and have cultural practices resulting in distinctive environmental exposures compared with Europeans or Americans, who are studied more. Although diverse and rapidly changing environments, as well as the high genetic variability of Africans and difference in linkage disequilibrium (ie, certain gene variants are inherited together more often than expected by chance), provide unparalleled potential to investigate the omics fields, only a small percentage of studies come from Africa. Furthermore, research evidence lags behind the practices of companies offering genetic testing for personalized medicine and nutrition. We need to generate more evidence on GxEs that also considers continental African populations to be able to prevent unethical practices and enable tailored treatments. This review aims to introduce nutrition professionals to genetics terms and valid methods to investigate GxEs and their challenges, and proposes ways to improve quality and reproducibility. The review also provides insight into the potential contributions of nutrigenetics and nutrigenomics to the healthcare sphere, addresses direct-to-consumer genetic testing, and concludes by offering insights into the field's future, including advanced technologies like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Chong S, Mu G, Cen X, Xiang Q, Cui Y. Effects of PCSK9 on thrombosis and haemostasis in a variety of metabolic states: Lipids and beyond (Review). Int J Mol Med 2024; 53:57. [PMID: 38757360 PMCID: PMC11093556 DOI: 10.3892/ijmm.2024.5381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Proprotein convertase subtilisin kexin type 9 (PCSK9) inhibitors are widely recognised as being able to induce a potent reduction in low‑density lipoprotein‑cholesterol. An increasing number of studies have suggested that PCSK9 also influences the haemostatic system by altering platelet function and the coagulation cascade. These findings have significant implications for anti‑PCSK9 therapy in patients with specific coagulation conditions, including expanded indications, dose adjustments and drug interactions. The present review summarises the changes in PCSK9 levels in individuals with liver diseases, chronic kidney diseases, diabetes mellitus, cancer and other disease states, and discusses their impact on thrombosis and haemostasis. Furthermore, the structure, effects and regulatory mechanisms of PCSK9 on platelets, coagulation factors, inflammatory cells and endothelial cells during coagulation and haemostasis are described.
Collapse
Affiliation(s)
- Shan Chong
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Guangyan Mu
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Xinan Cen
- Department of Hematology, Peking University First Hospital, Beijing 100034, P.R. China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing 100191, P.R. China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
- Department of Pharmacy, Peking University First Hospital, Beijing 100034, P.R. China
| |
Collapse
|
3
|
Wang NN, Zhang Y, Jiang F, Zhu DL, Di CX, Hu SY, Chen XF, Zhi LQ, Rong Y, Ke X, Duan YY, Dong SS, Yang TL, Yang Z, Guo Y. Enhancer variants on chromosome 2p14 regulating SPRED2 and ACTR2 act as a signal amplifier to protect against rheumatoid arthritis. Am J Hum Genet 2023; 110:625-637. [PMID: 36924774 PMCID: PMC10119143 DOI: 10.1016/j.ajhg.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
Genome-wide association studies (GWASs) have repeatedly reported multiple non-coding single-nucleotide polymorphisms (SNPs) at 2p14 associated with rheumatoid arthritis (RA), but their functional roles in the pathological mechanisms of RA remain to be explored. In this study, we integrated a series of bioinformatics and functional experiments and identified three intronic RA SNPs (rs1876518, rs268131, and rs2576923) within active enhancers that can regulate the expression of SPRED2 directly. At the same time, SPRED2 and ACTR2 influence each other as a positive feedback signal amplifier to strengthen the protective role in RA by inhibiting the migration and invasion of rheumatoid fibroblast-like synoviocytes (FLSs). In particular, the transcription factor CEBPB preferentially binds to the rs1876518-T allele to increase the expression of SPRED2 in FLSs. Our findings decipher the molecular mechanisms behind the GWAS signals at 2p14 for RA and emphasize SPRED2 as a potential candidate gene for RA, providing a potential target and direction for precise treatment of RA.
Collapse
Affiliation(s)
- Nai-Ning Wang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yan Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Feng Jiang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Dong-Li Zhu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Chen-Xi Di
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shou-Ye Hu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xiao-Feng Chen
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Li-Qiang Zhi
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yu Rong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Xin Ke
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Yuan-Yuan Duan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Shan-Shan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Tie-Lin Yang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Zhi Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, P.R. China.
| | - Yan Guo
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, and Biomedical Informatics & Genomics Center, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
4
|
Dobson DA, Holle LA, Lin FC, Huffman JE, Luyendyk JP, Flick MJ, Smith NL, de Vries PS, Morrison AC, Wolberg AS. Novel genetic regulators of fibrinogen synthesis identified by an in vitro experimental platform. J Thromb Haemost 2023; 21:522-533. [PMID: 36696182 PMCID: PMC10111212 DOI: 10.1016/j.jtha.2022.10.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/06/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Fibrinogen has an established, essential role in both coagulation and inflammatory pathways, and these processes are deeply intertwined in the development of thrombotic and atherosclerotic diseases. Previous studies aimed to better understand the (patho) physiological actions of fibrinogen by characterizing the genomic contribution to circulating fibrinogen levels. OBJECTIVES Establish an in vitro approach to define functional roles between genes within these loci and fibrinogen synthesis. METHODS Candidate genes were selected on the basis of their proximity to genetic variants associated with fibrinogen levels and expression in hepatocytes and HepG2 cells. HepG2 cells were transfected with small interfering RNAs targeting candidate genes and cultured in the absence or presence of the proinflammatory cytokine interleukin-6. Effects on fibrinogen protein production, gene expression, and cell growth were assessed by immunoblotting, real-time polymerase chain reaction, and cell counts, respectively. RESULTS HepG2 cells secreted fibrinogen, and stimulation with interleukin-6 increased fibrinogen production by 3.4 ± 1.2 fold. In the absence of interleukin-6, small interfering RNA knockdown of FGA, IL6R, or EEPD1 decreased fibrinogen production, and knockdown of LEPR, PDIA5, PLEC, SHANK3, or CPS1 increased production. In the presence of interleukin-6, knockdown of FGA, IL6R, or ATXN2L decreased fibrinogen production. Knockdown of FGA, IL6R, EEPD1, LEPR, PDIA5, PLEC, or CPS1 altered transcription of one or more fibrinogen genes. Knocking down ATXN2L suppressed inducible but not basal fibrinogen production via a post-transcriptional mechanism. CONCLUSIONS We established an in vitro platform to define the impact of select gene products on fibrinogen production. Genes identified in our screen may reveal cellular mechanisms that drive fibrinogen production as well as fibrin(ogen)-mediated (patho)physiological mechanisms.
Collapse
Affiliation(s)
- Dre'Von A Dobson
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Lori A Holle
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Feng-Chang Lin
- Department of Biostatistics and North Carolina Translational and Clinical Sciences Institute, University of North Carolina at Chapel Hill, NC, USA
| | | | - James P Luyendyk
- Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, MI, USA
| | - Matthew J Flick
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle WA, USA; Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA; Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle WA, USA; Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Paul S de Vries
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alanna C Morrison
- Kaiser Permanente Washington Health Research Institute, Kaiser Permanente Washington, Seattle WA, USA
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine and UNC Blood Research Center, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Rautenbach PH, Nienaber-Rousseau C, de Lange-Loots Z, Kruger IM, Pieters M. Associations Between 25-Hydroxyvitamin D and Total and γ' Fibrinogen and Plasma Clot Properties and Gene Interactions in a Group of Healthy Black South African Women. Front Cardiovasc Med 2022; 9:868542. [PMID: 35903674 PMCID: PMC9314774 DOI: 10.3389/fcvm.2022.868542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
The role of 25-hydroxyvitamin D [25(OH)D] in reducing the risk of cardiovascular disease (CVD) has been recognized, but the mechanisms involved are unclear. Researchers have discovered a link between vitamin D and fibrinogen. Until now, data on the relationship between vitamin D and the γ' splice variant of fibrinogen and fibrin clot characteristics remain unexplored. In this study, 25(OH)D, total and γ' fibrinogen, as well as turbidimetrically determined plasma clot properties, were quantified, and fibrinogen and FXIII SNPs were genotyped in 660 Black, apparently healthy South African women. Alarmingly, 16 and 45% of the women presented with deficient and insufficient 25(OH)D, respectively. Total fibrinogen and maximum absorbance (as a measure of clot density) correlated inversely, whereas γ' fibrinogen correlated positively with 25(OH)D. γ' fibrinogen increased whereas maximum absorbance decreased over the deficient, insufficient, and sufficient 25(OH)D categories before and after adjustment for confounders. 25(OH)D modulated the association of the SNPs regarding fibrinogen concentration and clot structure/properties, but did not stand after correction for false discovery rate. Because only weak relationships were detected, the clinical significance of the findings are questionable and remain to be determined. However, we recommend vitamin D fortification and supplementation to reduce the high prevalence of this micronutrient deficiency and possibly to improve fibrinogen and plasma clot structure if the relationships are indeed clinically significant. There is a need for large cohort studies to demonstrate the relationship between vitamin D and cardiovascular and inflammatory risk factors as well as to uncover the molecular mechanisms responsible.
Collapse
Affiliation(s)
- Petro H. Rautenbach
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
- *Correspondence: Cornelie Nienaber-Rousseau
| | - Zelda de Lange-Loots
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Iolanthé M. Kruger
- Africa Unit for Transdisciplinary Health Research (AUTHeR), North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
7
|
Brunclikova M, Simurda T, Zolkova J, Sterankova M, Skornova I, Dobrotova M, Kolkova Z, Loderer D, Grendar M, Hudecek J, Stasko J, Kubisz P. Heterogeneity of Genotype–Phenotype in Congenital Hypofibrinogenemia—A Review of Case Reports Associated with Bleeding and Thrombosis. J Clin Med 2022; 11:jcm11041083. [PMID: 35207353 PMCID: PMC8874973 DOI: 10.3390/jcm11041083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/01/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Congenital fibrinogen disorders are diseases associated with a bleeding tendency; however, there are also reports of thrombotic events. Fibrinogen plays a role in the pathogenesis of thrombosis due to altered plasma concentrations or modifications to fibrinogen’s structural properties, which affect clot permeability, resistance to lysis, and its stiffness. Several distinct types of genetic change and pathogenetic mechanism have been described in patients with bleeding and a thrombotic phenotype, including mutations affecting synthesis or processing in three fibrinogen genes. In this paper, we focused on familial hypofibrinogenemia, a rare inherited quantitative fibrinogen disorder characterized by decreased fibrinogen levels with a high phenotypic heterogeneity. To begin, we briefly review the basic information regarding fibrinogen’s structure, its function, and the clinical consequences of low fibrinogen levels. Thereafter, we introduce 15 case reports with various gene mutations derived from the fibrinogen mutation database GFHT (French Study Group on Hemostasis and Thrombosis), which are associated with congenital hypofibrinogenemia with both bleeding and thrombosis. Predicting clinical presentations based on genotype data is difficult. Genotype–phenotype correlations would be of help to better understand the pathologic properties of this rare disease and to provide a valuable tool for the identification of patients who are not only at risk of bleeding, but also at risk of a thrombotic event.
Collapse
Affiliation(s)
- Monika Brunclikova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Tomas Simurda
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
- Correspondence: ; Tel.: +421-43-4203232; Fax: +421-43-4132061
| | - Jana Zolkova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Miroslava Sterankova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Ingrid Skornova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Miroslava Dobrotova
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Zuzana Kolkova
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.K.); (D.L.); (M.G.)
| | - Dusan Loderer
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.K.); (D.L.); (M.G.)
| | - Marian Grendar
- Biomedical Centre Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (Z.K.); (D.L.); (M.G.)
| | - Jan Hudecek
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Jan Stasko
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| | - Peter Kubisz
- National Centre of Hemostasis and Thrombosis, Department of Hematology and Transfusiology, University Hospital in Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 03601 Martin, Slovakia; (M.B.); (J.Z.); (M.S.); (I.S.); (M.D.); (J.H.); (J.S.); (P.K.)
| |
Collapse
|
8
|
Surma S, Banach M. Fibrinogen and Atherosclerotic Cardiovascular Diseases-Review of the Literature and Clinical Studies. Int J Mol Sci 2021; 23:ijms23010193. [PMID: 35008616 PMCID: PMC8745133 DOI: 10.3390/ijms23010193] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 02/06/2023] Open
Abstract
Atherosclerotic cardiovascular diseases (ASCVD), including coronary artery disease, cerebrovascular disease, and peripheral arterial disease, represent a significant cause of premature death worldwide. Biomarkers, the evaluation of which would allow the detection of ASCVD at the earliest stage of development, are intensively sought. Moreover, from a clinical point of view, a valuable biomarker should also enable the assessment of the patient’s prognosis. It has been known for many years that the concentration of fibrinogen in plasma increases, inter alia, in patients with ASCVD. On the one hand, an increased plasma fibrinogen concentration may be the cause of the development of atherosclerotic lesions (increased risk of atherothrombosis); on the other hand, it may be a biomarker of ASCVD, as it is an acute phase protein. In addition, a number of genetic polymorphisms and post-translational modifications of fibrinogen were demonstrated that may contribute to the risk of ASCVD. This review summarizes the current data on the importance of fibrinogen as a biomarker of ASCVD, and also presents the relationship between molecular modifications of this protein in the context of ASCVD.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland;
- Club of Young Hypertensiologists, Polish Society of Hypertension, 80-952 Gdansk, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, 93-338 Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, 65-417 Zielona Gora, Poland
- Department of Cardiology and Adult Congenital Heart Diseases, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
- Correspondence: ; Tel.: +48-422-711-124
| |
Collapse
|
9
|
Rautenbach PH, Nienaber-Rousseau C, de Lange-Loots Z, Pieters M. Certain Associations Between Iron Biomarkers and Total and γ' Fibrinogen and Plasma Clot Properties Are Mediated by Fibrinogen Genotypes. Front Nutr 2021; 8:720048. [PMID: 34447779 PMCID: PMC8384119 DOI: 10.3389/fnut.2021.720048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Evidence for the relationship between body iron and cardiovascular disease (CVD) is inconsistent and mechanisms involved remain poorly understood. Therefore, we first investigated whether there are linear or non-linear relationships between iron status and total and γ' fibrinogen as well as plasma fibrin clot properties and, second, determined whether there are interactions with iron biomarkers and fibrinogen and FXIII single nucleotide polymorphisms (SNPs) in relation to fibrinogen concentration and functionality. Methods: In this cross-sectional analysis of 2,010 apparently healthy Black South Africans we quantified total and γ' fibrinogen, serum iron, ferritin and transferrin using standardized methods and calculated transferrin saturation (TS). Clot architecture and lysis were explored with a global analytical turbidity assay. The SNPs were determined through an Illumina BeadXpress® platform. Results: Total, but not %γ', fibrinogen negatively correlated with serum iron concentrations, although both decreased over iron tertiles. %γ' fibrinogen correlated negatively with transferrin and decreased over the transferrin tertiles. A weak negative association between total fibrinogen and TS was detected with fibrinogen decreasing over the TS tertiles and categories based on TS. Lag time correlated positively with transferrin and increased over transferrin tertiles, when adjusting for fibrinogen. Before adjusting for fibrinogen, lag time was shorter in those with adequate iron status based on TS than other iron subcategories. Clot lysis time (CLT) negatively correlated with ferritin and was longer in the first than in the third ferritin tertile. Among iron status categories based on ferritin, only CLT differed and was longer in those with adequate iron than with iron-overload. CLT negatively correlated with TS, albeit weakly, shortened over the TS tertiles and was shorter in those with adequate iron based on TS categories. Interactions were observed between FGB SNPs and some of the markers of iron status investigated, in relation to the clot properties with the most prominent associations detected in homozygous carriers of the variant alleles for whom increased iron status was more beneficial than for those harboring the wild-type alleles. Iron modulated the influence of the SNPs so that for the majority iron was beneficial in respect of clot properties, but even more so for a minority group harboring specific variant alleles. Conclusion: This is the first large-scale epidemiological study to relate fibrinogen concentration and functionality to markers of iron status and to take genetic factors into consideration. We have detected a relationship between iron biomarkers and fibrinogen as well as clot characteristics that are influenced by the genetic make-up of an individual.
Collapse
Affiliation(s)
- Petro H Rautenbach
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Cornelie Nienaber-Rousseau
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Zelda de Lange-Loots
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- Center of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
10
|
Swanepoel AC, de Lange-Loots Z, Cockeran M, Pieters M. Lifestyle Influences Changes in Fibrin Clot Properties Over a 10-Year Period on a Population Level. Thromb Haemost 2021; 122:67-79. [PMID: 33906245 DOI: 10.1055/a-1492-6143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Case-control and observational studies have provided a plausible mechanistic link between clot structure and thrombosis. We aimed to identify lifestyle, demographic, biochemical, and genetic factors that influence changes in total fibrinogen concentration and clot properties over a 10-year period in 2,010 black South Africans. Clot properties were assessed with turbidimetry and included lag time, slope, maximum absorbance, and clot lysis time. Linear mixed models with restricted maximum likelihood were used to determine whether (1) outcome variables changed over the 10-year period; (2) demographic and lifestyle variables, biochemical variables, and fibrinogen single-nucleotide polymorphisms influenced the change in outcome variables over the 10-year period; and (3) there was an interaction between the exposures and time in predicting the outcomes. A procoagulant risk score was furthermore created, and multinomial logistic regression was used to determine the exposures that were associated with the different risk score categories. In this population setting, female gender, obesity, poor glycemic control, increased low-density lipoprotein cholesterol, and decreased high-density lipoprotein cholesterol contributed to the enhanced progression to prothrombotic clot properties with increasing age. Alcohol consumption on the other hand, offered a protective effect. The above evidence suggest that the appropriate lifestyle changes can improve fibrin clot properties on a population level, decreasing cardiovascular disease risk and thus alleviate the strain on the medical health care system.
Collapse
Affiliation(s)
- Albe Carina Swanepoel
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
| | - Zelda de Lange-Loots
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Marike Cockeran
- School of Mathematical and Statistical Sciences, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
11
|
Rautenbach PH, Nienaber-Rousseau C, Pieters M. The association of alcohol with circulating total fibrinogen and plasma clot density is mediated by fibrinogen and FXIII genotypes. Thromb J 2020; 18:35. [PMID: 33292263 PMCID: PMC7706066 DOI: 10.1186/s12959-020-00249-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/12/2020] [Indexed: 01/01/2023] Open
Abstract
Background Alcohol consumption is associated with haemostasis and so may influence cardiovascular conditions. It is unknown whether the association of alcohol with total and γ’ fibrinogen concentrations, as well as clot structure, are modulated by fibrinogen and factor (F) XIII single nucleotide polymorphisms (SNPs). Methods Total fibrinogen, γ’ fibrinogen and clot properties of 2010 healthy Africans residing in South Africa were measured in relation to alcohol intake as well as its markers – gamma-glutamyltransferase (GGT), percentage carbohydrate deficient transferrin (%CDT), aspartate aminotransferase (AST), and alanine aminotransferase (ALT). Fourteen fibrinogen and two SNPs in the FXIII gene were genotyped to determine their influence. Results Alcohol intake and its markers correlated negatively with fibrinogen and clot lysis time (CLT) as well as with most of the clot properties. Percentage γ’ fibrinogen correlated positively with AST and negatively with alcohol intake. We then stratified for alcohol intake and found inverse associations between γ’ fibrinogen and both %CDT and GGT–CDT in consumers, but the positive association with AST remained only in abstainers. Alcohol intake and its markers modulated the influence of fibrinogen SNPs on total fibrinogen concentrations and the fibrinogen SNPs as well as an FXIII SNP on clot density (all p < 0.004). Conclusion/s We show for the first time that some individuals harbour certain genotypes that, in combination with alcohol consumption, might predispose or protect them from haemostatic factors that might lead to the development of cardiovascular disease. Studies are needed to clarify the mechanisms related to the interplay between alcohol and the gene variants observed here.
Collapse
Affiliation(s)
- Petro Hannie Rautenbach
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa
| | - Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa. .,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa.
| | - Marlien Pieters
- Centre of Excellence for Nutrition, North-West University, Private bag x6001, Nutrition, Box 594, Potchefstroom, 2520, South Africa.,Medical Research Council Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Newbury DF, Gibson JL, Conti-Ramsden G, Pickles A, Durkin K, Toseeb U. Using Polygenic Profiles to Predict Variation in Language and Psychosocial Outcomes in Early and Middle Childhood. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3381-3396. [PMID: 31425657 PMCID: PMC6808346 DOI: 10.1044/2019_jslhr-l-19-0001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/07/2019] [Accepted: 04/29/2019] [Indexed: 05/04/2023]
Abstract
Purpose Children with poor language tend to have worse psychosocial outcomes compared to their typically developing peers. The most common explanations for such adversities focus on developmental psychological processes whereby poor language triggers psychosocial difficulties. Here, we investigate the possibility of shared biological effects by considering whether the same genetic variants, which are thought to influence language development, are also predictors of elevated psychosocial difficulties during childhood. Method Using data from the U.K.-based Avon Longitudinal Study of Parents and Children, we created a number of multi-single-nucleotide polymorphism polygenic profile scores, based on language and reading candidate genes (ATP2C2, CMIP, CNTNAP2, DCDC2, FOXP2, and KIAA0319, 1,229 single-nucleotide polymorphisms) in a sample of 5,435 children. Results A polygenic profile score for expressive language (8 years) that was created in a discovery sample (n = 2,718) predicted not only expressive language (8 years) but also peer problems (11 years) in a replication sample (n = 2,717). Conclusions These findings provide a proof of concept for the use of such a polygenic approach in child language research when larger data sets become available. Our indicative findings suggest consideration should be given to concurrent intervention targeting both linguistic and psychosocial development as early language interventions may not stave off later psychosocial difficulties in children.
Collapse
Affiliation(s)
- Dianne F. Newbury
- Department of Biological and Medical Sciences, Headington Campus, Oxford Brookes University, United Kingdom
| | - Jenny L. Gibson
- Faculty of Education, University of Cambridge, United Kingdom
| | | | - Andrew Pickles
- Department of Biostatistics, Institute of Psychiatry, King's College London, United Kingdom
| | - Kevin Durkin
- School of Psychological Sciences, University of Strathclyde, United Kingdom
| | - Umar Toseeb
- Department of Education, Derwent College, University of York, United Kingdom
| |
Collapse
|
13
|
Pieters M, Wolberg AS. Fibrinogen and fibrin: An illustrated review. Res Pract Thromb Haemost 2019; 3:161-172. [PMID: 31011700 PMCID: PMC6462751 DOI: 10.1002/rth2.12191] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/30/2019] [Indexed: 12/19/2022] Open
Abstract
Since its discovery over 350 years ago, studies of fibrinogen have revealed remarkable characteristics. Its complex structure as a large (340 kDa) hexameric homodimer supports complex roles in hemostasis and homeostasis. Fibrinogen synthesis is regulated at the transcriptional and translational levels, undergoing both constitutive (basal) secretion from liver, and inducible upregulation in response to inflammatory events. In addition, alternative splicing yields fibrinogen variants with unique properties and contributions to coagulation biochemistry. During coagulation, fibrinogen conversion to fibrin occurs via thrombin‐mediated proteolytic cleavage that produces intermediate protofibrils and then mature fibers that provide remarkable biochemical and mechanical stability to clots. Fibrin formation, structure, and stability are regulated by various genetic, biochemical, and environmental factors, allowing for dynamic kinetics of fibrin formation and structure. Interactions between fibrinogen and/or fibrin and plasma proteins and receptors on platelets, leukocytes, endothelial cells, and other cells enable complex functions in hemostasis, thrombosis, pregnancy, inflammation, infection, cancer, and other pathologies. Disorders in fibrinogen concentration and/or function increase risk of bleeding, thrombosis, and infection. This illustrated review covers fundamental aspects of fibrinogen and fibrin biology, biochemistry, biophysics, epidemiology, and clinical applications. Continued efforts to enhance our understanding of fibrinogen and fibrin in these processes are likely to advance treatment and prevention of many human diseases.
Collapse
Affiliation(s)
- Marlien Pieters
- Center of Excellence for Nutrition North-West University Potchefstroom South Africa
| | - Alisa S Wolberg
- Department of Pathology and Laboratory Medicine University of North Carolina Chapel Hill North Carolina
| |
Collapse
|