1
|
Calais GB, Garcia GD, de Moura Júnior CF, Soares JDM, Lona LMF, Beppu MM, Hernandez-Montelongo J, Rocha Neto JBM. Therapeutic functions of medical implants from various material categories with integrated biomacromolecular systems. Front Bioeng Biotechnol 2025; 12:1509397. [PMID: 39867472 PMCID: PMC11757644 DOI: 10.3389/fbioe.2024.1509397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 01/28/2025] Open
Abstract
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions. It synthesizes advancements in surface modification, discusses biomacromolecules as carriers for controlled drug release, and explores the application of nanoceramics and composites to improve osseointegration and tissue regeneration. Biomacromolecule systems are capable of interacting with device components and therapeutic agents - such as growth factors (GFs), antibiotics, and nanoceramics - allowing control over substance release. Incorporating therapeutic agents into these systems enables localized treatments for tissue regeneration, osseointegration, post-surgery infection control, and disease and pre-existing conditions. The review highlights these materials' therapeutic advantages and customization opportunities, by covering mechanical and biological perspectives. Developing composites and hybrid drug delivery systems align with recent efforts in interdisciplinary personalized medicine and implant innovations. For instance, a trend was observed for integrating inorganic (especially nanoceramics, e.g., hydroxyapatite) and organic phases in composites for better implant interaction with biological tissues and faster recovery. This article supports understanding how integrating these materials can create more personalized, functional, durable, and biocompatible implant devices.
Collapse
Affiliation(s)
- Guilherme Bedeschi Calais
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Guilherme Domingos Garcia
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Celso Fidelis de Moura Júnior
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - José Diego Magalhães Soares
- Federal University of Alagoas, Center of Technology, Maceió, Brazil
- Federal Institute of Alagoas (IFAL), Chemistry Coordination Office (Campus Maceió), Maceió, Brazil
| | - Liliane Maria Ferrareso Lona
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Marisa Masumi Beppu
- Universidade Estadual de Campinas (UNICAMP), School of Chemical Engineering, Department of Materials Engineering and Bioprocesses, Campinas, Brazil
| | - Jacobo Hernandez-Montelongo
- Universidad Católica de Temuco, Department of Mathematical and Physical Sciences, Bioproducts and Advanced Materials Research Center (BioMA), Temuco, Chile
- Universidad de Guadalajara, Department of Translational Bioengineering, Guadalajara, Mexico
| | | |
Collapse
|
2
|
Tabrizian P, Davis S, Su B. From bone to nacre - development of biomimetic materials for bone implants: a review. Biomater Sci 2024; 12:5680-5703. [PMID: 39397519 DOI: 10.1039/d4bm00903g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The field of bone repair and regeneration has undergone significant advancements, yet challenges persist in achieving optimal bone implants or scaffolds, particularly load-bearing bone implants. This review explores the current landscape of bone implants, emphasizing the complexity of bone anatomy and the emerging paradigm of biomimicry inspired by natural structures. Nature, as a master architect, offers insights into the design of biomaterials that can closely emulate the mechanical properties and hierarchical organization of bone. By drawing parallels with nacre, the mollusk shells renowned for their exceptional strength and toughness, researchers have endeavored to develop bone implants with enhanced biocompatibility and mechanical robustness. This paper surveys the literature on various nacre-inspired composites, particularly ceramic/polymer composites like calcium phosphate (CaP), which exhibit promising similarities to native bone tissue. By harnessing the principles of hierarchical organization and organic-inorganic interfaces observed in natural structures, researchers aim to overcome existing limitations in bone implant technology, paving the way for more durable, biocompatible, and functionally integrated solutions in orthopedic and dental applications.
Collapse
Affiliation(s)
- Parinaz Tabrizian
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| | - Sean Davis
- School of Chemistry, University of Bristol, UK
| | - Bo Su
- Biomaterials Engineering Group (bioMEG), Bristol Dental School, University of Bristol, UK.
| |
Collapse
|
3
|
Kawcher Alam M, Sahadat Hossain M, Anisur Rahman Dayan M, Bahadur NM, Shaikh MAA, Ahmed S. Fabrication and Characterization of a Bioscaffold Using Hydroxyapatite and Unsaturated Polyester Resin. ACS OMEGA 2024; 9:15210-15221. [PMID: 38585056 PMCID: PMC10993257 DOI: 10.1021/acsomega.3c09599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Outstanding biodegradability and biocompatibility are attributes associated with particular polyester substances that make this group useful in specific biomedical fields. To assess the potential as a biomaterial, a novel composite consisting of hydroxyapatite (HAp) and unsaturated polyester resin (UPR) was developed in this work. Using a hand-lay-up technique, various percentages (50, 40, 30, 20, and 10%) of HAp were reinforced into the UPR matrix to fabricate composite materials out of glass sheets. Prior to processing of the composite samples, hydroxyapatite was chemically synthesized in a wet chemical manner. Using a universal testing machine (UTM), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and thermo-gravimetric analysis (TGA), the fabricated samples were characterized. The crystallographic parameters of synthesized hydroxyapatite (HAp) were also estimated through a range of formulas. The optimal amount for hydroxyapatite was 40% according to the findings of the tensile strength (TS), tensile modulus (TM), percentage of elongation at break (EB), bending strength (BS), and bending modulus (BM). Improvements in TS, TM, BS, and BM for the ideal combination were 39.39, 9.21, 912.05, and 259.96%, in each case, over the controlled one. Thermogravimetric analysis (TGA) has been implemented to determine the degradation temperature of the fabricated composites up to 600 °C.
Collapse
Affiliation(s)
- Md. Kawcher Alam
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- Department
of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Sahadat Hossain
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
| | - Md. Anisur Rahman Dayan
- Textile
Physics Division, Bangladesh Jute Research
Institute, Manik Mia
Avenue, Dhaka 1207, Bangladesh
| | - Newaz Mohammed Bahadur
- Department
of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Md. Aftab Ali Shaikh
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samina Ahmed
- Glass
Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research
(BCSIR), Dhaka 1205, Bangladesh
- BCSIR
Dhaka Laboratories, Bangladesh Council of
Scientific and Industrial Research (BCSIR), Dhaka 1205, Bangladesh
| |
Collapse
|
4
|
Murphy B, Baez J, Morris MA. Characterising Hydroxyapatite Deposited from Solution onto Novel Substrates: Growth Mechanism and Physical Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2483. [PMID: 37686991 PMCID: PMC10489777 DOI: 10.3390/nano13172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023]
Abstract
Whilst titanium, stainless steel, and cobalt-chrome alloys are the most common materials for use in orthopaedic implant devices, there are significant advantages in moving to alternative non-metallic substrates. Substrates such as polymers may have advantageous mechanical biological properties whilst other substrates may bring unique capability. A key challenge in the use of non-metal products is producing substrates which can be modified to allow the formation of well-adhered hydroxyapatite films which promote osteointegration and have other beneficial properties. In this work, we aim to develop methodology for the growth of hydroxyapatite films on surfaces other than bulk metallic parts using a wet chemical coating process, and we provide a detailed characterisation of the coatings. In this study, hydroxyapatite is grown from saturated solutions onto thin titanium films and silicon substrates and compared to results from titanium alloy substrates. The coating process efficacy is shown to be dependent on substrate roughness, hydrophilicity, and activation. The mechanism of the hydroxyapatite growth is investigated in terms of initial attachment and morphological development using SEM and XPS analysis. XPS analysis reveals the exact chemical state of the hydroxyapatite compositional elements of Ca, P, and O. The characterisation of grown hydroxyapatite layers by XRD reveals that the hydroxyapatite forms from amorphous phases, displaying preferential crystal growth along the [002] direction, with TEM imagery confirming polycrystalline pockets amid an amorphous matrix. SEM-EDX and FTIR confirmed the presence of hydroxyapatite phases through elemental atomic weight percentages and bond assignment. All data are collated and reviewed for the different substrates. The results demonstrate that once hydroxyapatite seeds, it crystallises in the same manner as bulk titanium whether that be on a titanium or silicon substrate. These data suggest that a range of substrates may be coated using this facile hydroxyapatite deposition technique, just broadening the choice of substrate for a particular function.
Collapse
Affiliation(s)
- Bríd Murphy
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Jhonattan Baez
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| | - Mick A. Morris
- Advanced Materials & Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, D02 CP49 Dublin, Ireland;
- School of Chemistry, Trinity College Dublin, Dublin 2, D02 PN40 Dublin, Ireland
| |
Collapse
|
5
|
Chen L, Zhou C, Jiang C, Huang X, Liu Z, Zhang H, Liang W, Zhao J. Translation of nanotechnology-based implants for orthopedic applications: current barriers and future perspective. Front Bioeng Biotechnol 2023; 11:1206806. [PMID: 37675405 PMCID: PMC10478008 DOI: 10.3389/fbioe.2023.1206806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/21/2023] [Indexed: 09/08/2023] Open
Abstract
The objective of bioimplant engineering is to develop biologically compatible materials for restoring, preserving, or altering damaged tissues and/or organ functions. The variety of substances used for orthopedic implant applications has been substantially influenced by modern material technology. Therefore, nanomaterials can mimic the surface properties of normal tissues, including surface chemistry, topography, energy, and wettability. Moreover, the new characteristics of nanomaterials promote their application in sustaining the progression of many tissues. The current review establishes a basis for nanotechnology-driven biomaterials by demonstrating the fundamental design problems that influence the success or failure of an orthopedic graft, cell adhesion, proliferation, antimicrobial/antibacterial activity, and differentiation. In this context, extensive research has been conducted on the nano-functionalization of biomaterial surfaces to enhance cell adhesion, differentiation, propagation, and implant population with potent antimicrobial activity. The possible nanomaterials applications (in terms of a functional nanocoating or a nanostructured surface) may resolve a variety of issues (such as bacterial adhesion and corrosion) associated with conventional metallic or non-metallic grafts, primarily for optimizing implant procedures. Future developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, show promise for achieving the necessary characteristics and shape of a stimuli-responsive implant. Ultimately, the major barriers to the commercialization of nanotechnology-derived biomaterials are addressed to help overcome the limitations of current orthopedic biomaterials in terms of critical fundamental factors including cost of therapy, quality, pain relief, and implant life. Despite the recent success of nanotechnology, there are significant hurdles that must be overcome before nanomedicine may be applied to orthopedics. The objective of this review was to provide a thorough examination of recent advancements, their commercialization prospects, as well as the challenges and potential perspectives associated with them. This review aims to assist healthcare providers and researchers in extracting relevant data to develop translational research within the field. In addition, it will assist the readers in comprehending the scope and gaps of nanomedicine's applicability in the orthopedics field.
Collapse
Affiliation(s)
- Long Chen
- Department of Orthopedics, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Chanyi Jiang
- Department of Pharmacy, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Zunyong Liu
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
6
|
Naghavi SA, Tamaddon M, Garcia-Souto P, Moazen M, Taylor S, Hua J, Liu C. A novel hybrid design and modelling of a customised graded Ti-6Al-4V porous hip implant to reduce stress-shielding: An experimental and numerical analysis. Front Bioeng Biotechnol 2023; 11:1092361. [PMID: 36777247 PMCID: PMC9910359 DOI: 10.3389/fbioe.2023.1092361] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Stress shielding secondary to bone resorption is one of the main causes of aseptic loosening, which limits the lifespan of hip prostheses and exacerbates revision surgery rates. In order to minimise post-hip replacement stress variations, this investigation proposes a low-stiffness, porous Ti6Al4V hip prosthesis, developed through selective laser melting (SLM). The stress shielding effect and potential bone resorption properties of the porous hip implant were investigated through both in vitro quasi-physiological experimental assays, together with finite element analysis. A solid hip implant was incorporated in this investigation for contrast, as a control group. The stiffness and fatigue properties of both the solid and the porous hip implants were measured through compression tests. The safety factor of the porous hip stem under both static and dynamic loading patterns was obtained through simulation. The porous hip implant was inserted into Sawbone/PMMA cement and was loaded to 2,300 N (compression). The proposed porous hip implant demonstrated a more natural stress distribution, with reduced stress shielding (by 70%) and loss in bone mass (by 60%), when compared to a fully solid hip implant. Solid and porous hip stems had a stiffness of 2.76 kN/mm and 2.15 kN/mm respectively. Considering all daily activities, the porous hip stem had a factor of safety greater than 2. At the 2,300 N load, maximum von Mises stresses on the hip stem were observed as 112 MPa on the medial neck and 290 MPa on the distal restriction point, whereby such values remained below the endurance limit of 3D printed Ti6Al4V (375 MPa). Overall, through the strut thickness optimisation process for a Ti6Al4V porous hip stem, stress shielding and bone resorption can be reduced, therefore proposing a potential replacement for the generic solid implant.
Collapse
Affiliation(s)
- Seyed Ataollah Naghavi
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Maryam Tamaddon
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Pilar Garcia-Souto
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Mehran Moazen
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Stephen Taylor
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom
| | - Jia Hua
- School of Science and Technology, Middlesex University, London, United Kingdom
| | - Chaozong Liu
- Institute of Orthopaedics and Musculoskeletal Science, Division of Surgery and Interventional Science, Royal National Orthopaedic Hospital, University College London, Stanmore, United Kingdom,*Correspondence: Chaozong Liu,
| |
Collapse
|
7
|
Influence of 3D Printing Parameters on the Mechanical Stability of PCL Scaffolds and the Proliferation Behavior of Bone Cells. MATERIALS 2022; 15:ma15062091. [PMID: 35329543 PMCID: PMC8954149 DOI: 10.3390/ma15062091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022]
Abstract
Introduction The use of scaffolds in tissue engineering is becoming increasingly important as solutions need to be found for the problem of preserving human tissue, such as bone or cartilage. In this work, scaffolds were printed from the biomaterial known as polycaprolactone (PCL) on a 3D Bioplotter. Both the external and internal geometry were varied to investigate their influence on mechanical stability and biocompatibility. Materials and Methods: An Envisiontec 3D Bioplotter was used to fabricate the scaffolds. First, square scaffolds were printed with variations in the strand width and strand spacing. Then, the filling structure was varied: either lines, waves, and honeycombs were used. This was followed by variation in the outer shape, produced as either a square, hexagon, octagon, or circle. Finally, the internal and external geometry was varied. To improve interaction with the cells, the printed PCL scaffolds were coated with type-I collagen. MG-63 cells were then cultured on the scaffolds and various tests were performed to investigate the biocompatibility of the scaffolds. Results: With increasing strand thickness and strand spacing, the compressive strengths decreased from 86.18 + 2.34 MPa (200 µm) to 46.38 + 0.52 MPa (600 µm). The circle was the outer shape with the highest compressive strength of 76.07 + 1.49 MPa, compared to the octagon, which had the lowest value of 52.96 ± 0.98 MPa. Varying the external shape (toward roundness) geometry, as well as the filling configuration, resulted in the highest values of compressive strength for the round specimens with honeycomb filling, which had a value of 91.4 + 1.4 MPa. In the biocompatibility tests, the round specimens with honeycomb filling also showed the highest cell count per mm², with 1591 ± 239 live cells/mm2 after 10 days and the highest value in cell proliferation, but with minimal cytotoxic effects (9.19 ± 2.47% after 3 days).
Collapse
|
8
|
Abstract
Biomedical devices have become essential in the health care. Every day, an enormous number of these devices are used or implanted in humans. In this context, the bacterial contamination that could be developed in implanted devices is critical since it is estimated that infections kill more people than other medical causes. Commonly, these infections are treated with antibiotics, but the biofilm formation on implant surfaces could significantly reduce the effectiveness of these antibiotics since bacteria inside the biofilm is protected from the drug. In some cases, a complete removal of the implant is necessary in order to overcome the infection. In this context, antibacterial coatings are considered an excellent strategy to avoid biofilm formation and, therefore, mitigate the derived complications. In this review, the main biomaterials used in biomedical devices, the mechanism of biofilm formation, and the main strategies for the development of antibacterial coatings, are reviewed. Finally, the main polymer-based strategies to develop antibacterial coatings are summarized, with the aim of these coatings being to avoid the bacteria proliferation by controlling the antibacterial mechanisms involved and enhancing long-term stability.
Collapse
|
9
|
Bavya Devi K, Nandi SK, Roy M. Magnesium Silicate Bioceramics for Bone Regeneration: A Review. J Indian Inst Sci 2019. [DOI: 10.1007/s41745-019-00119-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|