1
|
Wu Y, Meng L, Zhan S, Li M, Huang J, Chen X, Chen L, Gao X, Chen H, Chen H, Zhong Y, Xu L, Xu Y. ITIH5-mediated fibroblast/macrophage crosstalk exacerbates cardiac remodelling after myocardial infarction. J Transl Med 2025; 23:224. [PMID: 39994656 PMCID: PMC11852866 DOI: 10.1186/s12967-025-06244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) and subsequent ischaemic cardiomyopathy (ICM) are the primary causes of heart failure. Inter-α trypsin inhibitor heavy chain 5 (ITIH5) is an extracellular matrix (ECM) protein and has been identified as a myocardial marker of ICM. However, its diagnostic value in patients with ICM and its function and molecular mechanism in regulating cardiac repair and remodelling after MI remain unknown. METHODS Three microarray datasets including 117 ICM and 152 non-failing (NF) myocardial tissue samples were merged and analysed. Peripheral blood and clinical information were collected from 53 patients with ICM and 40 NF controls. The effects of ITIH5 on cellular interactions and cardiac remodelling was studied using ITIH5 RNAi adeno-associated virus and mouse MI model in vivo and in fibroblast-macrophage co-culture model in vitro. RESULTS ITIH5 was upregulated in the myocardial tissue and peripheral blood of patients with ICM and could be an independent risk factor for ICM. Experiments in mice suggested that ITIH5 promotes cardiac fibrotic remodelling at all phases after MI. Downregulation of ITIH5 increased the risk of death within 7 d after MI but inhibited ventricular remodelling and improved cardiac function on the long-term. ITIH5 promotes the primary cardiac fibroblasts (CFs) proliferation, migration, and improves survival rather than activiation. Morover, ITIH5 directly promotes macrophage tissue infiltration, maturation, and profibrotic phenotype transformation, thereby promoting fibrotic remodelling. By using fibroblast-macrophage co-culture model, we demonstrated ITIH5 enhanced the fibroblast/macrophage crosstalk manifest as macrophage profibrotic phenotype transformation and CFs activation, mainly by enhancing the hyaluronan stability, the ability of ITIH5 to bind macrophage CD44 receptors and the downstream activation of the signal transduction and activator of transcription 3 pathway in macrophages. CONCLUSIONS ITIH5 could be used as a diagnostic marker for ICM. Moreover, ITIH5 expression was upregulated after MI, which accelerated ECM-fibroblast-macrophage interaction, thereby promoting macrophage profibrotic phenotype transformation, CFs activation, and cardiac fibrotic remodelling.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Li Meng
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Siyao Zhan
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Miaofu Li
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Jiamin Huang
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xuechun Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Liuying Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Xiaofei Gao
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
| | - Hao Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Huimin Chen
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yigang Zhong
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Linhao Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- Translational Medicine Research Center, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
| | - Yizhou Xu
- Department of Cardiology, Affiliated Hangzhou First People'S Hospital, Westlake University School of Medicine, Zhejiang, 310006, China.
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
2
|
Shirai M, Hara T, Kaji T, Yamamoto C. Cadmium promotes hyaluronan synthesis by inducing hyaluronan synthase 3 expression in cultured vascular endothelial cells via the c-Jun N-terminal kinase-c-Jun pathway. Toxicology 2025; 511:154062. [PMID: 39837363 DOI: 10.1016/j.tox.2025.154062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/23/2025]
Abstract
Cadmium is a heavy metal risk factor for various cardiovascular diseases, such as atherosclerosis. In atherosclerotic lesions, hyaluronan, a glycosaminoglycan consisting of β4-glucuronic acid-β3-N-acetylglucosamine disaccharides repeats, is highly accumulated, regulating signal transduction, cell migration, and angiogenesis. Hyaluronan is synthesized by hyaluronan synthase (HAS)1-3 in the plasma membrane and secreted into the extracellular space. Hyaluronan derived from HAS3 promotes inflammatory responses. Recently, we found that cadmium elongates chondroitin/dermatan sulfate chains in vascular endothelial cells and that glycosaminoglycan sugar chains are potential targets for the vascular toxicity of cadmium. Therefore, hyaluronan, a glycosaminoglycan sugar chain, may also affected by cadmium; however, this has not yet been clarified. In this study, we aimed to analyze the effect of cadmium on hyaluronan synthesis using cultured aortic endothelial cells. Cadmium at a concentration of 2 µM upregulated hyaluronan synthesis in the medium and specifically induced HAS3 mRNA and protein expression. However, cadmium-mediated HAS3 induction was abolished by the inhibition of the c-Jun N-terminal kinase (JNK)-c-Jun pathway. Moreover, JNK inhibition prevented the increase in hyaluronan levels in the medium. These results revealed that the JNK-c-Jun pathway was involved in HAS3-mediated hyaluronan synthesis by cadmium in vascular endothelial cells, suggesting that endothelial HAS3 induction contributes to atherosclerotic lesion formation by promoting inflammatory responses.
Collapse
Affiliation(s)
- Misaki Shirai
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Takato Hara
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Chika Yamamoto
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Toho University, 2-1-1 Miyama, Funabashi, Chiba 274-8510, Japan.
| |
Collapse
|
3
|
Audam TN, Howard CM, Little DT, Garrett LF, Zheng YW, Gu Z, Brittian KR, Gray R, Chariker J, Singhal RA, Wysoczynski M, Jones SP. Hyaluronan provokes inflammation but suppresses phagocytotic function in macrophages. J Mol Cell Cardiol 2025; 198:24-35. [PMID: 39615286 PMCID: PMC11717599 DOI: 10.1016/j.yjmcc.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND The extracellular matrix (ECM) provides structural and functional support for the myocardium, but myocardial infarction (MI) changes the composition of the ECM. One of the chief components of the ECM, hyaluronan (HA), accumulates after MI; however, specific biological actions of HA-particularly at the level of infiltrating immune cells and implications of such interactions on ventricular remodeling-have not been explored. GOAL Because acute accumulation of HA coincides with macrophage infiltration after MI, we assessed the impact of HA on macrophage function. RESULTS Compared to SHAM hearts, HA levels were elevated in both the infarct and remote regions of infarcted hearts. Because acute accumulation of HA coincides with macrophage infiltration after MI, we explored the implication of HA accumulation on various endpoints of macrophage function, including macrophage activation, phagocytosis, and efferocytosis. Our data suggests that exposing macrophages to HAHMW pushes macrophages toward a more pro-inflammatory phenotype as indicated by increased secretion of pro-inflammatory signals such as IL-2, IL-17, and IP-10. Our data also suggests that in the presence of HA, both macrophage efferocytosis and Fc-receptor dependent phagocytosis are suppressed. These results are unique to treatment with HAHMW, as similar results were not observed when cells were treated with HALMW. Using macrophages from Cd44-/- mice, we determined that while the impact of HAHMW on cytokine secretion does seem to be dependent in part on Cd44 expression, the impact on macrophage phagocytosis is independent. Since macrophage efferocytosis of dying cardiomyocytes and cellular debris is critical following MI, we believe that this response will prolong the resolution of inflammation and lead to maladaptive remodeling. CONCLUSION HA accumulates post-MI and may promote a pro-inflammatory phenotype in macrophages. Future studies will explore the extent to which post infarct HA accumulation regulates cardiac macrophage dynamics and function in vivo.
Collapse
Affiliation(s)
- Timothy N Audam
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Caitlin M Howard
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Danielle T Little
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Lauren F Garrett
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Yi Wei Zheng
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Zhen Gu
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Kenneth R Brittian
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Raéden Gray
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, United States of America
| | - Julia Chariker
- KY-INBRE Bioinformatics Core, University of Louisville, Louisville, KY, United States of America
| | - Richa A Singhal
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Marcin Wysoczynski
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Steven P Jones
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, United States of America.
| |
Collapse
|
4
|
Zhang L, Feng Q, Kong W. ECM Microenvironment in Vascular Homeostasis: New Targets for Atherosclerosis. Physiology (Bethesda) 2024; 39:0. [PMID: 38984789 DOI: 10.1152/physiol.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/23/2024] [Indexed: 07/11/2024] Open
Abstract
Alterations in vascular extracellular matrix (ECM) components, interactions, and mechanical properties influence both the formation and stability of atherosclerotic plaques. This review discusses the contribution of the ECM microenvironment in vascular homeostasis and remodeling in atherosclerosis, highlighting Cartilage oligomeric matrix protein (COMP) and its degrading enzyme ADAMTS7 as examples, and proposes potential avenues for future research aimed at identifying novel therapeutic targets for atherosclerosis based on the ECM microenvironment.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qianqian Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| |
Collapse
|
5
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
6
|
Albtoush N, Queisser KA, Zawerton A, Lauer ME, Beswick EJ, Petrey AC. TSG6 hyaluronan matrix remodeling dampens the inflammatory response during colitis. Matrix Biol 2023; 121:149-166. [PMID: 37391162 PMCID: PMC10530565 DOI: 10.1016/j.matbio.2023.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
In response to tissue injury, changes in the extracellular matrix (ECM) can directly affect the inflammatory response and contribute to disease progression or resolution. During inflammation, the glycosaminoglycan hyaluronan (HA) becomes modified by tumor necrosis factor stimulated gene-6 (TSG6). TSG6 covalently transfers heavy chain (HC) proteins from inter-α-trypsin inhibitor (IαI) to HA in a transesterification reaction and is to date is the only known HC-transferase. By modifying the HA matrix, TSG6 generates HC:HA complexes that are implicated in mediating both protective and pathological responses. Inflammatory bowel disease (IBD) is a lifelong chronic disorder with well-described remodeling of the ECM and increased mononuclear leukocyte influx into the intestinal mucosa. Deposition of HC:HA matrices is an early event in inflamed gut tissue that precedes and promotes leukocyte infiltration. However, the mechanisms by which TSG6 contributes to intestinal inflammation are not well understood. The aim of our study was to understand how the TSG6 and its enzymatic activity contributes to the inflammatory response in colitis. Our findings indicate that inflamed tissues of IBD patients show an elevated level of TSG6 and increased HC deposition and that levels of HA strongly associate with TSG6 levels in patient colon tissue specimens. Additionally, we observed that mice lacking TSG6 are more vulnerable to acute colitis and exhibit an aggravated macrophage-associated mucosal immune response characterized by elevated pro-inflammatory cytokines and chemokines and diminished anti-inflammatory mediators including IL-10. Surprisingly, along with significantly increased levels of inflammation in the absence of TSG6, tissue HA levels in mice were found to be significantly reduced and disorganized, absent of typical "HA-cable" structures. Inhibition of TSG6 HC-transferase activity leads to a loss of cell surface HA and leukocyte adhesion, indicating that the enzymatic functions of TSG6 are a major contributor to stability of the HA ECM during inflammation. Finally, using biochemically generated HC:HA matrices derived by TSG6, we show that HC:HA complexes can attenuate the inflammatory response of activated monocytes. In conclusion, our data suggests that TSG6 exerts a tissue-protective, anti-inflammatory effect via the generation of HC:HA complexes that become dysregulated in IBD.
Collapse
Affiliation(s)
- Nansy Albtoush
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kimberly A Queisser
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ash Zawerton
- Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mark E Lauer
- Lerner Research Institute, Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ellen J Beswick
- Division of Gastroenterology, Department of Internal Medicine, University of Kentucky, Lexington, KY, United States
| | - Aaron C Petrey
- University of Utah Molecular Medicine Program, Salt Lake City, Utah, 84112; Department of Pathology, Division of Microbiology & Immunology, University of Utah School of Medicine, Salt Lake City, Utah, 84132, USA; Division of Gastroenterology, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA; Lerner Research Institute, Department of Inflammation & Immunity, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Sembajwe LF, Ssekandi AM, Namaganda A, Muwonge H, Kasolo JN, Kalyesubula R, Nakimuli A, Naome M, Patel KP, Masenga SK, Kirabo A. Glycocalyx-Sodium Interaction in Vascular Endothelium. Nutrients 2023; 15:2873. [PMID: 37447199 PMCID: PMC10343370 DOI: 10.3390/nu15132873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
The glycocalyx generally covers almost all cellular surfaces, where it participates in mediating cell-surface interactions with the extracellular matrix as well as with intracellular signaling molecules. The endothelial glycocalyx that covers the luminal surface mediates the interactions of endothelial cells with materials flowing in the circulating blood, including blood cells. Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality around the world. The cardiovascular risk factors start by causing endothelial cell dysfunction associated with destruction or irregular maintenance of the glycocalyx, which may culminate into a full-blown cardiovascular disease. The endothelial glycocalyx plays a crucial role in shielding the cell from excessive exposure and absorption of excessive salt, which can potentially cause damage to the endothelial cells and underlying tissues of the blood vessels. So, in this mini review/commentary, we delineate and provide a concise summary of the various components of the glycocalyx, their interaction with salt, and subsequent involvement in the cardiovascular disease process. We also highlight the major components of the glycocalyx that could be used as disease biomarkers or as drug targets in the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Lawrence Fred Sembajwe
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Abdul M. Ssekandi
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Agnes Namaganda
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Haruna Muwonge
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Josephine N. Kasolo
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Robert Kalyesubula
- Department of Medical Physiology, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda; (A.M.S.); (A.N.); (H.M.); (J.N.K.); (R.K.)
| | - Annettee Nakimuli
- Department of Obstetrics and Gynecology, School of Medicine, Makerere University College of Health Sciences, Kampala P.O. Box 7072, Uganda;
| | - Mwesigwa Naome
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Sepiso K. Masenga
- Department of Physiological Sciences, School of Medicine and Health Sciences, Mulungushi University, Kabwe P.O. Box 80415, Zambia;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| |
Collapse
|
8
|
Bouvain P, Ding Z, Kadir S, Kleimann P, Kluge N, Tiren ZB, Steckel B, Flocke V, Zalfen R, Petzsch P, Wachtmeister T, John G, Subramaniam N, Krämer W, Strasdeit T, Mehrabipour M, Moll JM, Schubert R, Ahmadian MR, Bönner F, Boeken U, Westenfeld R, Engel DR, Kelm M, Schrader J, Köhrer K, Grandoch M, Temme S, Flögel U. Non-invasive mapping of systemic neutrophil dynamics upon cardiovascular injury. NATURE CARDIOVASCULAR RESEARCH 2023; 2:126-143. [PMID: 39196054 PMCID: PMC11357992 DOI: 10.1038/s44161-022-00210-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/22/2022] [Indexed: 08/29/2024]
Abstract
Neutrophils play a complex role during onset of tissue injury and subsequent resolution and healing. To assess neutrophil dynamics upon cardiovascular injury, here we develop a non-invasive, background-free approach for specific mapping of neutrophil dynamics by whole-body magnetic resonance imaging using targeted multimodal fluorine-loaded nanotracers engineered with binding peptides specifically directed against murine or human neutrophils. Intravenous tracer application before injury allowed non-invasive three-dimensional visualization of neutrophils within their different hematopoietic niches over the entire body and subsequent monitoring of their egress into affected tissues. Stimulated murine and human neutrophils exhibited enhanced labeling due to upregulation of their target receptors, which could be exploited as an in vivo readout for their activation state in both sterile and nonsterile cardiovascular inflammation. This non-invasive approach will allow us to identify hidden origins of bacterial or sterile inflammation in patients and also to unravel cardiovascular disease states on the verge of severe aggravation due to enhanced neutrophil infiltration or activation.
Collapse
Affiliation(s)
- Pascal Bouvain
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zhaoping Ding
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Shiwa Kadir
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patricia Kleimann
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Nils Kluge
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Zeynep-Büsra Tiren
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Bodo Steckel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Ria Zalfen
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thorsten Wachtmeister
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Gordon John
- Dental Office/Oral Surgery, Dr. G. John, Plauen, Germany
| | - Nirojah Subramaniam
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Wolfgang Krämer
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Tobias Strasdeit
- Institute of Neuro- and Sensory Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Mehrnaz Mehrabipour
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Rolf Schubert
- Department of Pharmaceutical Technology and Biopharmacy, Albert Ludwig University, Freiburg im Breisgau, Germany
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Florian Bönner
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Udo Boeken
- Clinic for Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ralf Westenfeld
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Daniel Robert Engel
- Institute for Experimental Immunology and Imaging, Department of Immunodynamics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Schrader
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Translational Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Department of Anesthesiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany.
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Jia X, Shi M, Wang Q, Hui J, Shofaro JH, Erkhembayar R, Hui M, Gao C, Gantumur MA. Anti-Inflammatory Effects of the 35kDa Hyaluronic Acid Fragment (B-HA/HA35). J Inflamm Res 2023; 16:209-224. [PMID: 36686276 PMCID: PMC9846287 DOI: 10.2147/jir.s393495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Background Hyaluronic acid (HA) and HA fragments interact with a variety of human body receptors and are involved in the regulation of various physiological functions and leukocyte trafficking in the body. Accordingly, the development of an injectable HA fragment with good tissue permeability, the identification of its indications, and molecular mechanisms are of great significance for its clinical application. The previous studies showed that the clinical effects of injectable 35kDa B-HA result from B-HA binding to multiple receptors in different cells, tissues, and organs. This study lays the foundation for further studies on the comprehensive clinical effects of injectable B-HA. Methods We elaborated on the production process, bioactivity assay, efficacy analyses, and safety evaluation of an injectable novel HA fragment with an average molecular weight of 35 kDa (35 kDa B-HA), produced by recombinant human hyaluronidase PH20 digestion. Results The results showed that 35 kDa B-HA induced human erythrocyte aggregation (rouleaux formation) and accelerated erythrocyte sedimentation rates through the CD44 receptor. B-HA application and injection treatment significantly promoted the removal of mononuclear cells from the site of inflammation and into the lymphatic circulation. At a low concentration, 35 kDa B-HA inhibited production of reactive oxygen species and tumor necrosis factor by neutrophils; at a higher concentration, 35 kDa B-HA promoted the migration of monocytes. Furthermore, 35 kDa B-HA significantly inhibited the migration of neutrophils with or without lipopolysaccharide treatment, suggesting that in local tissues, higher concentrations of 35 kDa B-HA have antiinflammatory effects. After 99mTc radiolabeled 35 kDa B-HA was intravenously injected into mice, it quickly entered into the spleen, liver, lungs, kidneys and other organs through the blood circulation. Conclusion This study demonstrated that the HA fragment B-HA has good tissue permeability and antiinflammatory effects, laying a theoretical foundation for further clinical studies.
Collapse
Affiliation(s)
- XiaoXiao Jia
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Qifei Wang
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Jessica Hui
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Hui Shofaro
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Ryenchindorj Erkhembayar
- Department of International Cyber Education, Graduate School, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Mizhou Hui
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chenzhe Gao
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| | - Munkh-Amgalan Gantumur
- College of Life Science, Northeast Agricultural University, Harbin, People’s Republic of China
| |
Collapse
|
10
|
Sugita S, Naito Y, Zhou L, He H, Hao Q, Sakamoto A, Lee JW. Hyaluronic acid restored protein permeability across injured human lung microvascular endothelial cells. FASEB Bioadv 2022; 4:619-631. [PMID: 36089980 PMCID: PMC9447422 DOI: 10.1096/fba.2022-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022] Open
Abstract
Lung endothelial permeability is a key pathological feature of acute respiratory distress syndrome. Hyaluronic acid (HA), a major component of the glycocalyx layer on the endothelium, is generated by HA synthase (HAS) during inflammation and injury and is critical for repair. We hypothesized that administration of exogenous high molecular weight (HMW) HA would restore protein permeability across human lung microvascular endothelial cells (HLMVEC) injured by an inflammatory insult via upregulation of HAS by binding to CD44. A transwell coculture system was used to study the effects of HA on protein permeability across HLMVEC injured by cytomix, a mixture of IL-1β, TNFα, and IFNγ, with or without HMW or low molecular weight (LMW) HA. Coincubation with HMW HA, but not LMW HA, improved protein permeability following injury at 24 h. Fluorescence microscopy demonstrated that exogenous HMW HA partially prevented the increase in "actin stress fiber" formation. HMW HA also increased the synthesis of HAS2 mRNA expression and intracellular HMW HA levels in HLMVEC following injury. Pretreatment with an anti-CD44 antibody or 4-methylumbelliferone, a HAS inhibitor, blocked the therapeutic effects. In conclusion, exogenous HMW HA restored protein permeability across HLMVEC injured by an inflammatory insult in part through upregulation of HAS2.
Collapse
Affiliation(s)
- Shinji Sugita
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Yoshifumi Naito
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Li Zhou
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Hongli He
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Qi Hao
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Atsuhiro Sakamoto
- Department of Anesthesiology and Pain MedicineNippon Medical SchoolTokyoJapan
| | - Jae W. Lee
- Department of AnesthesiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
11
|
Piroth M, Gorski DJ, Hundhausen C, Petz A, Gorressen S, Semmler D, Zabri H, Hartwig S, Lehr S, Kelm M, Jung C, Fischer JW. Hyaluronan Synthase 3 is Protective After Cardiac Ischemia-Reperfusion by preserving the T cell Response. Matrix Biol 2022; 112:116-131. [PMID: 35998871 DOI: 10.1016/j.matbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
Abstract
Dysregulated extracellular matrix (ECM) is a hallmark of adverse cardiac remodeling after myocardial infarction (MI). Previous work from our laboratory suggests that synthesis of the major ECM component hyaluronan (HA) may be beneficial for post-infarct healing. Here, we aimed to investigate the mechanisms of hyaluronan synthase 3 (HAS3) in cardiac healing after MI. Mice with genetic deletion of Has3 (Has3 KO) and wildtype mice (WT) underwent 45 minutes of ischemia with subsequent reperfusion (I/R), followed by monitoring of heart function and analysis of tissue remodeling for up to three weeks. Has3 KO mice exhibited impaired cardiac function as evidenced by a reduced ejection fraction. Accordingly, Has3 deficiency also resulted in an increased scar size. Cardiac fibroblast activation and CD68+ macrophage counts were similar between genotypes. However, we found a significant decrease in CD4 T cells in the hearts of Has3 KO mice seven days post-MI, in particular reduced numbers of CD4+CXCR3+ Th1 and CD4+CD25+ Treg cells. Furthermore, Has3 deficient cardiac T cells were less activated and more apoptotic as shown by decreased CD69+ and increased annexin V+ cells, respectively. In vitro assays using activated splenic CD3 T cells demonstrated that Has3 deficiency resulted in reduced expression of the main HA receptor CD44 and diminished T cell proliferation. T cell transendothelial migration was similar between genotypes. Of note, analysis of peripheral blood from patients with ST-elevation myocardial infarction (STEMI) revealed that HAS3 is the predominant HAS isoenzyme also in human T cells. In conclusion, our data suggest that HAS3 is required for mounting a physiological T cell response after MI to support cardiac healing. Therefore, our study may serve as a foundation for the development of novel strategies targeting HA-matrix to preserve T cell function after MI.
Collapse
Affiliation(s)
- Marco Piroth
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Christian Hundhausen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Anne Petz
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Simone Gorressen
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Dominik Semmler
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Heba Zabri
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Stefan Lehr
- German Diabetes Center at the Heinrich-Heine-University Düsseldorf, Leibniz Center for Diabetes Research
| | - Malte Kelm
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Christian Jung
- Cardiology, Pulmonology and Vascular Medicine, Medical Faculty of the Heinrich Heine University Düsseldorf
| | - Jens W Fischer
- Institute for Pharmacology, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
12
|
Parnigoni A, Viola M, Karousou E, Rovera S, Giaroni C, Passi A, Vigetti D. ROLE OF HYALURONAN IN PATHOPHYSIOLOGY OF VASCULAR1 ENDOTHELIAL AND SMOOTH MUSCLE CELLS. Am J Physiol Cell Physiol 2022; 323:C505-C519. [PMID: 35759431 DOI: 10.1152/ajpcell.00061.2022] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the main components of the extracellular matrix (ECM) of the blood vessel is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the membrane in the pericellular space via HAS or via binding proteins. In fact, several cell surface proteins can interact with HA working as HA receptors like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and in the adventitia and is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations which have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that wake up cells from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Further, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on the effects of HA on vascular cell behavior.
Collapse
Affiliation(s)
- Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Simona Rovera
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
13
|
Kayashima Y, Clanton CA, Lewis AM, Sun X, Hiller S, Huynh P, Wilder J, Hagaman J, Li F, Maeda-Smithies N, Harris EN. Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Front Cardiovasc Med 2022; 9:818662. [PMID: 35360009 PMCID: PMC8963368 DOI: 10.3389/fcvm.2022.818662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/16/2022] [Indexed: 01/05/2023] Open
Abstract
We have previously identified a novel atherosclerosis quantitative trait locus (QTL), Arch atherosclerosis 5 (Aath5), on mouse chromosome 10 by three-way QTL analyses between Apoe−/− mice on a DBA/2J, 129S6 and C57BL/6J background. The DBA/2J haplotype at the Aath5 locus was associated with smaller plaque size. One of the candidate genes underlying Aath5 was Stabilin-2 (Stab2), which encodes a clearance receptor for hyaluronan (HA) predominantly expressed in liver sinusoidal endothelial cells (LSECs). However, the role of Stab2 in atherosclerosis is unknown. A congenic line of Apoe−/− mice carrying Aath5 covering the Stab2DBA allele on a background of 129S6 confirmed the small reductions of atherosclerotic plaque development. To further determine whether Stab2 is an underlying gene for Aath5, we generated Stab2−/−Apoe−/− mice on a C57BL/6J background. When fed with a Western diet for 8 weeks, Stab2−/−Apoe−/− males developed approximately 30% smaller plaques than Stab2+/+Apoe−/− mice. HA was accumulated in circulation but not in major organs in the Stab2 deficient mice. STAB2-binding molecules that are involved in atherosclerosis, including acLDL, apoptotic cells, heparin and vWF were not likely the direct cause of the protection in the Stab2−/−Apoe−/− males. These data indicate that reduction of Stab2 is protective against atherosclerotic plaque development, and that Stab2 is a contributing gene underlying Aath5, although its effect is small. To test whether non-synonymous amino acid changes unique to DBA/2J affect the function of STAB2 protein, we made HEK293 cell lines expressing STAB2129 or STAB2DBA proteins, as well as STAB2129 proteins carrying each of five DBA-unique replacements that have been predicted to be deleterious. These mutant cells were capable of internalizing 125I -HA and DiI-acLDL similarly to the control cells. These results indicate that the amino acid changes unique to DBA/2J are not affecting the function of STAB2 protein, and support our previous observation that the reduced transcription of Stab2 in the liver sinusoid as a consequence of the insertion of a viral-derived sequence, intracisternal A particle, is the primary contributor to the athero-protection conferred by the DBA/2J allele.
Collapse
Affiliation(s)
- Yukako Kayashima
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- *Correspondence: Yukako Kayashima
| | - Connor A. Clanton
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Amanda M. Lewis
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Xinghui Sun
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| | - Sylvia Hiller
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Phillip Huynh
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jennifer Wilder
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John Hagaman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Feng Li
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Nobuyo Maeda-Smithies
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Edward N. Harris
- Department of Biochemistry, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
14
|
Hartmann F, Gorski DJ, Newman AAC, Homann S, Petz A, Owsiany KM, Serbulea V, Zhou YQ, Deaton RA, Bendeck M, Owens GK, Fischer JW. SMC-Derived Hyaluronan Modulates Vascular SMC Phenotype in Murine Atherosclerosis. Circ Res 2021; 129:992-1005. [PMID: 34615369 DOI: 10.1161/circresaha.120.318479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Felicia Hartmann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Daniel J Gorski
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Alexandra A C Newman
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville.,Cardiovascular Research Center in the Department of Medicine, New York University (A.A.C.N.)
| | - Susanne Homann
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Anne Petz
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| | - Katherine M Owsiany
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville.,Department of Biochemistry and Molecular Genetics (A.A.C.N., K.M.O.), University of Virginia-School of Medicine, Charlottesville
| | - Vlad Serbulea
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Yu-Qing Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Rebecca A Deaton
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Michelle Bendeck
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada (Y.Q.-Z., M.B.)
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center (A.A.C.N., K.M.O., V.S., R.A.D., G.K.O), University of Virginia-School of Medicine, Charlottesville
| | - Jens W Fischer
- Institute of Pharmacology and Clinical Pharmacology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Germany (F.H., D.J.G., S.H., A.P., J.W.F.)
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The extracellular matrix (ECM) is critical for all aspects of vascular pathobiology. In vascular disease the balance of its structural components is shifted. In atherosclerotic plaques there is in fact a dynamic battle between stabilizing and proinflammatory responses. This review explores the most recent strides that have been made to detail the active role of the ECM - and its main binding partners - in driving atherosclerotic plaque development and destabilization. RECENT FINDINGS Proteoglycans-glycosaminoglycans (PGs-GAGs) synthesis and remodelling, as well as elastin synthesis, cross-linking, degradation and its elastokines potentially affect disease progression, providing multiple steps for potential therapeutic intervention and diagnostic targeted imaging. Of note, GAGs biosynthetic enzymes modulate the phenotype of vascular resident and infiltrating cells. In addition, while plaque collagen structure exerts very palpable effects on its immediate surroundings, a new role for collagen is also emerging on a more systemic level as a biomarker for cardiovascular disease as well as a target for selective drug-delivery. SUMMARY The importance of studying the ECM in atherosclerosis is more and more acknowledged and various systems are being developed to visualize, target and mimic it.
Collapse
Affiliation(s)
- Chrysostomi Gialeli
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Annelie Shami
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö, Lund University, Clinical Research Center, Malmö
- Department of Cardiology, Malmö, Skåne University Hospital, Lund University, Sweden
| |
Collapse
|
16
|
Schneckmann R, Suvorava T, Hundhausen C, Schuler D, Lorenz C, Freudenberger T, Kelm M, Fischer JW, Flögel U, Grandoch M. Endothelial Hyaluronan Synthase 3 Augments Postischemic Arteriogenesis Through CD44/eNOS Signaling. Arterioscler Thromb Vasc Biol 2021; 41:2551-2562. [PMID: 34380333 DOI: 10.1161/atvbaha.121.315478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective: The dominant driver of arteriogenesis is elevated shear stress sensed by the endothelial glycocalyx thereby promoting arterial outward remodeling. Hyaluronan, a critical component of the endothelial glycocalyx, is synthesized by 3 HAS isoenzymes (hyaluronan synthases 1-3) at the plasma membrane. Considering further the importance of HAS3 for smooth muscle cell and immune cell functions we aimed to evaluate its role in collateral artery growth. Approach and Results: Male Has3-deficient (Has3-KO) mice were subjected to hindlimb ischemia. Blood perfusion was monitored by laser Doppler perfusion imaging and endothelial function was assessed by measurement of flow-mediated dilation in vivo. Collateral remodeling was monitored by high resolution magnetic resonance angiography. A neutralizing antibody against CD44 (clone KM201) was injected intraperitoneally to analyze hyaluronan signaling in vivo. After hindlimb ischemia, Has3-KO mice showed a reduced arteriogenic response with decreased collateral remodeling and impaired perfusion recovery. While postischemic leukocyte infiltration was unaffected, a diminished flow-mediated dilation pointed towards an impaired endothelial cell function. Indeed, endothelial AKT (protein kinase B)-dependent eNOS (endothelial nitric oxide synthase) phosphorylation at Ser1177 was substantially reduced in Has3-KO thigh muscles. Endothelial-specific Has3-KO mice mimicked the hindlimb ischemia-induced phenotype of impaired perfusion recovery as observed in global Has3-deficiency. Mechanistically, blocking selectively the hyaluronan binding site of CD44 reduced flow-mediated dilation, thereby suggesting hyaluronan signaling through CD44 as the underlying signaling pathway. Conclusions: In summary, HAS3 contributes to arteriogenesis in hindlimb ischemia by hyaluronan/CD44-mediated stimulation of eNOS phosphorylation at Ser1177. Thus, strategies augmenting endothelial HAS3 or CD44 could be envisioned to enhance vascularization under pathological conditions.
Collapse
Affiliation(s)
- Rebekka Schneckmann
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Tatsiana Suvorava
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Christian Hundhausen
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Dominik Schuler
- Clinic for Cardiology, Pneumology and Angiology (D.S., M.K.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Christin Lorenz
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Till Freudenberger
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Malte Kelm
- Clinic for Cardiology, Pneumology and Angiology (D.S., M.K.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, University Hospital Düsseldorf, Heinrich-Heine-University, Germany (M.K., J.W.F.)
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
- CARID, Cardiovascular Research Institute Düsseldorf, University Hospital Düsseldorf, Heinrich-Heine-University, Germany (M.K., J.W.F.)
| | - Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology (U.F.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, Medical Faculty (R.S., T.S., C.H., C.L., T.F., J.W.F., M.G.), University Clinics and Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
17
|
Hundhausen C, Schneckmann R, Ostendorf Y, Rimpler J, von Glinski A, Kohlmorgen C, Pasch N, Rolauer L, von Ameln F, Eckermann O, Altschmied J, Ale-Agha N, Haendeler J, Flögel U, Fischer JW, Grandoch M. Endothelial hyaluronan synthase 3 aggravates acute colitis in an experimental model of inflammatory bowel disease. Matrix Biol 2021; 102:20-36. [PMID: 34464693 DOI: 10.1016/j.matbio.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
The association between hyaluronan (HA) accumulation and increased inflammation in the colon suggests that HA is a potential therapeutic target in inflammatory bowel disease (IBD). However, whether patients with IBD would benefit from interference with HA synthesis is unknown. Here, we used pharmacological and genetic approaches to investigate the impact of systemic and partial blockade of HA synthesis in the Dextran Sodium Sulfate (DSS)-induced colitis model. To systemically inhibit HA production, we used 4-Methylumbelliferone (4-MU), whereas genetic approaches included the generation of mice with global or inducible cell-type specific deficiency in the Hyaluronan synthase 3 (Has3). We found that 4-MU treatment did not ameliorate but exacerbated disease severity characterized by increased body weight loss and enhanced colon tissue destruction compared to control mice without colitis. In contrast, global Has3 deficiency had a profound protective effect as reflected by a low colitis score and reduced infiltration of immune cells into the colon. To get further mechanistic insight into the proinflammatory role of HAS3, we deleted Has3 in a cell-type specific manner. Interestingly, while lack of Has3 expression in intestinal epithelial and smooth muscle cells had no effect or was rather proinflammatory, mice with Has3 deficiency in the endothelium were strongly protected against acute colitis. We conclude that endothelium-derived HAS3 plays a critical role in driving experimental colitis, warranting future studies on cell type-specific therapeutic interference with HA production in human IBD.
Collapse
Affiliation(s)
- Christian Hundhausen
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Yanina Ostendorf
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jacqueline Rimpler
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Anette von Glinski
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Christina Kohlmorgen
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Nina Pasch
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Luca Rolauer
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Florian von Ameln
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Olaf Eckermann
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Joachim Altschmied
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf and IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Niloofar Ale-Agha
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf, Germany
| | - Judith Haendeler
- Environmentally-induced Cardiovascular Degeneration, Clinical Chemistry and Laboratory Diagnostics, Medical Faculty, University Clinics and Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- Institute for Molecular Cardiology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- Institute for Pharmacology and Clinical Pharmacology, University Hospital, Heinrich-Heine-University Düsseldorf, Germany.
| |
Collapse
|
18
|
Caravà E, Moretto P, Caon I, Parnigoni A, Passi A, Karousou E, Vigetti D, Canino J, Canobbio I, Viola M. HA and HS Changes in Endothelial Inflammatory Activation. Biomolecules 2021; 11:biom11060809. [PMID: 34072476 PMCID: PMC8229641 DOI: 10.3390/biom11060809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/28/2022] Open
Abstract
Cardiovascular diseases are a group of disorders caused by the presence of a combination of risk factors, such as tobacco use, unhealthy diet and obesity, physical inactivity, etc., which cause the modification of the composition of the vessel’s matrix and lead to the alteration of blood flow, matched with an inflammation condition. Nevertheless, it is not clear if the inflammation is a permissive condition or a consequent one. In order to investigate the effect of inflammation on the onset of vascular disease, we treated endothelial cells with the cytokine TNF-α that is increased in obese patients and is reported to induce cardiometabolic diseases. The inflammation induced a large change in the extracellular matrix, increasing the pericellular hyaluronan and altering the heparan sulfate Syndecans sets, which seems to be related to layer permeability but does not influence cell proliferation or migration nor induce blood cell recruitment or activation.
Collapse
Affiliation(s)
- Elena Caravà
- Quantix Italia S.r.l., 20121 Milano, Italy;
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Paola Moretto
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Arianna Parnigoni
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Evgenia Karousou
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
| | - Jessica Canino
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Ilaria Canobbio
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (J.C.); (I.C.)
| | - Manuela Viola
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy; (P.M.); (I.C.); (A.P.); (A.P.); (E.K.); (D.V.)
- Correspondence: ; Tel.: +39-0332-397143
| |
Collapse
|
19
|
Hackert K, Homann S, Mir S, Beran A, Gorreßen S, Funk F, Fischer JW, Grandoch M, Schmitt JP. 4-Methylumbelliferone Attenuates Macrophage Invasion and Myocardial Remodeling in Pressure-Overloaded Mouse Hearts. Hypertension 2021; 77:1918-1927. [PMID: 33745300 DOI: 10.1161/hypertensionaha.120.15247] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Susanne Homann
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Shakila Mir
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Arne Beran
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Simone Gorreßen
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Florian Funk
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Jens W Fischer
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Maria Grandoch
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| | - Joachim P Schmitt
- From the Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, Germany
| |
Collapse
|
20
|
Gebe JA, Gooden MD, Workman G, Nagy N, Bollyky PL, Wight TN, Vernon RB. Modulation of hyaluronan synthases and involvement of T cell-derived hyaluronan in autoimmune responses to transplanted islets. Matrix Biol Plus 2021; 9:100052. [PMID: 33718858 PMCID: PMC7930869 DOI: 10.1016/j.mbplus.2020.100052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/22/2022] Open
Abstract
The extracellular matrix glycosaminoglycan hyaluronan (HA) accumulates in human and mouse islets during the onset of autoimmune type 1 diabetes (T1D). HA plays a critical role in T1D pathogenesis, as spontaneous disease is blocked in mice fed the HA synthesis inhibitor 4-methylumbelliferone (4MU). The present study demonstrates the involvement of HA in T cell-mediated autoimmune responses to transplanted islets and in in vivo and in vitro T cell activation. Scaffolded islet implants (SIs) loaded with RIP-mOVA mouse islets expressing chicken ovalbumin (OVA) on their β cells were grafted into T and B cell-deficient RIP-mOVA mice, which subsequently received CD4+ T cells from DO11.10 transgenic mice bearing OVA peptide-specific T cell receptors (TcRs), followed by injection of OVA peptide to induce an immune response to the OVA-expressing islets. By affinity histochemistry (AHC), HA was greatly increased in grafted islets with T cell infiltrates (compared to islets grafted into mice lacking T cells) and a portion of this HA co-localized with the infiltrating T cells. Transferred T cells underwent HA synthase (HAS) isoform switching - T cells isolated from the SI grafts strongly upregulated HAS1 and HAS2 mRNAs and downregulated HAS3 mRNA, in contrast to T cells from graft-draining mesenteric lymph nodes, which expressed HAS3 mRNA only. Expression of HAS1 and HAS2 proteins by T cells in SI infiltrates was confirmed by immunohistochemistry (IHC). DO11.10 mice fed 4MU had suppressed in vivo T cell immune priming (measured as a reduced recall response to OVA peptide) compared to T cells from control mice fed a normal diet. In co-cultures of naïve DO11.10 T cells and OVA peptide-loaded antigen-presenting cells (APCs), pre-exposure of the T cells (but not pre-exposure of APCs) to 4MU inhibited early T cell activation (CD69 expression). In addition, T cells exposed to 4MU during activation in vitro with anti-CD3/CD28 antibodies had inhibited phosphorylation of the CD3ζ subunit of the TcR, a very early event in TcR signaling. Collectively, our results demonstrate that T cell-derived HA plays a significant role in T cell immune responses, and that expression of T cell HAS isoforms changes in a locale-specific manner during in vivo priming and functional phases of the T cell response.
Collapse
Affiliation(s)
- John A. Gebe
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michel D. Gooden
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Gail Workman
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Thomas N. Wight
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Robert B. Vernon
- Center for Fundamental Immunology, Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
21
|
Kobayashi T, Chanmee T, Itano N. Hyaluronan: Metabolism and Function. Biomolecules 2020; 10:E1525. [PMID: 33171800 PMCID: PMC7695009 DOI: 10.3390/biom10111525] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022] Open
Abstract
As a major polysaccharide component of the extracellular matrix, hyaluronan plays essential roles in the organization of tissue architecture and the regulation of cellular functions, such as cell proliferation and migration, through interactions with cell-surface receptors and binding molecules. Metabolic pathways for biosynthesis and degradation tightly control the turnover rate, concentration, and molecular size of hyaluronan in tissues. Despite the relatively simple chemical composition of this polysaccharide, its wide range of molecular weights mediate diverse functions that depend on molecular size and tissue concentration. Genetic engineering and pharmacological approaches have demonstrated close associations between hyaluronan metabolism and functions in many physiological and pathological events, including morphogenesis, wound healing, and inflammation. Moreover, emerging evidence has suggested that the accumulation of hyaluronan extracellular matrix and fragments due to the altered expression of hyaluronan synthases and hyaluronidases potentiates cancer development and progression by remodeling the tumor microenvironment. In addition to the well-known functions exerted by extracellular hyaluronan, recent metabolomic approaches have also revealed that its synthesis can regulate cellular functions via the reprogramming of cellular metabolism. This review highlights the current advances in knowledge on the biosynthesis and catabolism of hyaluronan and describes the diverse functions associated with hyaluronan metabolism.
Collapse
Affiliation(s)
- Takashi Kobayashi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan;
| | - Theerawut Chanmee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Phutthamonthon, Nakhon Pathom 73170, Thailand;
| | - Naoki Itano
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555, Japan
| |
Collapse
|
22
|
Petz A, Grandoch M, Gorski DJ, Abrams M, Piroth M, Schneckmann R, Homann S, Müller J, Hartwig S, Lehr S, Yamaguchi Y, Wight TN, Gorressen S, Ding Z, Kötter S, Krüger M, Heinen A, Kelm M, Gödecke A, Flögel U, Fischer JW. Cardiac Hyaluronan Synthesis Is Critically Involved in the Cardiac Macrophage Response and Promotes Healing After Ischemia Reperfusion Injury. Circ Res 2020; 124:1433-1447. [PMID: 30916618 DOI: 10.1161/circresaha.118.313285] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RATIONALE Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.
Collapse
Affiliation(s)
- Anne Petz
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Daniel J Gorski
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marcel Abrams
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Marco Piroth
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Rebekka Schneckmann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Susanne Homann
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Julia Müller
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, Germany (S.H., S.L.).,German Center for Diabetes Research, München-Neuherberg, Germany (S.H., S.L.)
| | - Yu Yamaguchi
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA (Y.Y.)
| | - Thomas N Wight
- Matrix Biology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA (T.N.W.)
| | - Simone Gorressen
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Zhaoping Ding
- Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Sebastian Kötter
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Martina Krüger
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Andre Heinen
- Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Malte Kelm
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Axel Gödecke
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Herz- und Kreislaufphysiologie (S.K., M. Krüger, A.H., A.G.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Ulrich Flögel
- CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Institut für Molekulare Kardiologie (Z.D., U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,Klinik für Kardiologie, Pneumologie und Angiologie (M. Kelm, U.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany.,CARID, Cardiovascular Research Institute Düsseldorf (A.P., M.G., D.J.G., M.A., M.P., R.S., S.H., J.M., S.G., M. Kelm, A.G., U.F., J.W.F.), University Hospital, Heinrich-Heine-University Düsseldorf, Germany
| |
Collapse
|
23
|
Andreuzzi E, Fejza A, Capuano A, Poletto E, Pivetta E, Doliana R, Pellicani R, Favero A, Maiero S, Fornasarig M, Cannizzaro R, Iozzo RV, Spessotto P, Mongiat M. Deregulated expression of Elastin Microfibril Interfacer 2 (EMILIN2) in gastric cancer affects tumor growth and angiogenesis. Matrix Biol Plus 2020; 6-7:100029. [PMID: 33543026 PMCID: PMC7852313 DOI: 10.1016/j.mbplus.2020.100029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a frequent human tumor and often a lethal disease. Targeted therapy for gastric carcinomas is far behind vis-à-vis other solid tumors, primarily because of the paucity of cancer-driving mutations that could be efficiently and specifically targeted by current therapy. Thus, there is a need to discover actionable pathways/proteins and new diagnostic and prognostic biomarkers. In this study, we explored the role of the extracellular matrix glycoprotein EMILIN2, Elastin Microfibril Interfacer 2, in a cohort of gastric cancer patients. We discovered that EMILIN2 expression was consistently suppressed in gastric cancer and high expression levels of this glycoprotein were linked to abnormal vascular density. Furthermore, we found that EMILIN2 had a dual effect on gastric carcinoma cells: on one hand, it decreased tumor cell proliferation by triggering apoptosis, and on the other hand, it evoked the production of a number of cytokines involved in angiogenesis and inflammation, such as IL-8. Collectively, our findings posit EMILIN2 as an important onco-regulator exerting pleiotropic effects on the gastric cancer microenvironment. EMILIN2 is localized in the gastric lamina propria and its expression is down-regulated in gastric cancer. High levels of EMILIN2 associate with elevated vascular density. EMILIN2 impairs the proliferation of gastric cancer cells by evoking apoptosis. Surprisingly, EMILIN2 triggers the expression of pro-angiogenic and pro-inflammatory cytokines.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Angiogenesis
- CAFCA, Centrifugal Assay for Fluorescence-based Cell Adhesion
- CD31, cluster of differentiation 31 also known as PECAM-1
- ECM, extracellular matrix
- EGFR, epidermalgrowth factor receptor
- EMILIN 2, Elastin Microfibril Interfacer 2
- Extracellular matrix
- GC, gastric cancer
- Gastric cancer
- HER2, human epidermal growth factor receptor 2
- IGFBP2, insulin growth factor-binding protein 2
- Inflammation
- PFS, progression free survival
- Serpin 1, serine protease inhibitor 1
- Tumor microenvironment
- VEGFA, vascular endothelial growth factor A
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefania Maiero
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mara Fornasarig
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
24
|
Lin CY, Kolliopoulos C, Huang CH, Tenhunen J, Heldin CH, Chen YH, Heldin P. High levels of serum hyaluronan is an early predictor of dengue warning signs and perturbs vascular integrity. EBioMedicine 2019; 48:425-441. [PMID: 31526718 PMCID: PMC6838418 DOI: 10.1016/j.ebiom.2019.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND A main pathological feature of severe dengue virus infection is endothelial hyper-permeability. The dengue virus nonstructural protein 1 (NS1) has been implicated in the vascular leakage that characterizes severe dengue virus infection, however, the molecular mechanisms involved are not known. METHODS A cohort of 250 dengue patients has been followed from the onset of symptoms to the recovery phase. Serum hyaluronan levels and several other clinical parameters were recorded. The effect of NS1 treatment of cultured fibroblasts and endothelial cells on the expressions of hyaluronan synthetic and catabolic enzymes and the hyaluronan receptor CD44, were determined, as have the effects on the formation of hyaluronan-rich matrices and endothelial permeability. FINDINGS Elevated serum hyaluronan levels (≥70 ng/ml) during early infection was found to be an independent predictor for occurrence of warning signs, and thus severe dengue fever. High circulating levels of the viral protein NS1, indicative of disease severity, correlated with high concentrations of serum hyaluronan. NS1 exposure decreased the expression of CD44 in differentiating endothelial cells impairing the integrity of vessel-like structures, and promoted the synthesis of hyaluronan in dermal fibroblasts and endothelial cells in synergy with dengue-induced pro-inflammatory mediators. Deposited hyaluronan-rich matrices around cells cultured in vitro recruited CD44-expressing macrophage-like cells, suggesting a mechanism for enhancement of inflammation. In cultured endothelial cells, perturbed hyaluronan-CD44 interactions enhanced endothelial permeability through modulation of VE-cadherin and cytoskeleton re-organization, and exacerbated the NS1-induced disruption of endothelial integrity. INTERPRETATION Pharmacological targeting of hyaluronan biosynthesis and/or its CD44-mediated signaling may limit the life-threatening vascular leakiness during moderate-to-severe dengue virus infection. FUND: This work was supported in part by grants from the Swedish Cancer Society (2018/337; 2016/445), the Swedish Research Council (2015-02757), the Ludwig Institute for Cancer Research, Uppsala University, the Ministry of Science and Technology, Taiwan (106-2314-B-037-088- and 106-2915-I-037-501-), Kaohsiung Medical University Hospital (KMUH103-3 T05) and Academy of Finland. The funders played no role in the design, interpretation or writing of the manuscript.
Collapse
Affiliation(s)
- Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Chung-Hao Huang
- Division of Infectious Diseases, Department of Internal Medicine, Infection Control Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jyrki Tenhunen
- Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden; Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden
| | - Yen-Hsu Chen
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Dengue Fever Control and Research, Kaohsiung Medical University, Kaohsiung, Taiwan; Deparent of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan; Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, HsinChu, Taiwan.
| | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
25
|
Grandoch M, Bollyky PL, Fischer JW. Hyaluronan: A Master Switch Between Vascular Homeostasis and Inflammation. Circ Res 2019; 122:1341-1343. [PMID: 29748364 DOI: 10.1161/circresaha.118.312522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Maria Grandoch
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Germany and CARID (Cardiovascular Research Center Düsseldorf), Germany (M.G., J.W.F.)
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, CA (P.L.B.)
| | - Jens W Fischer
- From the Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Germany and CARID (Cardiovascular Research Center Düsseldorf), Germany (M.G., J.W.F.)
| |
Collapse
|
26
|
Has2 natural antisense RNA and Hmga2 promote Has2 expression during TGFβ-induced EMT in breast cancer. Matrix Biol 2019; 80:29-45. [DOI: 10.1016/j.matbio.2018.09.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/04/2018] [Accepted: 09/04/2018] [Indexed: 12/16/2022]
|
27
|
Nagy N, Sunkari VG, Kaber G, Hasbun S, Lam DN, Speake C, Sanda S, McLaughlin TL, Wight TN, Long SR, Bollyky PL. Hyaluronan levels are increased systemically in human type 2 but not type 1 diabetes independently of glycemic control. Matrix Biol 2019; 80:46-58. [PMID: 30196101 PMCID: PMC6401354 DOI: 10.1016/j.matbio.2018.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 01/19/2023]
Abstract
Hyaluronan (HA), an extracellular matrix glycosaminoglycan, is implicated in the pathogenesis of both type 1 diabetes (T1D) as well as type 2 diabetes (T2D) and has been postulated to be increased in these diseases due to hyperglycemia. We have examined the serum and tissue distribution of HA in human subjects with T1D and T2D and in mouse models of these diseases and evaluated the relationship between HA levels and glycemic control. We found that serum HA levels are increased in T2D but not T1D independently of hemoglobin-A1c, C-peptide, body mass index, or time since diabetes diagnosis. HA is likewise increased in skeletal muscle in T2D subjects relative to non-diabetic controls. Analogous increases in serum and muscle HA are seen in diabetic db/db mice (T2D), but not in diabetic DORmO mice (T1D). Diabetes induced by the β-cell toxin streptozotozin (STZ) lead to an increase in blood glucose but not to an increase in serum HA. These data indicate that HA levels are increased in multiple tissue compartments in T2D but not T1D independently of glycemic control. Given that T2D but not T1D is associated with systemic inflammation, these patterns are consistent with inflammatory factors and not hyperglycemia driving increased HA. Serum HA may have value as a biomarker of systemic inflammation in T2D.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Sonia Hasbun
- Department of Cardiology, Good Samaritan Regional Medical Center, 3600 NW Samaritan Dr, Corvallis, OR, 97330
| | - Dung N. Lam
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| | - Cate Speake
- Diabetes Clinical Research Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Srinath Sanda
- Department of Pediatrics, UCSF School of Medicine, 513 Parnassus Avenue, San Francisco, CA, 94143
| | - Tracey L. McLaughlin
- Department of Medicine, Medicine – Endocrinology, Endocrine Clinic, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, 1201 Ninth Ave, Seattle, WA, 98101
| | - Steven R. Long
- Department of Pathology, Stanford University School of Medicine, Lane 235, 300 Pasteur Drive, Stanford, CA, 94305
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Dept. of Medicine, Stanford University School of Medicine, Beckman Center, 279 Campus Drive, Stanford, CA, 94305
| |
Collapse
|
28
|
Safety of Hyaluronan 35 in Healthy Human Subjects: A Pilot Study. Nutrients 2019; 11:nu11051135. [PMID: 31121841 PMCID: PMC6566413 DOI: 10.3390/nu11051135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 05/18/2019] [Accepted: 05/20/2019] [Indexed: 01/20/2023] Open
Abstract
Background. Hyaluronan (HA) is a naturally occurring glycosaminoglycan polymer produced in all vertebrates, and usually present at the high molecular weight (>106 Da). Low molecular weight HA has signaling properties, and fragments ~35 kDa size (HA35) have biological activity in eliciting epithelial β-defensins and tight junction proteins, notably ZO1, important components of innate host defense arsenal of the gut barrier in preclinical models. Safety, tolerability, impact on metabolism, gut permeability, and microbiome composition in healthy human subjects were all evaluated prospectively. Methods. Pharmaceutical grade HA35 (140 mg in water once daily for seven days), was administered orally to 20 healthy subjects (30.7 ± 5.6 years). Demographical, clinical, biochemical laboratory tests, metabolic function and stool microbiome composition were measured on Day 0, 8 and 28. Results. HA35 was tolerated well in all subjects with no serious adverse events in any subjects. No statistical differences in any of the measurements were seen among the study group over the course of the trial. In aggregate there were no changes in demographical, clinical, biochemical laboratory tests, and metabolic function or microbiome composition during the 28-day study. Conclusion. Oral HA35 administration (140 mg/day) is a safe treatment in healthy individuals and does not affect metabolic, inflammatory or microbiome parameters.
Collapse
|
29
|
The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective. Matrix Biol 2018; 78-79:201-218. [PMID: 29792915 DOI: 10.1016/j.matbio.2018.05.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 05/17/2018] [Accepted: 05/19/2018] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is a disease of chronic inflammation at both the systemic and the tissue level. CD44 has previously been implicated in atherosclerosis in both humans and mice. This multi-faceted receptor plays a critical part in the inflammatory response during the onset of CVD, though little is known of CD44's role during the latter stages of the disease. This review focuses on the role of CD44-dependent HA-dependent effects on inflammatory cells in several key processes, from disease initiation throughout the progression of atherosclerosis. Understanding how CD44 and HA regulate inflammation in atherogenesis is key in determining the utility of the CD44-HA axis as a therapeutic target to halt disease and potentially promote disease regression.
Collapse
|
30
|
Fischer JW. Role of hyaluronan in atherosclerosis: Current knowledge and open questions. Matrix Biol 2018; 78-79:324-336. [PMID: 29510229 DOI: 10.1016/j.matbio.2018.03.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/20/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
Hyaluronan (HA), HA synthases (HAS) and HA receptors are expressed during the progression of atherosclerotic plaques. HA is thought to promote the activated phenotype of local vascular smooth muscle cells characterized by increased migration, proliferation and matrix synthesis. Furthermore, HA may modulate the immune response by increasing macrophage retention and by promoting the polarization of Th1 cells that enhance macrophage driven inflammation as well. The pro-atherosclerotic functions of HA are opposed by the presence of HA in the glycocalyx where it critically contributes to anti-thrombotic and anti-inflammatory function of the glycocalyx. Patients with atherosclerosis often are affected by comorbidities among them diabetes mellitus type 2 and inflammatory comorbidities. Diabetes mellitus type 2 likely has close interrelations to HA synthesis in atherosclerosis because the activity and transcription of HA synthases are sensitive to the intracellular glucose metabolism, which determines the substrate availability and the posttranslational modifications of HA synthases. The pro-inflammatory comorbidities aggravate the course of atherosclerosis and will affect the expression of the genes related to HA biosynthesis, -degradation, HA-matrix assembly or signaling. One example being the induction of HAS3 by interleukin-1β and other cytokines. Furthermore complications of atherosclerosis such as the healing after myocardial infarction also involve HA responses.
Collapse
Affiliation(s)
- Jens W Fischer
- Institut für Pharmakologie und Klinische Pharmakologie, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany; CARID, Cardiovascular Research Institute Düsseldorf, University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|