1
|
Umemori K, Pourdeyhimi B, Little D. Three-Dimensional Meltblowing as a High-Speed Fabrication Process for Tendon Tissue Engineered Scaffolds. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2025; 48:e00409. [PMID: 40322756 PMCID: PMC12048014 DOI: 10.1016/j.bprint.2025.e00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Rotator cuff tears continue to be a critical challenge for successful repair due to the formation of fibrotic scar tissue during healing. Tendon tissue engineering seeks to improve these outcomes using nonwoven fabrication methods to produce biomimetic scaffolds. Meltblowing has several advantages over other nonwoven approaches including non-toxic fabrication processes and being high-throughput and economical, while accurately producing fiber diameters comparable to native tendon microstructure. Recently 3D meltblowing (3DMB) introduced high degrees of tunability to the core process, allowing for production of highly aligned fiber mats at anatomically relevant dimensions. Here, we evaluated 3DMB scaffolds fabricated using poly-L-lactic acid (PLA) and poly-ε-caprolactone (PCL) by characterizing scaffold properties before and after culture with human adipose stem cells (hASCs). Mechanical and fiber characterization of 3DMB scaffolds closely resembled tendon microarchitecture by exhibiting high fiber alignment and mechanical anisotropy. hASC-seeded 3DMB scaffolds after 28 days of culture proliferated and deposited aligned tendon-like extracellular matrix. Furthermore, cell culture enhanced the Young's modulus of PLA 3DMB scaffolds and improved yield stress, yield stretch, and stiffness of both 3DMB scaffolds. The proteome of cultured 3DMB scaffolds increased expression of tendon-related proteins after 28 days of culture, but polymer-dependent differences in glycoprotein composition was observed. Together, 3DMB is a promising method for tendon tissue engineering, by showing improved fiber and mechanical properties compared to meltblown scaffolds. However, while an improvement on prior iterations, continued development of this 3DMB technology is needed to better mimic the mechanical properties and biologic composition of native tendon.
Collapse
Affiliation(s)
- Kentaro Umemori
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Benham Pourdeyhimi
- The Nonwovens Institute, North Carolina State University, Raleigh, North Carolina
| | - Dianne Little
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
- Department of Basic Medical Science, Purdue University College of Veterinary Medicine, West Lafayette, Indiana
| |
Collapse
|
2
|
Fujihara K, Yoneda T, Sugidono A, Okada Y, Hiyama S, Kajikawa S, Fukunaga Y, Koch M, Izu Y. Collagen XII deficiency promotes ligament-specific heterotopic ossification via fibrochondrocyte differentiation. Biochem Biophys Res Commun 2025; 757:151621. [PMID: 40088675 DOI: 10.1016/j.bbrc.2025.151621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Heterotopic ossification of tendons and ligaments causes pain and dysfunction, significantly reducing quality of life. However, its underlying mechanisms remain elusive. In addition to injury, tissue organization and stiffness have been implicated in heterotopic ossification. Collagen XII, a member of the fibril-associated collagens with interrupted triple helices (FACIT) family, plays a crucial role in maintaining the structural integrity and function of tendons and ligaments. Its deficiency alters tissue stiffness and predisposes ligaments to rupture. In this study, we investigated whether collagen XII contributes to the development of heterotopic ossification. Three-dimensional microcomputed tomography (3D-μCT) and X-ray analyses revealed heterotopic bone formation in the knee and ankle ligaments, but not in tendons, of Col12a1-deficient mice, with a 100 % incidence in mice older than 19 weeks. Histological analysis showed the presence of Alcian blue- and Toluidine blue-positive fibrochondrocyte-like cells in Col12a1-deficient ligaments, which were subsequently replaced by bone tissue, as indicated by Alizarin red staining. Real-time qPCR analysis of knee ligaments demonstrated a slight increase in chondrogenic markers and a significant upregulation of osteogenic markers in Col12a1-deficient mice compared with wild-type controls. In vitro chondrogenesis and osteogenesis assays using primary tenocytes from wild-type and Col12a1-deficient mice revealed that collagen XII deficiency enhanced osteogenic potential, whereas chondrogenic potential remained comparable. Our findings indicate that collagen XII deficiency specifically induces heterotopic bone formation in knee and ankle ligaments, occurring via fibrochondrocytes rather than through endochondral or intramembranous ossification.
Collapse
Affiliation(s)
- Kei Fujihara
- Graduate School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Comparative Cell Biology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Taiju Yoneda
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Akira Sugidono
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yukina Okada
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Sakura Hiyama
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Shuhei Kajikawa
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, 15-8 Shiomi, Choshi, Chiba, 288-0025, Japan
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, D-50931, Cologne, Germany
| | - Yayoi Izu
- Graduate School of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Comparative Cell Biology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyounan, Musashino, Tokyo, 180-8602, Japan; Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoinooka, Imabari, Ehime, 794-8555, Japan.
| |
Collapse
|
3
|
Xiong Y, Li X, Sun B, Zhang J, Wu X, Guo F. Abnormal collagen deposition mediated by cartilage oligomeric matrix protein in the pathogenesis of oral submucous fibrosis. Int J Oral Sci 2025; 17:25. [PMID: 40148275 PMCID: PMC11950347 DOI: 10.1038/s41368-025-00355-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 02/05/2025] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Abnormal accumulation of collagen fibrils is a hallmark feature of oral submucous fibrosis (OSF). However, the precise characteristics and underlying mechanisms remain unclear, impeding the advancement of potential therapeutic approaches. Here, we observed that collagen I, the main component of the extracellular matrix, first accumulated in the lamina propria and subsequently in the submucosa of OSF specimens as the disease progressed. Using RNA-seq and Immunofluorescence in OSF specimens, we screened the cartilage oligomeric matrix protein (COMP) responsible for the abnormal collagen accumulation. Genetic COMP deficiency reduced arecoline-stimulated collagen I deposition significantly in vivo. In comparison, both COMP and collagen I were upregulated under arecoline stimulation in wild-type mice. Human oral buccal mucosal fibroblasts (hBMFs) also exhibited increased secretion of COMP and collagen I after stimulation in vitro. COMP knockdown in hBMFs downregulates arecoline-stimulated collagen I secretion. We further demonstrated that hBMFs present heterogeneous responses to arecoline stimulation, of which COMP-positive fibroblasts secrete more collagen I. Since COMP is a molecular bridge with Fibril-associated collagens with Interrupted Triple helices (FACIT) in the collagen network, we further screened and identified collagen XIV, a FACIT member, co-localizing with both COMP and collagen I. Collagen XIV expression increased under arecoline stimulation in wild-type mice, whereas it was hardly expressed in the Comp-/- mice, even with under stimulation. In summary, we found that COMP may mediates abnormal collagen I deposition by functions with collagen XIV during the progression of OSF, suggesting its potential to be targeted in treating OSF.
Collapse
Affiliation(s)
- Yafei Xiong
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xuechun Li
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Bincan Sun
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Zhang
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoshan Wu
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.
| | - Feng Guo
- Department of Oral and Maxillofacial Surgery, Xiangya Hospital, Central South University, Changsha, China.
- Academician Workstation for Oral-Maxillofacial Regenerative Medicine, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Development and Regeneration, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
4
|
Sun W, Shahrajabian MH, Ma K, Wang S. Advances in Molecular Function and Recombinant Expression of Human Collagen. Pharmaceuticals (Basel) 2025; 18:430. [PMID: 40143206 PMCID: PMC11945623 DOI: 10.3390/ph18030430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/02/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Collagen is the main protein found in skin, bone, cartilage, ligaments, tendons and connective tissue, and it can exhibit properties ranging from compliant to rigid or form gradients between these states. The collagen family comprises 28 members, each containing at least one triple-helical domain. These proteins play critical roles in maintaining mechanical characteristics, tissue organization, and structural integrity. Collagens regulate cellular processes such as proliferation, migration, and differentiation through interactions with cell surface receptors. Fibrillar collagens, the most abundant extracellular matrix (ECM) proteins, provide organs and tissues with structural stability and connectivity. In the mammalian myocardial interstitium, types I and III collagens are predominant: collagen I is found in organs, tendons, and bones; collagen II is found in cartilage; collagen III is found in reticular fibers; collagen IV is found in basement membranes; and collagen V is found in nails and hair. Recombinant human collagens, particularly in sponge-like porous formats combined with bone morphogenetic proteins, serve as effective scaffolds for bone repair. Due to their biocompatibility and low immunogenicity, collagens are pivotal in tissue engineering applications for skin, bone, and wound regeneration. Recombinant technology enables the production of triple-helical collagens with amino acid sequences identical to human tissue-derived collagens. This review summarizes recent advances in the molecular functions and recombinant expression of human collagens, with a focus on their biomedical applications.
Collapse
Affiliation(s)
- Wenli Sun
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Mohamad Hesam Shahrajabian
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100086, China;
| | - Kun Ma
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| | - Shubin Wang
- Hantide Biomedical Group Co., Ltd., Zibo 256300, China;
| |
Collapse
|
5
|
Cheong S, Peng Y, Lu F, He Y. Structural extracellular matrix-mediated molecular signaling in wound repair and tissue regeneration. Biochimie 2025; 229:58-68. [PMID: 39369941 DOI: 10.1016/j.biochi.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/08/2024]
Abstract
The extracellular matrix (ECM) is a complex, non-cellular network of molecules that offers structural support for cells and tissues. The ECM is composed of various structural components, including collagen, fibronectin, laminin, perlecan, nidogen, tenascin, and fibulin, which are capable of binding to each other and to cell-to-adhesion receptors, endowing the ECM with unique physical and biochemical properties that are essential for its function in maintaining health and managing disease. Over the past three decades, extensive research has shown that the core of the ECM can significantly impact cellular events at the molecular level. Structural modifications have also been strongly associated with tissue repair. Through interactions with cells, matrix proteins regulate critical processes such as cell proliferation and differentiation, migration, and apoptosis, essential for maintaining tissue homeostasis, formation, and regeneration. This review emphasizes the interlocking networks of ECM macromolecules and their primary roles in tissue regeneration and wound repair. Through studying ECM dynamics, researchers have discovered molecular signaling pathways that demonstrate how the ECM influences protein patterns and open up more possibilities for developing therapeutics that target the ECM to enhance wound repair and tissue regeneration.
Collapse
Affiliation(s)
- Sousan Cheong
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yujie Peng
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Feng Lu
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| | - Yunfan He
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Beckley S, Dey R, Stinton S, van der Merwe W, Branch T, September AV, Posthumus M, Collins M. The Association of Genetic Variants Within the Type XII Collagen and Tenascin C Genes with Knee Joint Laxity Measurements. Genes (Basel) 2025; 16:164. [PMID: 40004493 PMCID: PMC11855217 DOI: 10.3390/genes16020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Types I, V, and XI collagen gene variants have been reported to associate with measurements of knee joint laxity and/or absolute knee ligament length changes. Type XII collagen and tenascin C are also ligament structural proteins whose expression is regulated by mechanical loading. This study investigated whether COL12A1 and TNC variants are associated with knee laxity and/or ligament length changes. METHODS Genu recurvatum, anterior-posterior tibial translation, external-internal tibial rotation, and ligament length changes were measured in 128 healthy participants. They were genotyped for COL12A1 (rs970547) and TNC (rs1061494, rs2104772, rs1138545). RESULTS Both the COL12A1 AA and TNC rs1061494 TT genotypes were associated with decreased external (p = 0.007, p = 0.010) and internal (p = 0.025, p = 0.002) rotation, as well as slack (p = 0.033, p = 0.014), in the dominant leg. Both genotypes, together with sex, weight, and/or COL1A1 genotypes, explained 26% and 32% of the variance in external and internal rotation, respectively. The TNC genotype, sex, and BMI explained 23% of the variance in slack. The COL12A1 AA and the TNC rs1061494 TT genotypes were associated with smaller changes in the MCL (aMCL: COL12A1 p = 0.009, TNC p = 0.045; iMCL: COL12A1 p = 0.004, TNC p = 0.043; pMCL: COL12A1 p = 0.003, TNC p = 0.067; aDMCL: COL12A1 p = 0.007, TNC p = 0.020; pDMCL: COL12A1 p = 0.007, TNC p = 0.023) and/or LCL (COL12A1 p = 0.652, TNC p = 0.049) lengths within the dominant knee. The TNC rs1061494 CC genotype was associated with larger changes in the non-dominant anterior (p = 0.021) and posterior (p < 0.001) ACL bundle lengths. CONCLUSIONS These findings suggest that COL12A1 and TNC variants are associated with internal-external tibial rotation and knee ligament length changes in healthy individuals.
Collapse
Affiliation(s)
- Samantha Beckley
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa; (S.B.); (W.v.d.M.); (A.V.S.); (M.P.)
| | - Roopam Dey
- Division of Biomedical Engineering and Division of Orthopaedic Surgery, Faculty of Health Sciences, University of Cape Town, Rondebosch, Cape Town 7700, South Africa;
| | - Shaun Stinton
- End Range of Motion Improvement, Atlanta, GA 30324, USA; (S.S.); (T.B.)
| | - Willem van der Merwe
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa; (S.B.); (W.v.d.M.); (A.V.S.); (M.P.)
- Sports Science Orthopaedic Clinic, Sports Science Institute of South Africa, Newlands, Cape Town 7700, South Africa
| | - Thomas Branch
- End Range of Motion Improvement, Atlanta, GA 30324, USA; (S.S.); (T.B.)
| | - Alison V. September
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa; (S.B.); (W.v.d.M.); (A.V.S.); (M.P.)
| | - Michael Posthumus
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa; (S.B.); (W.v.d.M.); (A.V.S.); (M.P.)
- Sports Science Institute of South Africa, Newlands, Cape Town 7700, South Africa
| | - Malcolm Collins
- Health Through Physical Activity, Lifestyle and Sport Research Centre (HPALS), Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Rondebosch, Cape Town 7700, South Africa; (S.B.); (W.v.d.M.); (A.V.S.); (M.P.)
| |
Collapse
|
7
|
Syx D, Malfait F. Pathogenic mechanisms in genetically defined Ehlers-Danlos syndromes. Trends Mol Med 2024; 30:824-843. [PMID: 39147618 DOI: 10.1016/j.molmed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 08/17/2024]
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of rare heritable connective tissue disorders, common hallmarks of which are skin hyperextensibility, joint hypermobility, and generalized connective tissue fragility. Currently, 13 EDS types are recognized, caused by defects in 20 genes which consequently alter biosynthesis, organization, and/or supramolecular assembly of collagen fibrils in the extracellular matrix (ECM). Molecular analyses on patient samples (mostly dermal fibroblast cultures), combined with studies on animal models, have highlighted that part of EDS pathogenesis can be attributed to impaired cellular dynamics. Although our understanding of the full extent of (extra)cellular consequences is still limited, this narrative review aims to provide a comprehensive overview of our current knowledge on the extracellular, pericellular, and intracellular alterations implicated in EDS pathogenesis.
Collapse
Affiliation(s)
- Delfien Syx
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Fransiska Malfait
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium; Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
8
|
Kremer JL, Santiago VF, Bongiovani Rodrigues F, Auricino TB, Freitas DHDO, Palmisano G, Lotfi CFP. Extracellular Matrix Protein Signatures of the Outer and Inner Zones of the Rat Adrenal Cortex. J Proteome Res 2024; 23:3418-3432. [PMID: 39018382 DOI: 10.1021/acs.jproteome.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This study analyzes the extracellular matrix (ECM) signatures of the outer (OF = capsule + subcapsular + zona glomerulosa cells) and inner fractions (IF = zona fasciculata cells) of the rat adrenal cortex, which comprise two distinct microenvironment niches. Proteomic profiles of decellularized OF and IF samples, male and female rats, identified 252 proteins, with 32 classified as ECM-component and ECM-related. Among these, 25 proteins were differentially regulated: 17 more abundant in OF, including Col1a1, Col1a2, Col6a1, Col6a2, Col6a3, Col12a1, Col14a1, Lama5, Lamb2, Lamc1, Eln, Emilin, Fbln5, Fbn1, Fbn2, Nid1, and Ltbp4, and eight more abundant in IF, including Col4a1, Col4a2, Lama2, Lama4, Lamb1, Fn1, Hspg2, and Ecm1. Eln, Tnc, and Nid2 were abundant in the female OF, while Lama2, Lama5, Lamb2, and Lamc1 were more abundant in the male IF. The complex protein signature of the OF suggests areas of tissue stress, stiffness, and regulatory proteins for growth factor signaling. The higher concentrations of Col4a1 and Col4a2 and their role in steroidogenesis should be further investigated in IF. These findings could significantly enhance our understanding of adrenal cortex functionality and its implications for human health and disease. Key findings were validated, and data are available in ProteomeXchange (PXD046828).
Collapse
Affiliation(s)
- Jean Lucas Kremer
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Veronica Feijoli Santiago
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Fernanda Bongiovani Rodrigues
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Thais Barabba Auricino
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Danilo Henriques de Oliveira Freitas
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| | - Giuseppe Palmisano
- Institute of Biomedical Sciences, Department of Parasitology, University of São Paulo, Av. Prof. Lineu Prestes, 1374, Butantã, São Paulo, SP 05508-000, Brazil
| | - Claudimara Ferini Pacicco Lotfi
- Institute of Biomedical Sciences, Department of Anatomy, University of São Paulo, Av. Prof. Lineu Prestes, 2415, Butantã, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
9
|
El Sherif R, Saito Y, Hussein RS, Izu Y, Koch M, Noguchi S, Nishino I. A novel homozygous nonsense variant in COL12A1 causes myopathic Ehlers-Danlos syndrome: A case report and literature review. Neuropathol Appl Neurobiol 2024; 50:e13004. [PMID: 39087360 DOI: 10.1111/nan.13004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024]
Affiliation(s)
- Rasha El Sherif
- Myo-Care Neuromuscular Center, Myo-Care National Foundation, Cairo, Egypt
- School of Medicine, New Giza University, Cairo, Egypt
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Rasha S Hussein
- Department of Diagnostic Radiology, Intervention and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yayoi Izu
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, Okayama, Japan
- Laboratory of Comparative Cellular Biology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Satoru Noguchi
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
10
|
Hirsinger E, Blavet C, Bonnin MA, Bellenger L, Gharsalli T, Duprez D. Limb connective tissue is organized in a continuum of promiscuous fibroblast identities during development. iScience 2024; 27:110305. [PMID: 39050702 PMCID: PMC11267076 DOI: 10.1016/j.isci.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, Inserm U1156, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, Institut Français de Bioinformatique (IFB), 75005 Paris, France
| | - Tarek Gharsalli
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| |
Collapse
|
11
|
Marvin JC, Liu EJ, Chen HH, Shiovitz DA, Andarawis-Puri N. Proteins Derived From MRL/MpJ Tendon Provisional Extracellular Matrix and Secretome Promote Pro-Regenerative Tenocyte Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602500. [PMID: 39026846 PMCID: PMC11257490 DOI: 10.1101/2024.07.08.602500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Tendinopathies are prevalent musculoskeletal conditions that have no effective therapies to attenuate scar formation. In contrast to other adult mammals, the tendons of Murphy Roths Large (MRL/MpJ) mice possess a superior healing capacity following acute and overuse injuries. Here, we hypothesized that the application of biological cues derived from the local MRL/MpJ tendon environment would direct otherwise scar-mediated tenocytes towards a pro-regenerative MRL/MpJ-like phenotype. We identified soluble factors enriched in the secretome of MRL/MpJ tenocytes using bioreactor systems and quantitative proteomics. We then demonstrated that the combined administration of structural and soluble constituents isolated from decellularized MRL/MpJ tendon provisional ECM (dPECM) and the secretome stimulate scar-mediated rodent tenocytes towards enhanced mechanosensitivity, proliferation, intercellular communication, and ECM deposition associated with MRL/MpJ cell behavior. Our findings highlight key biological mechanisms that drive MRL/MpJ tenocyte activity and their interspecies utility to be harnessed for therapeutic strategies that promote pro-regenerative healing outcomes. Teaser Proteins enriched in a super-healer mouse strain elicit interspecies utility in promoting pro-regenerative tenocyte behavior.
Collapse
|
12
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Josvai M, Polyak E, Kalluri M, Robertson S, Crone WC, Suzuki M. An engineered in vitro model of the human myotendinous junction. Acta Biomater 2024; 180:279-294. [PMID: 38604466 PMCID: PMC11088524 DOI: 10.1016/j.actbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
The myotendinous junction (MTJ) is a vulnerable region at the interface of skeletal muscle and tendon that forms an integrated mechanical unit. This study presents a technique for the spatially restrictive co-culture of human embryonic stem cell (hESC)-derived skeletal myocytes and primary tenocytes for two-dimensional modeling of the MTJ. Micropatterned lanes of extracellular matrix and a 2-well culture chamber define the initial regions of occupation. On day 1, both lines occupy less than 20 % of the initially vacant interstitial zone, referred to henceforth as the junction. Myocyte-tenocyte interdigitations are observed by day 7. Immunocytochemistry reveals enhanced organization and alignment of patterned myocyte and tenocyte features, as well as differential expression of multiple MTJ markers. On day 24, electrically stimulated junction myocytes demonstrate negative contractile strains, while positive tensile strains are exhibited by mechanically passive tenocytes at the junction. Unpatterned tenocytes distal to the junction experience significantly decreased strains in comparison to cells at the interface. Unpatterned myocytes have impaired organization and uncoordinated contractile behavior. These findings suggest that this platform is capable of inducing myocyte-tenocyte junction formation and mechanical coupling similar to the native MTJ, showing transduction of force across the cell-cell interface. STATEMENT OF SIGNIFICANCE: The myotendinous junction (MTJ) is an integrated structure that transduces force across the muscle-tendon boundary, making the region vulnerable to strain injury. Despite the clinical relevance, previous in vitro models of the MTJ lack the structure and mechanical accuracy of the native tissue and have difficulty transmitting force across the cell-cell interface. This study demonstrates an in vitro model of the MTJ, using spatially restrictive cues to inform human myocyte-tenocyte interactions and architecture. The model expressed MTJ markers and developed anisotropic myocyte-tenocyte integrations that resemble the native tissue and allow for force transduction from contracting myocytes to passive tenocyte regions. As such, this study presents a system capable of investigating development, injury, and pathology in the human MTJ.
Collapse
Affiliation(s)
- Mitchell Josvai
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Erzsebet Polyak
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Meghana Kalluri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA
| | - Samantha Robertson
- Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA
| | - Wendy C Crone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N Orchard St, Madison, WI 53715, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA; Department of Nuclear Engineering and Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706, USA; Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Avenue, Madison, WI 53706, USA.
| | - Masatoshi Suzuki
- Department of Biomedical Engineering, University of Wisconsin-Madison, Engineering Centers Building, 2126, 1550 Engineering Dr, Madison WI 53706, USA; Department of Comparative Biosciences, University of Wisconsin-Madison, Veterinary Medicine Bldg, 2015 Linden Dr, Madison, WI 53706, USA; The Stem Cell and Regenerative Medicine Center, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
14
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
15
|
Cenni V, Sabatelli P, Di Martino A, Merlini L, Antoniel M, Squarzoni S, Neri S, Santi S, Metti S, Bonaldo P, Faldini C. Collagen VI Deficiency Impairs Tendon Fibroblasts Mechanoresponse in Ullrich Congenital Muscular Dystrophy. Cells 2024; 13:378. [PMID: 38474342 PMCID: PMC10930931 DOI: 10.3390/cells13050378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The pericellular matrix (PCM) is a specialized extracellular matrix that surrounds cells. Interactions with the PCM enable the cells to sense and respond to mechanical signals, triggering a proper adaptive response. Collagen VI is a component of muscle and tendon PCM. Mutations in collagen VI genes cause a distinctive group of inherited skeletal muscle diseases, and Ullrich congenital muscular dystrophy (UCMD) is the most severe form. In addition to muscle weakness, UCMD patients show structural and functional changes of the tendon PCM. In this study, we investigated whether PCM alterations due to collagen VI mutations affect the response of tendon fibroblasts to mechanical stimulation. By taking advantage of human tendon cultures obtained from unaffected donors and from UCMD patients, we analyzed the morphological and functional properties of cellular mechanosensors. We found that the length of the primary cilia of UCMD cells was longer than that of controls. Unlike controls, in UCMD cells, both cilia prevalence and length were not recovered after mechanical stimulation. Accordingly, under the same experimental conditions, the activation of the Hedgehog signaling pathway, which is related to cilia activity, was impaired in UCMD cells. Finally, UCMD tendon cells exposed to mechanical stimuli showed altered focal adhesions, as well as impaired activation of Akt, ERK1/2, p38MAPK, and mechanoresponsive genes downstream of YAP. By exploring the response to mechanical stimulation, for the first time, our findings uncover novel unreported mechanistic aspects of the physiopathology of UCMD-derived tendon fibroblasts and point at a role for collagen VI in the modulation of mechanotransduction in tendons.
Collapse
Affiliation(s)
- Vittoria Cenni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Di Martino
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| | - Manuela Antoniel
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Stefano Squarzoni
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Simona Neri
- Medicine and Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Spartaco Santi
- CNR-Institute of Molecular Genetics, via di Barbiano 1/10, 40136 Bologna, Italy (S.S.); (S.S.)
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Samuele Metti
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, 35122 Padova, Italy; (S.M.); (P.B.)
| | - Cesare Faldini
- 1st Orthopedics and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (A.D.M.); (C.F.)
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy;
| |
Collapse
|
16
|
Apaydin O, Altaikyzy A, Filosa A, Sawamiphak S. Alpha-1 adrenergic signaling drives cardiac regeneration via extracellular matrix remodeling transcriptional program in zebrafish macrophages. Dev Cell 2023; 58:2460-2476.e7. [PMID: 37875117 DOI: 10.1016/j.devcel.2023.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 06/24/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The autonomic nervous system plays a pivotal role in cardiac repair. Here, we describe the mechanistic underpinning of adrenergic signaling in fibrotic and regenerative response of the heart to be dependent on immunomodulation. A pharmacological approach identified adrenergic receptor alpha-1 as a key regulator of macrophage phenotypic diversification following myocardial damage in zebrafish. Genetic manipulation and single-cell transcriptomics showed that the receptor signals activation of an "extracellular matrix remodeling" transcriptional program in a macrophage subset, which serves as a key regulator of matrix composition and turnover. Mechanistically, adrenergic receptor alpha-1-activated macrophages determine activation of collagen-12-expressing fibroblasts, a cellular determinant of cardiac regenerative niche, through midkine-mediated paracrine crosstalk, allowing lymphatic and blood vessel growth and cardiomyocyte proliferation at the lesion site. These findings identify the mechanism of adrenergic signaling in macrophage phenotypic and functional determination and highlight the potential of neural modulation for regulation of fibrosis and coordination of myocardial regenerative response.
Collapse
Affiliation(s)
- Onur Apaydin
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Institute of Chemistry and Biochemistry, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Akerke Altaikyzy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| |
Collapse
|
17
|
Steffen D, Avey A, Mienaltowski MJ, Baar K. The rat Achilles and patellar tendons have similar increases in mechanical properties but become transcriptionally divergent during postnatal development. J Physiol 2023; 601:3869-3884. [PMID: 37493407 DOI: 10.1113/jp284393] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/03/2023] [Indexed: 07/27/2023] Open
Abstract
The molecular events that drive post-natal tendon development are poorly characterized. In this study, we profiled morphological, mechanical, and transcriptional changes in the rat Achilles and patellar tendon before walking (P7), shortly after onset of walking (P14), and at motor maturity (P28). The Achilles and patellar tendons increased collagen content and mechanical strength similarly throughout post-natal development. However, at P28 the patellar tendon tended to display a higher maximal tensile load (MTL) (P = 0.0524) than the Achilles tendon, but a similar ultimate tensile strength (UTS; load relative to cross-sectional area) probably due to its increased cross-sectional area during development. The tendons started transcriptionally similar, with overlapping PCA clusters at P7 and P14, before becoming transcriptionally distinct at P28. In both tendons, there was an increase in extracellular matrix (ECM) gene expression and a concomitant decrease in cell cycle and mitochondrial gene expression. The transcriptional divergence at P28 suggested that STAT signalling was lower in the patellar tendon where MTL increased the most. Treating engineered human ligaments with the STAT inhibitor itacitinib increased collagen content and MTL. Our results suggest that during post-natal development, cellular resources are initially allocated towards cell proliferation before shifting towards extracellular matrix development following the onset of mechanical load and provide potential targets for improving tendon function. KEY POINTS: Little is known about mechanisms of post-natal tendon growth. We characterized morphological, mechanical, and transcriptional changes that occur before (P7), and early (P14) and late after (P28) rats begin to walk. From P7 to P28, the Achilles tendon increased in length, whereas the patellar tendon increased in cross-sectional area. Mechanical and material properties of the Achilles and patellar tendon increased from P7 to P28. From P7 to P28, the Achilles and patellar tendons increased expression of ECM genes and decreased mitochondrial and cell cycle gene expression. Ribosomal gene expression also significantly decreased in the Achilles and tended to decrease in the patellar tendon. At P28, STAT1 signalling tended to be lower in the patellar tendon which had grown by increasing cross-sectional area and inhibiting STAT activation in vitro improved mechanical properties in engineered human ligaments.
Collapse
Affiliation(s)
- Danielle Steffen
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | - Alec Avey
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
| | | | - Keith Baar
- Department of Neurobiology, Physiology & Behavior, University of California Davis, Davis, CA, USA
- Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
- VA Northern California Health Care System, Mather, CA, USA
| |
Collapse
|
18
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
19
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
20
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
21
|
Zhu M, Metzen F, Hopkinson M, Betz J, Heilig J, Sodhi J, Imhof T, Niehoff A, Birk DE, Izu Y, Krüger M, Pitsillides AA, Altmüller J, van Osch GJ, Straub V, Schreiber G, Paulsson M, Koch M, Brachvogel B. Ablation of collagen XII disturbs joint extracellular matrix organization and causes patellar subluxation. iScience 2023; 26:107225. [PMID: 37485359 PMCID: PMC10362267 DOI: 10.1016/j.isci.2023.107225] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.
Collapse
Affiliation(s)
- Mengjie Zhu
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fabian Metzen
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mark Hopkinson
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janina Betz
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jassi Sodhi
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | - Thomas Imhof
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics & Orthopaedics, German Sport University Cologne, Cologne, Germany
- Center for Musculoskeletal Biomechanics (CCMB), Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David E. Birk
- College of Medicine, University of South Florida, Morsani, Tampa, FL, USA
| | - Yayoi Izu
- Department of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Marcus Krüger
- Institute of Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andrew A. Pitsillides
- Skeletal Biology Group, Comparative Biomedical Sciences, The Royal Veterinary College, Royal College Street, London, UK
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
- Berlin Institute of Health at Charité, Core Facility Genomics, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Gerjo J.V.M. van Osch
- Department of Orthopaedics and Sports Medicine, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle, UK
| | | | - Mats Paulsson
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Biochemistry, Medical Faculty and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
23
|
Fu W, Yang R, Li J. Single-cell and spatial transcriptomics reveal changes in cell heterogeneity during progression of human tendinopathy. BMC Biol 2023; 21:132. [PMID: 37280595 DOI: 10.1186/s12915-023-01613-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
BACKGROUND Musculoskeletal tissue degeneration impairs the life quality and motor function of many people, especially seniors and athletes. Tendinopathy is one of the most common diseases associated with musculoskeletal tissue degeneration, representing a major global healthcare burden that affects both athletes and the general population, with the clinical presentation of long-term recurring chronic pain and decreased tolerance to activity. The cellular and molecular mechanisms at the basis of the disease process remain elusive. Here, we use a single-cell and spatial RNA sequencing approach to provide a further understanding of cellular heterogeneity and molecular mechanisms underlying tendinopathy progression. RESULTS To explore the changes in tendon homeostasis during the tendinopathy process, we built a cell atlas of healthy and diseased human tendons using single-cell RNA sequencing of approximately 35,000 cells and explored the variations of cell subtypes' spatial distributions using spatial RNA sequencing. We identified and localized different tenocyte subpopulations in normal and lesioned tendons, found different differentiation trajectories of tendon stem/progenitor cells in normal/diseased tendons, and revealed the spatial location relationship between stromal cells and diseased tenocytes. We deciphered the progression of tendinopathy at a single-cell level, which is characterized by inflammatory infiltration, followed by chondrogenesis and finally endochondral ossification. We found diseased tissue-specific endothelial cell subsets and macrophages as potential therapeutic targets. CONCLUSIONS This cell atlas provides the molecular foundation for investigating how tendon cell identities, biochemical functions, and interactions contributed to the tendinopathy process. The discoveries revealed the pathogenesis of tendinopathy at single-cell and spatial levels, which is characterized by inflammatory infiltration, followed by chondrogenesis, and finally endochondral ossification. Our results provide new insights into the control of tendinopathy and potential clues to developing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Weili Fu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Runze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jian Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
24
|
Bi R, Yin Q, Li H, Yang X, Wang Y, Li Q, Fang H, Li P, Lyu P, Fan Y, Ying B, Zhu S. A single-cell transcriptional atlas reveals resident progenitor cell niche functions in TMJ disc development and injury. Nat Commun 2023; 14:830. [PMID: 36788226 PMCID: PMC9929076 DOI: 10.1038/s41467-023-36406-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The biological characteristics of the temporomandibular joint disc involve complex cellular network in cell identity and extracellular matrix composition to modulate jaw function. The lack of a detailed characterization of the network severely limits the development of targeted therapies for temporomandibular joint-related diseases. Here we profiled single-cell transcriptomes of disc cells from mice at different postnatal stages, finding that the fibroblast population could be divided into chondrogenic and non-chondrogenic clusters. We also find that the resident mural cell population is the source of disc progenitors, characterized by ubiquitously active expression of the NOTCH3 and THY1 pathways. Lineage tracing reveals that Myh11+ mural cells coordinate angiogenesis during disc injury but lost their progenitor characteristics and ultimately become Sfrp2+ non-chondrogenic fibroblasts instead of Chad+ chondrogenic fibroblasts. Overall, we reveal multiple insights into the coordinated development of disc cells and are the first to describe the resident mural cell progenitor during disc injury.
Collapse
Affiliation(s)
- Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qing Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Max-Planck Institute for Heart and Lung Research, W. G. Kerckhoff Institute, Bad Nauheim, D-61231, Germany
| | - Haohan Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xianni Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yiru Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Binbin Ying
- Department of Stomatology, Ningbo First Hospital, 59 Liuting street, Ningbo, 315000, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
High-Performance Polarization Microscopy Reveals Structural Remodeling in Rat Calcaneal Tendons Cultivated In Vitro. Cells 2023; 12:cells12040566. [PMID: 36831234 PMCID: PMC9953949 DOI: 10.3390/cells12040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 02/12/2023] Open
Abstract
Collagenous tissues exhibit anisotropic optical properties such as birefringence and linear dichroism (LD) as a result of their structurally oriented supraorganization from the nanometer level to the collagen bundle scale. Changes in macromolecular order and in aggregational states can be evaluated in tendon collagen bundles using polarization microscopy. Because there are no reports on the status of the macromolecular organization in tendon explants, the objective of this work was to evaluate the birefringence and LD characteristics of collagen bundles in rat calcaneal tendons cultivated in vitro on substrates that differ in their mechanical stiffness (plastic vs. glass) while accompanying the expected occurrence of cell migration from these structures. Tendon explants from adult male Wistar rats were cultivated for 8 and 12 days on borosilicate glass coverslips (n = 3) and on nonpyrogenic polystyrene plastic dishes (n = 4) and were compared with tendons not cultivated in vitro (n = 3). Birefringence was investigated in unstained tendon sections using high-performance polarization microscopy and image analysis. LD was studied under polarized light in tendon sections stained with the dichroic dyes Ponceau SS and toluidine blue at pH 4.0 to evaluate the orientation of proteins and acid glycosaminoglycans (GAG) macromolecules, respectively. Structural remodeling characterized by the reduction in the macromolecular orientation, aggregation and alignment of collagen bundles, based on decreased average gray values concerned with birefringence intensity, LD and morphological changes, was detected especially in the tendon explants cultivated on the plastic substrate. These changes may have facilitated cell migration from the lateral regions of the explants to the substrates, an event that was observed earlier and more intensely upon tissue cultivation on the plastic substrate. The axial alignment of the migrating cells relative to the explant, which occurred with increased cultivation times, may be due to the mechanosensitive nature of the tenocytes. Collagen fibers possibly played a role as a signal source to cells, a hypothesis that requires further investigation, including studies on the dynamics of cell membrane receptors and cytoskeletal organization, and collagen shearing electrical properties.
Collapse
|
26
|
Izu Y, Birk DE. Collagen XII mediated cellular and extracellular mechanisms in development, regeneration, and disease. Front Cell Dev Biol 2023; 11:1129000. [PMID: 36936682 PMCID: PMC10017729 DOI: 10.3389/fcell.2023.1129000] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Collagen XII, a fibril-associated collagen with interrupted triple helices (FACIT), influences fibrillogenesis in numerous tissues. In addition to this extracellular function, collagen XII also directly regulates cellular function. Collagen XII is widely expressed in connective tissues, particularly tendons, ligaments, and the periodontium and periosteum, where it is enriched in the pericellular regions. Mutations in the collagen XII gene cause myopathic Ehlers-Danlos syndrome (mEDS), an early-onset disease characterized by overlapping connective tissue abnormalities and muscle weakness. Patients with mEDS exhibit delayed motor development, muscle weakness, joint laxity, hypermobility, joint contractures, and abnormal wound healing. A mEDS mouse model was generated by deletion of the Col12a1 gene, resulting in skeletal and muscle abnormalities with disorganized tissue structures and altered mechanical properties. Extracellularly, collagen XII interacts with collagen I fibrils and regulates collagen fibril spacing and assembly during fibrillogenesis. Evidence for the binding of collagen XII to other EDS-related molecules (e.g., decorin and tenascin X) suggests that disruption of ECM molecular interactions is one of the causes of connective tissue pathology in mEDS. Collagen XII also has been shown to influence cell behavior, such as cell shape and cell-cell communication, by providing physical connection between adjacent cells during tissue development and regeneration. The focus of this review is on the functions of collagen XII in development, regeneration, and disease.
Collapse
Affiliation(s)
- Yayoi Izu
- Department of Laboratory Animal Science, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Japan
- *Correspondence: Yayoi Izu,
| | - David E. Birk
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Ishibashi K, Ikegami K, Shimbo T, Sasaki E, Kitayama T, Nakamura Y, Tsushima T, Ishibashi Y, Tamai K. Single-cell transcriptome analysis reveals cellular heterogeneity in mouse intra- and extra articular ligaments. Commun Biol 2022; 5:1233. [PMID: 36371589 PMCID: PMC9653455 DOI: 10.1038/s42003-022-04196-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Ligaments are collagenous connective tissues that connect bones. Injury of knee ligaments, namely anterior cruciate ligament (ACL) and medial collateral ligament (MCL), is common in athletes. Both ligaments have important functions, but distinct regeneration capacities. The capacity for recovery after injury also diminishes with age. However, cellular heterogeneity in the ligaments remains unclear. Here, we profiled the transcriptional signatures of ACL and MCL cells in mice using single-cell RNA sequencing. These ligaments comprise three fibroblast types expressing Col22a1, Col12a1, or Col14a1, but have distinct localizations in the tissue. We found substantial heterogeneity in Col12a1- and Col14a1-positive cells between ACL and MCL. Gene Ontology analysis revealed that angiogenesis- and collagen regulation-related genes were specifically enriched in MCL cells. Furthermore, we identified age-related changes in cell composition and gene expression in the ligaments. This study delineates cellular heterogeneity in ligaments, serving as a foundation for identifying potential therapeutic targets for ligament injuries. Cell heterogeneity in the mouse anterior cruciate ligament (ACL) and medial collateral ligament (MCL) is demonstrated using single-cell analysis with three types of fibroblasts identified, expressing Col14a1, Col12a1, or Col22a1.
Collapse
|
28
|
Fung A, Sun M, Soslowsky LJ, Birk DE. Targeted conditional collagen XII deletion alters tendon function. Matrix Biol Plus 2022; 16:100123. [PMID: 36311462 PMCID: PMC9597098 DOI: 10.1016/j.mbplus.2022.100123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022] Open
Abstract
Collagen XII is a fibril-associated collagen with interrupted triple helices (FACIT). This non-fibrillar collagen is a homotrimer composed of three α1(XII) chains assembled into a collagenous molecule with a C terminal collagenous domain and a large N terminal non-collagenous domain. During tendon development and growth, collagen XII is broadly expressed throughout the extracellular matrix and enriched pericellularly around tenocytes. Tendons in a global Col12a1 -/- knockout model demonstrated disrupted fibril and fiber structure and disordered tenocyte organization, highlighting the critical regulatory roles of collagen XII in determining tendon structure and function. However, muscle and bone also are affected in the collagen XII knockout model. Therefore, secondary effects on tendon due to involvement of bone and muscle may occur in the global knockout. The global knockout does not allow the definition of intrinsic mechanisms involving collagen XII in tendon versus extrinsic roles involving muscle and bone. To address this limitation, we created and characterized a conditional Col12a1-null mouse model to permit the spatial and temporal manipulation of Col12a1 expression. Collagen XII knockout was targeted to tendons by breeding conditional Col12a1 flox/flox mice with Scleraxis-Cre (Scx-Cre) mice to yield a tendon-specific Col12a1-null mouse line, Col12a1 Δten/Δten . Both mRNA and protein expression in Col12a1 Δten/Δten mice decreased to near baseline levels in flexor digitorum longus tendons (FDL). Collagen XII immuno-localization revealed an absence of reactivity in the tendon proper, but there was reactivity in the cells of the surrounding peritenon. This supports a targeted knockout in tenocytes while peritenon cells from a non-tendon lineage were not targeted and retained collagen XII expression. The tendon-targeted, Col12a1 Δten/Δten mice had significantly reduced forelimb grip strength, altered gait and a significant decrease in biomechanical properties. While the observed decrease in tendon modulus suggests that differences in tendon material properties in the absence of Col12a1 expression underlie the functional deficiencies. Together, these findings suggest an intrinsic role for collagen XII critical for development of a functional tendon.
Collapse
Affiliation(s)
- Ashley Fung
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - David E. Birk
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA
- Corresponding author at: Department of Molecular Pharmacology & Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
29
|
Mohindra R, Mohindra R, Agrawal DK, Thankam FG. Bioactive extracellular matrix fragments in tendon repair. Cell Tissue Res 2022; 390:131-140. [PMID: 36074173 DOI: 10.1007/s00441-022-03684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Tendinopathy is a common tendon disorder that causes pain, loss of strength and function, and local inflammation mainly characterized by hypoxia, collagen degradation, and extracellular matrix (ECM) disorganization. Generally, ECM degradation and remodeling is tightly regulated; however, hyperactivation of matrix metalloproteases (MMPs) contributes to excessive collagenolysis under pathologic conditions resulting in tendon ECM degradation. This review article focuses on the production, function, and signaling of matrikines for tendon regeneration following injury with insights into the expression, tissue compliance, and cell proliferation exhibited by various matrikines. Furthermore, the regenerative properties suggest translational significance of matrikines to improve the outcomes post-injury by assisting with tendon healing.
Collapse
Affiliation(s)
- Ritika Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Rohit Mohindra
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Devendra K Agrawal
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA
| | - Finosh G Thankam
- Department of Translational Research, Western University of Health Sciences, 309 E. Second Street, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
30
|
Papanicolaou M, Parker AL, Yam M, Filipe EC, Wu SZ, Chitty JL, Wyllie K, Tran E, Mok E, Nadalini A, Skhinas JN, Lucas MC, Herrmann D, Nobis M, Pereira BA, Law AMK, Castillo L, Murphy KJ, Zaratzian A, Hastings JF, Croucher DR, Lim E, Oliver BG, Mora FV, Parker BL, Gallego-Ortega D, Swarbrick A, O'Toole S, Timpson P, Cox TR. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat Commun 2022; 13:4587. [PMID: 35933466 PMCID: PMC9357007 DOI: 10.1038/s41467-022-32255-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse. The distribution and organisation of matrix molecules in the tumour stroma help shape solid tumour progression. Here they perform temporal proteomic profiling of the matrisome during breast cancer progression and show that collagen XII secreted from CAFs provides a pro-invasive microenvironment.
Collapse
Affiliation(s)
- Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amelia L Parker
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Yam
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elysse C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sunny Z Wu
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kaitlin Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Emmi Tran
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ellie Mok
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Audrey Nadalini
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna N Skhinas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew M K Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Lesley Castillo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Elgene Lim
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, Sydney, NSW, Australia
| | - Fatima Valdes Mora
- Cancer Epigenetic Biology and Therapeutics, Personalised Medicine, Children's Cancer Institute, Sydney, NSW, 2031, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
31
|
Fan C, Zhao Y, Chen Y, Qin T, Lin J, Han S, Yan R, Lei T, Xie Y, Wang T, Gu S, Ouyang H, Shen W, Yin Z, Chen X. A Cd9 +Cd271 + stem/progenitor population and the SHP2 pathway contribute to neonatal-to-adult switching that regulates tendon maturation. Cell Rep 2022; 39:110762. [PMID: 35476985 DOI: 10.1016/j.celrep.2022.110762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/06/2022] [Accepted: 04/08/2022] [Indexed: 11/03/2022] Open
Abstract
Tendon maturation lays the foundation for postnatal tendon development, its proper mechanical function, and regeneration, but the critical cell populations and the entangled mechanisms remain poorly understood. Here, by integrating the structural, mechanical, and molecular properties, we show that post-natal days 7-14 are the crucial transitional stage for mouse tendon maturation. We decode the cellular and molecular regulatory networks at the single-cell level. We find that a nerve growth factor (NGF)-secreting Cd9+Cd271+ tendon stem/progenitor cell population mainly prompts conversion from neonate to adult tendon. Through single-cell gene regulatory network analysis, in vitro inhibitor identification, and in vivo tendon-specific Shp2 deletion, we find that SHP2 signaling is a regulator for tendon maturation. Our research comprehensively reveals the dynamic cell population transition during tendon maturation, implementing insights into the critical roles of the maturation-related stem cell population and SHP2 signaling pathway during tendon differentiation and regeneration.
Collapse
Affiliation(s)
- Chunmei Fan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yanyan Zhao
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yangwu Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tian Qin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Junxin Lin
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Shan Han
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Ruojin Yan
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingyun Lei
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Yuanhao Xie
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, China
| | - Shen Gu
- School of Biomedical Sciences, Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China
| | - Weiliang Shen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Xiao Chen
- Dr. Li Dak Sum-Yip Yio Chin Center for Stem Cells and Regenerative Medicine and Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
32
|
LTBP1 promotes fibrillin incorporation into the extracellular matrix. Matrix Biol 2022; 110:60-75. [PMID: 35452817 DOI: 10.1016/j.matbio.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 12/23/2022]
Abstract
LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFβ growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFβ-independent LTBP1 function potentially contributing to the development of connective tissue disorders.
Collapse
|
33
|
Liu Y, Ding Y, Liu Z, Chen Q, Li X, Xue X, Pu Y, Ma Y, Zhao Q. Integration Analysis of Transcriptome and Proteome Reveal the Mechanisms of Goat Wool Bending. Front Cell Dev Biol 2022; 10:836913. [PMID: 35433706 PMCID: PMC9011194 DOI: 10.3389/fcell.2022.836913] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022] Open
Abstract
Zhongwei goat is a unique Chinese native goat breed for excellent lamb fur. The pattern of flower spikes of the lamb fur was significantly reduced due to the reduction of the bending of the hair strands with growth. In order to explore the molecular mechanism underlying hair bending with growth, we performed the comprehensive analysis of transcriptome and proteome of skins from 45-days, 108-days and 365-days goat based on TMT-based quantitative proteomics and RNA-seq methods. In the three comparison groups, 356, 592 and 282 differentially expressed proteins (DEPs) were screened, respectively. KEGG pathway analysis indicated that DEPs were significantly enriched in a set of signaling pathways related to wool growth and bending, such as ECM-receptor interaction, PI3K-Akt signaling pathway, PPAR signaling pathway, protein digestion and absorption, and metabolic pathways. In addition, 20 DEPs abundance of goat skin at three development stages were examined by PRM method, which validated the reliability of proteomic data. Among them, KRT and collagen alpha family may play an important role in the development of goat hair follicle and wool bending. COL6A1, COL6A2, CRNN, TNC and LOC102178129 were identified as candidate genes based on combined analysis of transcriptome and proteome data and PRM quantification. Our results identify the differential expressed proteins as well as pathways related to the wool bending of Zhongwei goats and provide a theoretical basis for further revealing the molecular mechanism underlying wool bending of goats.
Collapse
Affiliation(s)
- Yue Liu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yangyang Ding
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhanfa Liu
- The Ningxia Hui Autonomous Region Breeding Ground of Zhongwei Goat, Zhongwei, China
| | - Qian Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaobo Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xianglan Xue
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yabin Pu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuehui Ma
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| | - Qianjun Zhao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affffairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- *Correspondence: Qianjun Zhao, ; Yuehui Ma,
| |
Collapse
|
34
|
Barnum CE, Shetye SS, Fazelinia H, Garcia BA, Fang S, Alzamora M, Li H, Brown LM, Tang C, Myers K, Wapner R, Soslowsky LJ, Vink JY. The Non-pregnant and Pregnant Human Cervix: a Systematic Proteomic Analysis. Reprod Sci 2022; 29:1542-1559. [PMID: 35266109 DOI: 10.1007/s43032-022-00892-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/13/2022] [Indexed: 10/18/2022]
Abstract
Appropriate timing of cervical remodeling (CR) is key to normal term parturition. To date, mechanisms behind normal and abnormal (premature or delayed) CR remain unclear. Recent studies show regional differences exist in human cervical tissue structure. While the entire cervix contains extracellular matrix (ECM), the internal os is highly cellular containing 50-60% cervical smooth muscle (CSM). The external os contains 10-20% CSM. Previously, we reported ECM rigidity and different ECM proteins influence CSM cell function, highlighting the importance of understanding not only how cervical cells orchestrate cervical ECM remodeling in pregnancy, but also how changes in specific ECM proteins can influence resident cellular function. To understand this dynamic process, we utilized a systematic proteomic approach to understand which soluble ECM and cellular proteins exist in the different regions of the human cervix and how the proteomic profiles change from the non-pregnant (NP) to the pregnant (PG) state. We found the human cervix proteome contains at least 4548 proteins and establish the types and relative abundance of cellular and soluble matrisome proteins found in the NP and PG human cervix. Further, we report the relative abundance of proteins involved with elastic fiber formation and ECM organization/degradation were significantly increased while proteins involved in RNA polymerase I/promoter opening, DNA methylation, senescence, immune system, and compliment activation were decreased in the PG compared to NP cervix. These findings establish an initial platform from which we can further comprehend how changes in the human cervix proteome results in normal and abnormal CR.
Collapse
Affiliation(s)
- Carrie E Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hossein Fazelinia
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin A Garcia
- Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Maria Alzamora
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Hongyu Li
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lewis M Brown
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chuanning Tang
- Quantitative Proteomics and Metabolomics Center, Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Kristin Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Ronald Wapner
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Joy Y Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, USA. .,Preterm Birth Prevention Center, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
35
|
Sun M, Koudouna E, Cogswell D, Avila MY, Koch M, Espana EM. Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-β Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:308-319. [PMID: 34774848 PMCID: PMC8908044 DOI: 10.1016/j.ajpath.2021.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-β activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-β latency and activity in vivo was investigated. Functional quantification of latent TGF-β in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-β. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-β activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-β storage in the extracellular matrix and that collagen XII down-regulates active TGF-β. Collagen XII dictates stromal structure and function by regulating TGF-β activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-β activation and decreased latent storage.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Elena Koudouna
- Structural Biophysics, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Devon Cogswell
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Marcel Y. Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida,Morsani College of Medicine, University of South Florida, Tampa, Florida,Address correspondence to Edgar M. Espana, M.D., Ophthalmology, University of South Florida, Morsani College of Medicine, 13330 USF Laurel Dr., 4th Floor, MDC11, Tampa, FL 33612.
| |
Collapse
|
36
|
Vroman R, Malfait AM, Miller RE, Malfait F, Syx D. Animal Models of Ehlers-Danlos Syndromes: Phenotype, Pathogenesis, and Translational Potential. Front Genet 2021; 12:726474. [PMID: 34712265 PMCID: PMC8547655 DOI: 10.3389/fgene.2021.726474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
The Ehlers-Danlos syndromes (EDS) are a group of heritable connective tissues disorders mainly characterized by skin hyperextensibility, joint hypermobility and generalized tissue fragility. Currently, 14 EDS subtypes each with particular phenotypic features are recognized and are caused by genetic defects in 20 different genes. All of these genes are involved in the biosynthesis and/or fibrillogenesis of collagens at some level. Although great progress has been made in elucidating the molecular basis of different EDS subtypes, the pathogenic mechanisms underlying the observed phenotypes remain poorly understood, and consequentially, adequate treatment and management options for these conditions remain scarce. To date, several animal models, mainly mice and zebrafish, have been described with defects in 14 of the 20 hitherto known EDS-associated genes. These models have been instrumental in discerning the functions and roles of the corresponding proteins during development, maturation and repair and in portraying their roles during collagen biosynthesis and/or fibrillogenesis, for some even before their contribution to an EDS phenotype was elucidated. Additionally, extensive phenotypical characterization of these models has shown that they largely phenocopy their human counterparts, with recapitulation of several clinical hallmarks of the corresponding EDS subtype, including dermatological, cardiovascular, musculoskeletal and ocular features, as well as biomechanical and ultrastructural similarities in tissues. In this narrative review, we provide a comprehensive overview of animal models manifesting phenotypes that mimic EDS with a focus on engineered mouse and zebrafish models, and their relevance in past and future EDS research. Additionally, we briefly discuss domestic animals with naturally occurring EDS phenotypes. Collectively, these animal models have only started to reveal glimpses into the pathophysiological aspects associated with EDS and will undoubtably continue to play critical roles in EDS research due to their tremendous potential for pinpointing (common) signaling pathways, unveiling possible therapeutic targets and providing opportunities for preclinical therapeutic interventions.
Collapse
Affiliation(s)
- Robin Vroman
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Anne-Marie Malfait
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Rachel E. Miller
- Division of Rheumatology, Rush University Medical Center, Chicago, IL, United States
| | - Fransiska Malfait
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Delfien Syx
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
38
|
Fukusato S, Nagao M, Fujihara K, Yoneda T, Arai K, Koch M, Kaneko K, Ishijima M, Izu Y. Collagen XII Deficiency Increases the Risk of Anterior Cruciate Ligament Injury in Mice. J Clin Med 2021; 10:4051. [PMID: 34575162 PMCID: PMC8467728 DOI: 10.3390/jcm10184051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Anterior cruciate ligament (ACL) rupture is a common knee injury for athletes. Although surgical reconstruction is recommended for the treatment of ACL ruptures, 100% functional recovery is unlikely. Therefore, the discovery of risk factors for ACL ruptures may prevent injury. Several studies have reported an association between polymorphisms of the collagen XII gene COL12A1 and ACL rupture. Collagen XII is highly expressed in tendons and ligaments and regulates tissue structure and mechanical property. Therefore, we hypothesized that collagen XII deficiency may cause ACL injury. To elucidate the influence of collagen XII deficiency on ACL, we analyzed a mouse model deficient for Col12a1. Four- to 19-week-old male Col12a1-/- and wild-type control mice were used for gait analysis; histological and immunofluorescent analysis of collagen XII, and real-time RT-PCR evaluation of Col12a1 mRNA expression. The Col12a1-/- mice showed an abnormal gait with an approximately 2.7-fold increase in step angle, suggesting altered step alignment. Col12a1-/- mice displayed 20-60% ACL discontinuities, but 0% discontinuity in the posterior cruciate ligament. No discontinuities in knee ligaments were found in wild-type mice. Collagen XII mRNA expression in the ACL tended to decrease with aging. Our study demonstrates for the first time that collagen XII deficiency increases the risk of ACL injury.
Collapse
Affiliation(s)
- Shin Fukusato
- Department of Medicine for Orthopaedics and Motor Organs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.F.); (K.K.); (M.I.)
| | - Masashi Nagao
- Department of Medicine for Orthopaedics and Motor Organs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.F.); (K.K.); (M.I.)
- Medical Technology Innovation Center, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan
- Graduate School of Health and Sports Science, Juntendo University, 1-1 Hiragagakuenndai, Inzai 270-1695, Japan
| | - Kei Fujihara
- Department of Laboratory Animal Science, Faculty of Veterinary Science, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan; (K.F.); (T.Y.)
| | - Taiju Yoneda
- Department of Laboratory Animal Science, Faculty of Veterinary Science, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan; (K.F.); (T.Y.)
| | - Kiyotaka Arai
- Department of Veterinary Surgery, Faculty of Veterinary Science, Okayama University of Science, 1-1 Ridai-cho, Kita-ku, Okayama 700-0005, Japan;
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany;
| | - Kazuo Kaneko
- Department of Medicine for Orthopaedics and Motor Organs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.F.); (K.K.); (M.I.)
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organs, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan; (S.F.); (K.K.); (M.I.)
| | - Yayoi Izu
- Department of Laboratory Animal Science, Faculty of Veterinary Science, Okayama University of Science, 1-3 Ikoinooka, Imabari 794-8555, Japan; (K.F.); (T.Y.)
- Institute for Dental Research and Oral Musculoskeletal Biology and Center for Biochemistry, Medical Faculty, University of Cologne, D-50931 Cologne, Germany;
| |
Collapse
|
39
|
Reye G, Huang X, Haupt LM, Murphy RJ, Northey JJ, Thompson EW, Momot KI, Hugo HJ. Mechanical Pressure Driving Proteoglycan Expression in Mammographic Density: a Self-perpetuating Cycle? J Mammary Gland Biol Neoplasia 2021; 26:277-296. [PMID: 34449016 PMCID: PMC8566410 DOI: 10.1007/s10911-021-09494-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/05/2021] [Indexed: 12/23/2022] Open
Abstract
Regions of high mammographic density (MD) in the breast are characterised by a proteoglycan (PG)-rich fibrous stroma, where PGs mediate aligned collagen fibrils to control tissue stiffness and hence the response to mechanical forces. Literature is accumulating to support the notion that mechanical stiffness may drive PG synthesis in the breast contributing to MD. We review emerging patterns in MD and other biological settings, of a positive feedback cycle of force promoting PG synthesis, such as in articular cartilage, due to increased pressure on weight bearing joints. Furthermore, we present evidence to suggest a pro-tumorigenic effect of increased mechanical force on epithelial cells in contexts where PG-mediated, aligned collagen fibrous tissue abounds, with implications for breast cancer development attributable to high MD. Finally, we summarise means through which this positive feedback mechanism of PG synthesis may be intercepted to reduce mechanical force within tissues and thus reduce disease burden.
Collapse
Affiliation(s)
- Gina Reye
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Xuan Huang
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Faculty of Health, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), 60 Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Ryan J Murphy
- School of Mathematical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, Australia
| | - Jason J Northey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Erik W Thompson
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia
- Translational Research Institute, Woolloongabba, QLD, Australia
| | - Konstantin I Momot
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Honor J Hugo
- School of Biomedical Sciences, Gardens Point, Queensland University of Technology (QUT), Kelvin Grove, QLD, 4059, Australia.
- Translational Research Institute, Woolloongabba, QLD, Australia.
| |
Collapse
|
40
|
Lv ZT, Wang W, Zhao DM, Huang JM. COL12A1 rs970547 Polymorphism Does Not Alter Susceptibility to Anterior Cruciate Ligament Rupture: A Meta-Analysis. Front Genet 2021; 12:665861. [PMID: 34447406 PMCID: PMC8383292 DOI: 10.3389/fgene.2021.665861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: Currently available evidence regarding the association between collagen type XII α1 (COL12A1) polymorphism and risk of anterior cruciate ligament rupture (ACLR) remains elusive. The aim of our present study was to assess the association between COL12A1 rs970547 polymorphism and ACLR risk. Methods: Five online databases, namely, PubMed, EMBASE, ISI Web of Science, CENTRAL, and CNKI, were searched from their inception data up to December 2020 to identify relative observational studies. The methodological quality of each individual study was evaluated using the Newcastle-Ottawa Scale (NOS). The “model-free approach” was employed to estimate the magnitude of effect of COL12A1 rs970547 polymorphism on ACLR, and the association was expressed using odds ratio (OR) and its associated 95% confidence interval (95% CI). Subgroup analysis was performed by ethnicity and sex of included subjects. Results: Eight studies involving 1,477 subjects with ACLR and 100,439 healthy controls were finally included in our study. The methodological quality of included studies was deemed moderate to high based on NOS scores. The “model-free” approach suggested no genotype differences between ACLR and healthy control for the rs970547 polymorphism, but we still used the allele model to present the combined data. Under the random-effect model, there was no significant difference in the frequency of effecting allele between ACLR and control (OR: 0.91, 95% CI 0.77, 1.08; p = 0.28). Stratified analysis by sex and ethnicity also showed no difference in allele frequency. Conclusion: The findings of this current meta-analysis suggested that rs970547 was not associated with ACLR risk in male, female, and the overall population among Asians or Caucasians.
Collapse
Affiliation(s)
- Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Ming Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
41
|
Kudelko M, Chen P, Tam V, Zhang Y, Kong OY, Sharma R, Au TY, To MKT, Cheah KS, Chan WC, Chan D. PRIMUS: Comprehensive proteomics of mouse intervertebral discs that inform novel biology and relevance to human disease modelling. Matrix Biol Plus 2021; 12:100082. [PMID: 34409283 PMCID: PMC8361275 DOI: 10.1016/j.mbplus.2021.100082] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
Proteomics of healthy mouse IVDs differentiating compartments and spine levels. NP cells feature vacuoles with lysosomal, transport and cell–cell communication functions. Collagen XII, decorin and other ECM proteins contribute to function of the AF. Distinct proteomics between lumbar and tail discs. Mouse is a relevant model for human disc biology but care is needed in its use.
Mice are commonly used to study intervertebral disc (IVD) biology and related diseases such as IVD degeneration. Discs from both the lumbar and tail regions are used. However, little is known about compartmental characteristics in the different regions, nor their relevance to the human setting, where a functional IVD unit depends on a homeostatic proteome. Here, we address these major gaps through comprehensive proteomic profiling and in-depth analyses of 8-week-old healthy murine discs, followed by comparisons with human. Leveraging on a dataset of over 2,700 proteins from 31 proteomic profiles, we identified key molecular and cellular differences between disc compartments and spine levels, but not gender. The nucleus pulposus (NP) and annulus fibrosus (AF) compartments differ the most, both in matrisome and cellularity contents. Differences in the matrisome are consistent with the fibrous nature required for tensile strength in the AF and hydration property in the NP. Novel findings for the NP cells included an enrichment in cell junction proteins for cell–cell communication (Cdh2, Dsp and Gja1) and osmoregulation (Slc12a2 and Wnk1). In NP cells, we detected heterogeneity of vacuolar organelles; where about half have potential lysosomal function (Vamp3, Copb2, Lamp1/2, Lamtor1), some contain lipid droplets and others with undefined contents. The AF is enriched in proteins for the oxidative stress responses (Sod3 and Clu). Interestingly, mitochondrial proteins are elevated in the lumbar than tail IVDs that may reflect differences in metabolic requirement. Relative to the human, cellular and structural information are conserved for the AF. Even though the NP is more divergent between mouse and human, there are similarities at the level of cell biology. Further, common cross-species markers were identified for both NP (KRT8/19, CD109) and AF (COL12A1). Overall, mouse is a relevant model to study IVD biology, and an understanding of the limitation will facilitate research planning and data interpretation, maximizing the translation of research findings to human IVDs.
Collapse
Affiliation(s)
- Mateusz Kudelko
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Peikai Chen
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Vivian Tam
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ying Zhang
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Oi-Yin Kong
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Rakesh Sharma
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Proteomics and Metabolomics Core Facility, The University of Hong Kong, Pokfulam, Hong Kong
| | - Tiffany Y.K. Au
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong
| | - Kathryn S.E. Cheah
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
| | - Wilson C.W. Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Orthopaedics Surgery and Traumatology, The University of Hong Kong -Shenzhen Hospital (HKU-SZH), Shenzhen, China
- Corresponding author at: School of Biomedical Sciences, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong.
| |
Collapse
|
42
|
Dalewski B, Kaczmarek K, Jakubowska A, Szczuchniak K, Pałka Ł, Sobolewska E. COL12A1 Single Nucleotide Polymorphisms rs240736 and rs970547 Are Not Associated with Temporomandibular Joint Disc Displacement without Reduction. Genes (Basel) 2021; 12:genes12050690. [PMID: 34062975 PMCID: PMC8148001 DOI: 10.3390/genes12050690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/13/2022] Open
Abstract
Temporomandibular disorders (TMDs) may affect up to 25% of the population, with almost 70% of these TMD cases developing malpositioning of the disc over time in what is known as internal derangement (ID). Despite significant efforts, the molecular mechanism underlying disease progression is not yet very well known. In this study, the role of COL12A1 rs970547 and rs240736 polymorphisms as potential genetic factors regulating ID was investigated. The study included 124 Caucasian patients of both sexes after disc displacement without reduction (DDwoR) in either one or two temporomandibular joints (TMJs), either of which meet the criteria for this condition. All patients underwent clinical examination and 3D digital imaging. The COL12A1 rs970547 and rs240736 polymorphisms were evaluated. There were no statistically significant differences in the chi-square test between the study group and healthy controls. The examined COL12A1 rs240736 and rs970547 polymorphisms do not contribute to DDwoR in Polish Caucasians.
Collapse
Affiliation(s)
- Bartosz Dalewski
- Department of Dental Prosthetics, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.D.); (E.S.)
| | - Katarzyna Kaczmarek
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (K.K.); (A.J.)
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252 Szczecin, Poland; (K.K.); (A.J.)
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Kamila Szczuchniak
- Department of Dental Prosthetics, Outpatient Dental Clinic, Pomeranian Medical University, 70-111 Szczecin, Poland
- Correspondence:
| | | | - Ewa Sobolewska
- Department of Dental Prosthetics, Pomeranian Medical University, 70-111 Szczecin, Poland; (B.D.); (E.S.)
| |
Collapse
|
43
|
Arora S, Gordon J, Hook M. Collagen Binding Proteins of Gram-Positive Pathogens. Front Microbiol 2021; 12:628798. [PMID: 33613497 PMCID: PMC7893114 DOI: 10.3389/fmicb.2021.628798] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
Collagens are the primary structural components of mammalian extracellular matrices. In addition, collagens regulate tissue development, regeneration and host defense through interaction with specific cellular receptors. Their unique triple helix structure, which requires a glycine residue every third amino acid, is the defining structural feature of collagens. There are 28 genetically distinct collagens in humans. In addition, several other unrelated human proteins contain a collagen domain. Gram-positive bacteria of the genera Staphylococcus, Streptococcus, Enterococcus, and Bacillus express cell surface proteins that bind to collagen. These proteins of Gram-positive pathogens are modular proteins that can be classified into different structural families. This review will focus on the different structural families of collagen binding proteins of Gram-positive pathogen. We will describe how these proteins interact with the triple helix in collagens and other host proteins containing a collagenous domain and discuss how these interactions can contribute to the pathogenic processes.
Collapse
Affiliation(s)
- Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Jay Gordon
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, United States
| |
Collapse
|
44
|
Siadat SM, Zamboulis DE, Thorpe CT, Ruberti JW, Connizzo BK. Tendon Extracellular Matrix Assembly, Maintenance and Dysregulation Throughout Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:45-103. [PMID: 34807415 DOI: 10.1007/978-3-030-80614-9_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In his Lissner Award medal lecture in 2000, Stephen Cowin asked the question: "How is a tissue built?" It is not a new question, but it remains as relevant today as it did when it was asked 20 years ago. In fact, research on the organization and development of tissue structure has been a primary focus of tendon and ligament research for over two centuries. The tendon extracellular matrix (ECM) is critical to overall tissue function; it gives the tissue its unique mechanical properties, exhibiting complex non-linear responses, viscoelasticity and flow mechanisms, excellent energy storage and fatigue resistance. This matrix also creates a unique microenvironment for resident cells, allowing cells to maintain their phenotype and translate mechanical and chemical signals into biological responses. Importantly, this architecture is constantly remodeled by local cell populations in response to changing biochemical (systemic and local disease or injury) and mechanical (exercise, disuse, and overuse) stimuli. Here, we review the current understanding of matrix remodeling throughout life, focusing on formation and assembly during the postnatal period, maintenance and homeostasis during adulthood, and changes to homeostasis in natural aging. We also discuss advances in model systems and novel tools for studying collagen and non-collagenous matrix remodeling throughout life, and finally conclude by identifying key questions that have yet to be answered.
Collapse
Affiliation(s)
| | - Danae E Zamboulis
- Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - Chavaunne T Thorpe
- Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Jeffrey W Ruberti
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Brianne K Connizzo
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|