1
|
Fu Y, Wang T, Ge X, Wen H, Fei Y, Li M, Luo Z. Orally-deliverable liposome-microgel complexes dynamically remodel intestinal environment to enhance probiotic ulcerative colitis therapy via TLR4 inhibition and tryptophan metabolic crosstalk. Biomaterials 2025; 321:123339. [PMID: 40233710 DOI: 10.1016/j.biomaterials.2025.123339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/21/2025] [Accepted: 04/10/2025] [Indexed: 04/17/2025]
Abstract
Probiotics emerges as a promising option for ulcerative colitis (UC) treatment, but its application remains challenging due to insufficient colon-targeted delivery efficiency and survival against the inflammation-associated intestinal oxidative stress. To address these issues, here we report a supramolecular liposome-microgel complex (SLMC) incorporated with Bacillus subtilis spores (BSSs) and dexamethasone (DEX) for orally-deliverable probiotic UC therapy. Specifically, BSSs and cholesterols were conjugated with gelatin via diselenide ligation to prepare microgels, followed by supramolecular complexation with UC-targeted DEX-loaded liposome via microfluidic engineering. The orally-administered SLMC efficiently accumulated in UC-affected colonic sites to release BSSs and DEX. DEX elicited rapid anti-inflammatory effect to reduce ROS generation, which cooperated with the ROS consumption by spore germination and diselenide cleavage to orchestrate an anaerobic intestinal microenvironment, thus promoting Bacillus subtilis colonization to restore gut homeostasis and initiate anti-inflammatory microbiota-macrophage metabolic crosstalk. Indeed, in vivo analysis showed that the SLMC treatment markedly inhibited pro-inflammatory TLR4-NF-κB signaling activities in mucosal macrophages through localized DEX delivery and boosting tryptophan metabolite production, leading to robust and durable UC abolishment. This study offers a practical approach for improving UC treatment in the clinic.
Collapse
Affiliation(s)
- Yuanyuan Fu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Ting Wang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Xinyue Ge
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Hong Wen
- Department of General Surgery, Xinqiao Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
| | - Yang Fei
- School of Life Sciences, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
2
|
Shu H, Zhang T, Jiang Y, Diao Z, Xu Y, Long J, Chen T, Zhang M, Zhang Z, Chen J, Huang S, Zhang L. Mechanoregulative hydrogel facilitates rapid scarless healing by self-adaptive control of wound niche at different stages. SCIENCE ADVANCES 2025; 11:eadv9895. [PMID: 40408488 DOI: 10.1126/sciadv.adv9895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
It is essential to spatiotemporally control the microniche of wound at different healing stages for rapid and scarless healing. Hence, a multifunctional soft hydrogel integrated with programmed drug release capability (MLVgel) was fabricated. MLVgel is adhesive and moldable with low friction response, which provides moisture and responses to an infectious environment to deliver bactericidal and antioxidant effects in rat bacterial infection and burn wound models. By release control, instant short-term inflammation suppression is combined with sustained mechano-transduction signal inhibition. This dynamically modulates immune responses and delays En1+ fibroblast activation via the YAP-TEAD pathway, ultimately facilitating scarless wound regeneration. Genomic analyses showed that the enhanced reepithelization and mechanoregulation by MLVgel during different wound phases are indispensable for its therapeutic outcomes. Last, MLVgel resulted in markedly improved healing in a pig mature scar model, which demonstrated its translation potential. Our results also verified the necessity of programed dynamic regulation in the healing process.
Collapse
Affiliation(s)
- Haozhou Shu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| | - Taotian Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| | - Yilin Jiang
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zhenkang Diao
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| | - Yani Xu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jiaying Long
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Tianyuan Chen
- Institute of Systems Epidemiology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Mengxing Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Shiqi Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610000, People's Republic of China
| |
Collapse
|
3
|
Zhang T, Zhang R, Zhao C, Li Z, Wang L, Zhao H. Preparation, characterization, multidimensional applications and prospects of protein bio-based hydrogels: A review. Int J Biol Macromol 2025; 312:144199. [PMID: 40373903 DOI: 10.1016/j.ijbiomac.2025.144199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 05/03/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Protein bio-based hydrogels have emerged as a versatile and functional class of biomaterials due to their unique properties, including biocompatibility, biodegradability, tunable mechanical strength, and environmental responsiveness (pH, enzymes, ions and light). This review comprehensively explores the preparation methods, physicochemical properties, and multidimensional applications of protein-based hydrogels. Various fabrication techniques, such as chemical crosslinking, physical gelation, and enzymatic reactions, are discussed, highlighting their impact on the structure and functionality of hydrogels. The intrinsic properties of protein hydrogels are summarized in detail, including mechanical properties, swelling resistance, frost resistance, adhesion, biocompatibility and degradability. Furthermore, this review delves into their diverse applications, which span tissue engineering, drug delivery, wound healing, food preservation, biosensing, and environmental remediation. Finally, the challenges and future prospects of protein-based hydrogels are addressed, emphasizing the necessity for scalable production, enhanced stability, and multifunctional integration to meet the growing demands of advanced biomedical and industrial applications. This review aims to provide a comprehensive understanding of protein-based hydrogels and to inspire innovative research in this rapidly evolving field.
Collapse
Affiliation(s)
- Tianhao Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, China
| | - Ruihan Zhang
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhenchun Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| | - Hang Zhao
- Department of Hyperbaric Oxygen Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Hu Y, Zhou J, Gao Y, Fan Y, Chen B, Su J, Li H. Multifunctional nanocomposite hydrogels: an effective approach to promote diabetic wound healing. Biomed Mater 2025; 20:032006. [PMID: 40273939 DOI: 10.1088/1748-605x/add06f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 04/24/2025] [Indexed: 04/26/2025]
Abstract
Diabetes, a metabolic disease that is becoming increasingly severe globally, presents a significant challenge in the medical field. Diabetic wounds are characterized by their chronicity, difficulty healing, and complex microenvironment that harbors multiple adverse factors, including elevated hyperglycemia, persistent inflammation, susceptibility to infections, and oxidative stress, all of which contribute to the impaired healing process. Nanocomposite hydrogels, as materials with unique physicochemical properties and biocompatibility, have gained growing attention in recent years for their potential applications in diabetic wound healing. These hydrogels provide a moist healing environment for wounds and regulate cellular behavior and signaling pathways, promoting wound repair and healing. By introducing specific functional groups and nanoparticles, nanocomposite hydrogels can respond to pathological features of wounds, enabling adaptive drug release. Owing to their diverse bioactive functions, nanocomposite hydrogels are powerful tools for the treatment of diabetic wounds. Thus, this article provides an overview of recent progress in the use of nanocomposite hydrogels for diabetic wound healing.
Collapse
Affiliation(s)
- Yuchen Hu
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Junchao Zhou
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Yuhang Gao
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Ying Fan
- Chongqing University Jiangjin Hospital, Chongqing 402260, People's Republic of China
| | - Ban Chen
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Jiangtao Su
- National '111' Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Centre of Industrial Fermentation (Ministry of Education & Hubei Province), School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hong Li
- School of Pharmacy, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
5
|
Grosskopf AK, Ginart AA, Spinosa P, Shivva V. Pharmacokinetics-Based Design of Subcutaneous Controlled Release Systems for Biologics. CPT Pharmacometrics Syst Pharmacol 2025; 14:668-680. [PMID: 39856532 PMCID: PMC12001277 DOI: 10.1002/psp4.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 01/27/2025] Open
Abstract
Protein therapeutics have emerged as an exceedingly promising treatment modality in recent times but are predominantly given as intravenous administration. Transitioning to subcutaneous (SC) administration of these therapies could significantly enhance patient convenience by enabling at-home administration, thereby potentially reducing the overall cost of treatment. Approaches that enable sustained delivery of subcutaneously administered biologics offer further advantages in terms of less frequent dosing and better patient compliance. Controlled release technologies, such as hydrogels and subcutaneous implantable technologies, present exciting solutions by enabling the gradual release of biologics from the delivery system. Despite their substantial potential, significant hurdles remain in appropriately applying and integrating these technologies with the ongoing development of complex biologic-based therapies. We evaluate the potential impact of subcutaneously delivered controlled release systems on the downstream pharmacokinetics (PK) of several FDA-approved biologics by employing rigorous mathematical analysis and predictive PK simulations. By leveraging linear time-invariant (LTI) systems theory, we provide a robust framework for understanding and optimizing the release dynamics of these technologies. We demonstrate simple quantitative metrics and approaches that can inform the design and implementation of controlled release technologies. The findings highlight key opportunity areas to reduce dosing frequency, stabilize concentration profiles, and synergize the codelivery of biologics, calling for collaboration between drug delivery and PK scientists to create the most convenient, optimized, and effective precision therapies.
Collapse
Affiliation(s)
- Abigail K. Grosskopf
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| | - Antonio A. Ginart
- Department of Electrical EngineeringStanford UniversityStanfordCaliforniaUSA
| | - Phillip Spinosa
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| | - Vittal Shivva
- Department of Translational Pharmacokinetics and PharmacodynamicsGenentech Inc.South San FranciscoCaliforniaUSA
| |
Collapse
|
6
|
Li Y, Gan J, Lei J, Qi S, Yu X, Zhang W, Feng Y, Zhang Y, Cheng M, Ma L, Mao Z, Liu Z, Yu G. Catalytic Hybrid Lipid Nanoparticles Potentiate Circle RNA-Based Cytokine Immunotherapy. ACS NANO 2025; 19:7864-7876. [PMID: 39977421 DOI: 10.1021/acsnano.4c14517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Cytokine therapeutics in cancer immunotherapy are greatly limited by their short half-time, serious toxicity, and frequent administration, which can possibly be addressed by ribonucleic acid (RNA) technology through the expression of targeting cytokines in situ. However, the intracellular translation of RNA remains restricted due to the generation of excessive reactive oxygen species (ROS) and overconsumption of adenosine triphosphate (ATP) within the transfected cells. Herein, hybrid lipid nanoparticles (Mn-LNPs) are developed by incorporating small-sized trimanganese tetraoxide nanoparticles within conventional lipid nanoparticles, showing the ability to generate oxygen, eliminate ROS, and boost intracellular ATP, thus greatly enhancing the translation efficiency. This hybrid platform is employed to encapsulate interleukin 12 (IL-12)-encoding circular RNA (Mn-LNPs@RNAIL-12) for tumor immunotherapy, exhibiting unparalleled advantages in the proliferation of cytotoxic T cells and stimulation of antitumor immunity. Moreover, the antitumor efficacy of Mn-LNPs@RNAIL-12 is further strengthened by synergizing with immune checkpoint blockade therapy to achieve durable and potent antitumor performances.
Collapse
Affiliation(s)
- Yongcan Li
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jinqun Gan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jiaqi Lei
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xinyang Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Weibing Zhang
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Yunxuan Feng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yundong Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Meiqi Cheng
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhida Liu
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, P. R. China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
7
|
Zhang Q, Wang Y, Zhu Z, Ahmed W, Zhou D, Chen L. Therapeutic Potential of Injectable Supramolecular Hydrogels With Neural Stem Cell Exosomes and Hydroxypropyl Methylcellulose for Post-Stroke Neurological Recovery. Int J Nanomedicine 2025; 20:2253-2271. [PMID: 40007907 PMCID: PMC11853779 DOI: 10.2147/ijn.s505792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Background Stroke has significantly contributed to the global mortality rate over the years, emphasizing the urgency of finding effective treatment strategies. Neural stem cell (NSC)-derived exosomes have the potential to improve neurological recovery after stroke; however, their therapeutic efficacy is hindered by their rapid clearance and limited duration of action. This study presents an innovative drug delivery method: a hydrogel based on NSC exosomes and hydroxypropyl methylcellulose (HPMC), which is intended to offer a continuous release, thereby enhancing and prolonging neurological improvement. Results We developed a nanohydrogel (Exo-HPMC) by integrating Buyang Huanwu Decoction (BHD) -preconditioned NSC-derived exosomes with HPMC. This study thoroughly investigated the controlled-release capabilities and rheological properties of Exo-HPMC. Our findings show that Exo-HPMC enables effective sustained exosome release, significantly extending their retention in mice. When administered to mice with middle cerebral artery occlusion (MCAO), Exo-HPMC facilitated notable post-stroke neurorepair. Behavioral assessments and immunofluorescence staining demonstrated that exosomes significantly promoted angiogenesis and nerve regeneration in stroke-affected areas, thereby reversing programmed cell death. Conclusion The Exo-HPMC nanohydrogel presents a groundbreaking approach for stroke therapy. Ensuring a controlled and prolonged release of NSC-derived exosomes over two weeks, significantly enhances the therapeutic potential of exosomes for ischemic stroke treatment.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yupeng Wang
- Key Laboratory of Mental Health of the Ministry of Education, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Waqas Ahmed
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, People’s Republic of China
| | - Dongfang Zhou
- Key Laboratory of Mental Health of the Ministry of Education, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
8
|
Hu Y, Luo Z, Bao Y. Trends in Photopolymerization 3D Printing for Advanced Drug Delivery Applications. Biomacromolecules 2025; 26:85-117. [PMID: 39625843 PMCID: PMC11733939 DOI: 10.1021/acs.biomac.4c01004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 01/14/2025]
Abstract
Since its invention in the 1980s, photopolymerization-based 3D printing has attracted significant attention for its capability to fabricate complex microstructures with high precision, by leveraging light patterning to initiate polymerization and cross-linking in liquid resin materials. Such precision makes it particularly suitable for biomedical applications, in particular, advanced and customized drug delivery systems. This review summarizes the latest advancements in photopolymerization 3D printing technology and the development of biocompatible and/or biodegradable materials that have been used or shown potential in the field of drug delivery. The drug loading methods and release characteristics of the 3D printing drug delivery systems are summarized. Importantly, recent trends in the drug delivery applications based on photopolymerization 3D printing, including oral formulations, microneedles, implantable devices, microrobots and recently emerging systems, are analyzed. In the end, the challenges and opportunities in photopolymerization 3D printing for customized drug delivery are discussed.
Collapse
Affiliation(s)
- Yu Hu
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Zhi Luo
- Department
of Biomedical Engineering, Southern University
of Science and Technology, Shenzhen 518055, Guangdong, P.R. China
| | - Yinyin Bao
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
- Department
of Chemistry, Faculty of Science, University
of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
9
|
Wu J, Li H, Zhang N, Zheng Q. Micelle-Containing Hydrogels and Their Applications in Biomedical Research. Gels 2024; 10:471. [PMID: 39057494 PMCID: PMC11276039 DOI: 10.3390/gels10070471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are one of the most commonly used materials in our daily lives, which possess crosslinked three-dimensional network structures and are capable of absorbing large amounts of fluid. Due to their outstanding properties, such as flexibility, tunability, and biocompatibility, hydrogels have been widely employed in biomedical research and clinics, especially in on-demand drug release. However, traditional hydrogels face various limitations, e.g., the delivery of hydrophobic drugs due to their highly hydrophilic interior environment. Therefore, micelle-containing hydrogels have been designed and developed, which possess both hydrophilic and hydrophobic microenvironments and enable the storage of diverse cargos. Based on the functionalities of micelles, these hydrogels can be classified into micelle-doped and chemically/physically crosslinked types, which were reported to be responsive to varied stimuli, including temperature, pH, irradiation, electrical signal, magnetic field, etc. Here, we summarize the research advances of micelle-containing hydrogels and provide perspectives on their applications in the biomedical field based on the recent studies from our own lab and others.
Collapse
Affiliation(s)
- Jinghua Wu
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huapeng Li
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Zhang
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Qingfei Zheng
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Center for Cancer Metabolism, James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Aizik G, Ostertag-Hill CA, Chakraborty P, Choi W, Pan M, Mankus DV, Lytton-Jean AKR, Kohane DS. Injectable hydrogel based on liposome self-assembly for controlled release of small hydrophilic molecules. Acta Biomater 2024; 183:101-110. [PMID: 38834149 PMCID: PMC11239275 DOI: 10.1016/j.actbio.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Controlled release of low molecular weight hydrophilic drugs, administered locally, allows maintenance of high concentrations at the target site, reduces systemic side effects, and improves patient compliance. Injectable hydrogels are commonly used as a vehicle. However, slow release of low molecular weight hydrophilic drugs is very difficult to achieve, mainly due to a rapid diffusion of the drug out of the drug delivery system. Here we present an injectable and self-healing hydrogel based entirely on the self-assembly of liposomes. Gelation of liposomes, without damaging their structural integrity, was induced by modifying the cholesterol content and surface charge. The small hydrophilic molecule, sodium fluorescein, was loaded either within the extra-liposomal space or encapsulated into the aqueous cores of the liposomes. This encapsulation strategy enabled the achievement of controlled and adjustable release profiles, dependent on the mechanical strength of the gel. The hydrogel had a high mechanical strength, minimal swelling, and slow degradation. The liposome-based hydrogel had prolonged mechanical stability in vivo with benign tissue reaction. This work presents a new class of injectable hydrogel that holds promise as a versatile drug delivery system. STATEMENT OF SIGNIFICANCE: The porous nature of hydrogels poses a challenge for delivering small hydrophilic drug, often resulting in initial burst release and shorten duration of release. This issue is particularly pronounced with physically crosslinked hydrogels, since their matrix can swell and dissipate rapidly, but even in cases where the polymers in the hydrogel are covalently cross-linked, small molecules can be rapidly released through its porous mesh. Here we present an injectable self-healing hydrogel based entirely on the self-assembly of liposomes. Small hydrophilic molecules were entrapped inside the extra-liposomal space or loaded into the aqueous cores of the liposomes, allowing controlled and tunable release profiles.
Collapse
Affiliation(s)
- Gil Aizik
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Claire A Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Priyadarshi Chakraborty
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wonmin Choi
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michelle Pan
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David V Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail K R Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Harvard Institutes of Medicine, Boston, MA 02115, USA; Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Karmakar A, Silswal A, Koner AL. Review of NIR-responsive ''Smart'' carriers for photothermal chemotherapy. J Mater Chem B 2024; 12:4785-4808. [PMID: 38690723 DOI: 10.1039/d3tb03004k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
This review focuses on the versatile applications of near-infrared (NIR)-responsive smart carriers in biomedical applications, particularly drug delivery and photothermal chemotherapy. These carriers demonstrate multi-responsive theranostics capabilities, including pH-dependent drug release, targeted delivery of chemotherapeutics, heat-mediated drug release, and photothermal tumor damage. Biological samples are transparent to NIR light with a suitable wavelength, and therefore, NIR light is advantageous for deep-tissue penetration. It also generates sufficient heat in tissue samples, which is beneficial for on-demand NIR-responsive drug delivery in vivo systems. The development of biocompatible materials with sufficient NIR light absorption properties and drug-carrying functionality has shown tremendous growth in the last five years. Thus, this review offers insights into the current research development of NIR-responsive materials with therapeutic potential and prospects aimed at overcoming challenges to improve the therapeutic efficacy and safety in the dynamic field of NIR-responsive drug delivery.
Collapse
Affiliation(s)
- Abhijit Karmakar
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Akshay Silswal
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-462066, Madhya Pradesh, India.
| |
Collapse
|
12
|
Patel DK, Won SY, Patil TV, Dutta SD, Lim KT, Han SS. Unzipped carbon nanotubes assisted 3D printable functionalized chitosan hydrogels for strain sensing applications. Int J Biol Macromol 2024; 265:131025. [PMID: 38513895 DOI: 10.1016/j.ijbiomac.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Developing multifunctional hydrogels for wearable strain sensors has received significant attention due to their diverse applications, including human motion detection, personalized healthcare, soft robotics, and human-machine interfaces. However, integrating the required characteristics into one component remains challenging. To overcome these limitations, we synthesized multifunctional hydrogels using carboxymethyl chitosan (CMCS) and unzipped carbon nanotubes (f-CNTs) as strain sensor via a one-pot strategy. The polar groups in CMCS and f-CNTs enhance the properties of the hydrogels through different interactions. The hydrogels show superior printability with a uniformity factor (U) of 0.996 ± 0.049, close to 1. The f-CNTs-assisted hydrogels showed improved storage modulus (8.8 × 105 Pa) than the pure polymer hydrogel. The hydrogels adequately adhered to different surfaces, including human skin, plastic, plastic/glass interfaces, and printed polymers. The hydrogels demonstrated rapid self-healing and good conductivity. The biocompatibility of the hydrogels was assessed using human fibroblast cells. No adverse effects were observed with hydrogels, showing their biocompatibility. Furthermore, hydrogels exhibited antibacterial potential against Escherichia coli. The developed hydrogel exhibited unidirectional motion and complex letter recognition potential with a strain sensitivity of 2.4 at 210 % strain. The developed hydrogels could explore developing wearable electronic devices for detecting human motion.
Collapse
Affiliation(s)
- Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - So-Yeon Won
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Tejal V Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
13
|
Han XS, Li PC, Song HT, Chen YM, Li JH, Yang Y, Li HP, Miyatake H, Ito Y. Mussel inspired sequential protein delivery based on self-healing injectable nanocomposite hydrogel. Int J Biol Macromol 2024; 264:130568. [PMID: 38447822 DOI: 10.1016/j.ijbiomac.2024.130568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
Polysaccharide based self-healing and injectable hydrogels with reversible characteristics have widespread potential in protein drug delivery. However, it is a challenge to design the dynamic hydrogel for sequential release of protein drugs. Herein, we developed a novel mussel inspired sequential protein delivery dynamic polysaccharide hydrogel. The nanocomposite hydrogel can be fabricated through doping polydopamine nanoparticles (PDA NPs) into reversible covalent bond (imine bonds) crosslinked polymer networks of oxidized hyaluronic acid (OHA) and carboxymethyl chitosan (CEC), named PDA NPs@OHA-l-CEC. Besides multiple capabilities (i.e., injection, self-healing, and biodegradability), the nanocomposite hydrogel can achieve sustained and sequential protein delivery of vascular endothelial growth factor (VEGF) and bovine serum albumin (BSA). PDA NPs doped in hydrogel matrix serve dual roles, acting as secondary protein release structures and form dynamic non-covalent interactions (i.e., hydrogen bonds) with polysaccharides. Moreover, by adjusting the oxidation degree of OHA, the hydrogels with different crosslinking density could control overall protein release rate. Analysis of different release kinetic models revealed that Fickian diffusion drove rapid VEGF release, while the slower BSA release followed a Super Case II transport mechanism. The novel biocompatible system achieved sequential release of protein drugs has potentials in multi-stage synergistic drug deliver based on dynamic hydrogel.
Collapse
Affiliation(s)
- Xiao Shuai Han
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Peng Cheng Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Heng Tao Song
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China.
| | - Jian Hui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an 710068, PR China.
| | - Yang Yang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hao Peng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, College of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center formergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center formergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
14
|
D’Elia A, Jones OL, Canziani G, Sarkar B, Chaiken I, Rodell CB. Injectable Granular Hydrogels Enable Avidity-Controlled Biotherapeutic Delivery. ACS Biomater Sci Eng 2024; 10:1577-1588. [PMID: 38357739 PMCID: PMC10934254 DOI: 10.1021/acsbiomaterials.3c01906] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Protein therapeutics represent a rapidly growing class of pharmaceutical agents that hold great promise for the treatment of various diseases such as cancer and autoimmune dysfunction. Conventional systemic delivery approaches, however, result in off-target drug exposure and a short therapeutic half-life, highlighting the need for more localized and controlled delivery. We have developed an affinity-based protein delivery system that uses guest-host complexation between β-cyclodextrin (CD, host) and adamantane (Ad, guest) to enable sustained localized biomolecule presentation. Hydrogels were formed by the copolymerization of methacrylated CD and methacrylated dextran. Extrusion fragmentation of bulk hydrogels yielded shear-thinning and self-healing granular hydrogels (particle diameter = 32.4 ± 16.4 μm) suitable for minimally invasive delivery and with a high host capacity for the retention of guest-modified proteins. Bovine serum albumin (BSA) was controllably conjugated to Ad via EDC chemistry without affecting the affinity of the Ad moiety for CD (KD = 12.0 ± 1.81 μM; isothermal titration calorimetry). The avidity of Ad-BSA conjugates was directly tunable through the number of guest groups attached, resulting in a fourfold increase in the complex half-life (t1/2 = 5.07 ± 1.23 h, surface plasmon resonance) that enabled a fivefold reduction in protein release at 28 days. Furthermore, we demonstrated that the conjugation of Ad to immunomodulatory cytokines (IL-4, IL-10, and IFNγ) did not detrimentally affect cytokine bioactivity and enabled their sustained release. Our strategy of avidity-controlled delivery of protein-based therapeutics is a promising approach for the sustained local presentation of protein therapeutics and can be applied to numerous biomedical applications.
Collapse
Affiliation(s)
- Arielle
M. D’Elia
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Olivia L. Jones
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Gabriela Canziani
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Biplab Sarkar
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Irwin Chaiken
- Department
of Biochemistry and Molecular Biology, Drexel
University College of Medicine, Philadelphia, Pennsylvania 19102, United States
| | - Christopher B. Rodell
- School
of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Yang A, Wang Y, Feng Q, Fatima K, Zhang Q, Zhou X, He C. Integrating Fluorescence and Magnetic Resonance Imaging in Biocompatible Scaffold for Real-Time Bone Repair Monitoring and Assessment. Adv Healthc Mater 2024; 13:e2302687. [PMID: 37940192 DOI: 10.1002/adhm.202302687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/05/2023] [Indexed: 11/10/2023]
Abstract
In situ monitoring of bone tissue regeneration progression is critical for the development of bone tissue engineering scaffold. However, engineered scaffolds that can stimulate osteogenic progress and allow for non-invasive monitoring of in vivo bone regeneration simultaneously are rarely reported. Based on a hard-and-soft integration strategy, a multifunctional scaffold composed of 3D printed microfilaments and a hydrogel network containing simvastatin (SV), indocyanine green-loaded superamphiphiles, and aminated ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NH2 ) is fabricated. Both in vitro and in vivo results demonstrate that the as-prepared scaffold significantly promotes osteogenesis through controlled SV release. The biocomposite scaffold exhibits alkaline phosphatase-responsive near-infrared II fluorescence imaging. Meanwhile, USPIO-NH2 within the co-crosslinked nanocomposite network enables the visualization of scaffold degradation by magnetic resonance imaging. Therefore, the biocomposite scaffold enables or facilitates non-invasive in situ monitoring of neo-bone formation and scaffold degradation processes following osteogenic stimulation, offering a promising strategy to develop theranostic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Ai Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Wang
- Department of Radiology, Shanghai Songjiang District Central Hospital, Shanghai, 201600, China
| | - Qian Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Kanwal Fatima
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Qianqian Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaojun Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Chuanglong He
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
16
|
Abune L, Wen C, Lee K, Wang X, Ravnic D, Wang Y. Elastic Macroporous Matrix-Supported In Situ Formation of Injectable Extracellular Matrix-Like Hydrogel for Carrying Growth Factors and Living Cells. Macromol Biosci 2024; 24:e2300475. [PMID: 37955619 PMCID: PMC10939927 DOI: 10.1002/mabi.202300475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 11/14/2023]
Abstract
Hydrogels loaded with biologics hold great potential for various biomedical applications such as regenerative medicine. However, biologics may lose bioactivity during hydrogel preparation, shipping, and storage. While many injectable hydrogels do not have this issue, they face a dilemma between fast gelation causing the difficulty of injection and slow gelation causing the escape of solutions from an injection site. The purpose of this study is to develop an affinity hydrogel by integrating a pre-formed elastic macroporous matrix and an injectable hydrogel. The data shows that the macroporous hydrogel matrix can hold a large volume of solutions for the formation of in situ injectable hydrogels loaded with growth factors or living cells. The cells can proliferate in the composite hydrogels. The growth factors can be stably sequestered and sustainably released due to the presence of aptamers. When both living cells and growth factors are loaded together into the hydrogels, cells can proliferate under culture conditions with a reduced serum level. Therefore, a macroporous and elastic matrix-supported formation of aptamer-functionalized injectable hydrogels is a promising method for developing the carriers of biologics.
Collapse
Affiliation(s)
- Lidya Abune
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Connie Wen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Kyungsene Lee
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Xuelin Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dino Ravnic
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Yong Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
17
|
Wu S, Liu G, Shao P, Lin X, Yu J, Chen H, Li H, Feng S. Transdermal Sustained Release Properties and Anti-Photoaging Efficacy of Liposome-Thermosensitive Hydrogel System. Adv Healthc Mater 2024; 13:e2301933. [PMID: 37607774 DOI: 10.1002/adhm.202301933] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Drug delivery systems have become a research priority in the biomedical field. The incorporation of liposomes to hydrogels further forms more robust multifunctional systems for more effective and sustained topical drug delivery. In this study, carboxymethyl-modified chitosan/hyaluronic acid (CMC/HA, CMH) thermosensitive hydrogel is developed for sustained transdermal delivery of liposomes. Hydrogels are crosslinked by hydrogen bonding, hydrophobic interaction and electrostatic interaction. The gel properties can be regulated by substitution degree (DS), and when DS = 18.20 ± 0.67% (CMH2), the gel temperature is 37.8 °C, allowing rapid gelation at body temperature (315 s). Moreover, CMH2 hydrogel has suitable spreadability (17.7-57.2 cm2 ), viscosity (2133.4 mPa s) and porous structure, which facilitated its adhesion and application on the skin and liposomes delivery. The hydrogel can retard the liposomes release, and the release rate of ascorbyl glucoside (AA2G) is 33.92-49.35% in 24 h. Hydrogel avoids the rapid clearance of liposomes from the skin and improved the skin retention, achieving the long-term release of bioactive components. Liposome-hydrogel system more efficiently promotes the anti-photoaging effect of AA2G on skin, reducing epidermal thickness, melanin deposition and lipid oxidative damage and increasing collagen density. Therefore, liposome-hydrogel systems are proposed as multifunctional delivery systems for sustained transdermal delivery.
Collapse
Affiliation(s)
- Sijie Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Gaodan Liu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jiahao Yu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| | - Hanchi Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huiliang Li
- Zhejiang Yige Beauty Group, Hangzhou, 310000, China
| | - Simin Feng
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
18
|
Zhang D, Li Z, Yang L, Ma H, Chen H, Zeng X. Architecturally designed sequential-release hydrogels. Biomaterials 2023; 303:122388. [PMID: 37980822 DOI: 10.1016/j.biomaterials.2023.122388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 11/04/2023] [Indexed: 11/21/2023]
Abstract
Drug synergy has made significant strides in clinical applications in recent decades. However, achieving a platform that enables "single administration, multi-stage release" by emulating the natural physiological processes of the human body poses a formidable challenge in the field of molecular pharmaceutics. Hydrogels, as the novel generation of drug delivery systems, have gained widespread utilization in drug platforms owing to their exceptional biocompatibility and modifiability. Sequential drug delivery hydrogels (SDDHs), which amalgamate the advantages of hydrogel and sequential release platforms, offer a promising solution for effectively navigating the intricate human environment and accomplishing drug sequential release. Inspired by architectural design, this review establishes connections between three pivotal factors in SDDHs construction, namely mechanisms, carrier spatial structure, and stimuli-responsiveness, and three aspects of architectural design, specifically building materials, house structures, and intelligent interactive furniture, aiming at providing insights into recent developments in SDDHs. Furthermore, the dual-drug collocation and cutting-edge hydrogel preparation technologies as well as the prevailing challenges in the field were elucidated.
Collapse
Affiliation(s)
- Dan Zhang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zimu Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Li Yang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Hualin Ma
- Department of Nephrology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, China.
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
19
|
Erfani A, Reichert P, Narasimhan CN, Doyle PS. Injectable hydrogel particles for amorphous solid formulation of biologics. iScience 2023; 26:107452. [PMID: 37593455 PMCID: PMC10428138 DOI: 10.1016/j.isci.2023.107452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
Abstract
The fast pace of breakthroughs in cancer immunotherapy, combined with the new paradigm of moving toward high-concentration dosages and combinatorial treatments, is generating new challenges in the formulation of biologics. To address these challenges, we describe a method of formulation that enables high-concentration injectable and stable formulation of biologics as amorphous solids in aqueous suspension. This technology combines the benefits of liquid formulation with the stability of solid formulation and eliminates the need for drying and reconstitution. This widely applicable formulation integrates the amorphous solid forms of antibodies with the injectability, lubricity, and tunability of soft alginate hydrogel particles using a minimal process. The platform was evaluated for anti-PD-1 antibody pembrolizumab and human immunoglobulin G at concentrations up to 300 mg/mL with confirmed quality after release. The soft nature of the hydrogel matrix allowed packing the particles to high volume fractions.
Collapse
Affiliation(s)
- Amir Erfani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | - Patrick S. Doyle
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Harvard Medical School Initiative for RNA Medicine, Boston, MA 02215, USA
| |
Collapse
|
20
|
Nichifor M. Role of Hydrophobic Associations in Self-Healing Hydrogels Based on Amphiphilic Polysaccharides. Polymers (Basel) 2023; 15:polym15051065. [PMID: 36904306 PMCID: PMC10005649 DOI: 10.3390/polym15051065] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
Self-healing hydrogels have the ability to recover their original properties after the action of an external stress, due to presence in their structure of reversible chemical or physical cross-links. The physical cross-links lead to supramolecular hydrogels stabilized by hydrogen bonds, hydrophobic associations, electrostatic interactions, or host-guest interactions. Hydrophobic associations of amphiphilic polymers can provide self-healing hydrogels with good mechanical properties, and can also add more functionalities to these hydrogels by creating hydrophobic microdomains inside the hydrogels. This review highlights the main general advantages brought by hydrophobic associations in the design of self-healing hydrogels, with a focus on hydrogels based on biocompatible and biodegradable amphiphilic polysaccharides.
Collapse
Affiliation(s)
- Marieta Nichifor
- Department of Natural Polymers, Bioactive and Biocompatible Materials, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore Ghica Voda 41A, 700487 Iasi, Romania
| |
Collapse
|
21
|
Karaz S, Senses E. Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications. ADVANCED NANOBIOMED RESEARCH 2023. [DOI: 10.1002/anbr.202200101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Selcan Karaz
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| | - Erkan Senses
- Department of Chemical and Biological Engineering Koç University Istanbul 34450 Turkey
| |
Collapse
|
22
|
Cheung TH, Xue C, Kurtz DA, Shoichet MS. Protein Release by Controlled Desorption from Transiently Cationic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50560-50573. [PMID: 36703567 DOI: 10.1021/acsami.2c19877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Therapeutic release from hydrogels is traditionally controlled by encapsulation within nanoparticles; however, this strategy is limited for the release of proteins due to poor efficiency and denaturation. To overcome this problem, we designed an encapsulation-free release platform where negatively charged proteins are adsorbed to the exterior of transiently cationic nanoparticles, thus allowing the nanoparticles to be formulated separately from the proteins. Release is then governed by the change in nanoparticle surface charge from positive to neutral. To achieve this, we synthesized eight zwitterionic poly(lactide-block-carboxybetaine) copolymer derivatives and formulated them into nanoparticles with differing surface chemistry. The nanoparticles were colloidally stable and lost positive charge at rates dependent on the hydrolytic stability of their surface ester groups. The nanoparticles (NPs) were dispersed in a physically cross-linked hyaluronan-based hydrogel with one of three negatively charged proteins (transferrin, panitumumab, or granulocyte-macrophage colony-stimulating factor) to assess their ability to control release. For all three proteins, dispersing NPs within the gels resulted in significant attenuation of release, with the extent modulated by the hydrolytic stability of the surface groups. Release was rapid from fast-hydrolyzing ester groups, reduced with slow-hydrolyzing bulky ester groups, and very slow with nonhydrolyzing amide groups. When positively charged lysozyme was loaded into the nanocomposite gel, there was no significant attenuation of release compared to gel alone. These data demonstrate that electrostatic interactions between the protein and NP are the primary driver of protein release from the hydrogel. All released proteins retained bioactivity as determined with in vitro cell assays. This release strategy shows tremendous versatility and provides a promising new platform for controlled release of anionic protein therapeutics.
Collapse
Affiliation(s)
- Timothy H Cheung
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Chang Xue
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
| | - Daniel A Kurtz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
| | - Molly S Shoichet
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, OntarioM5S 3H6, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, OntarioM5S 3E1, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, OntarioM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, OntarioM5S 3E5, Canada
| |
Collapse
|
23
|
Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release 2023; 353:51-62. [PMID: 36410613 DOI: 10.1016/j.jconrel.2022.11.032] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Compared to subcutaneous injections, oral administration of insulin would be a preferred route of drug administration for diabetic patients. For oral delivery, both liposomes and alginate hydrogels face many challenges, including early burst release of the encapsulated drug and poor intestinal drug absorption. Also, adhesion to the intestinal mucosa remains weak, which all result in a low bioavailability of the payload. This study reports on an alginate hydrogel loaded with liposomes for oral insulin administration. Liposomes (Lip) loaded with arginine-insulin complexes (AINS) were incorporated into a hydrogel prepared from cysteine modified alginate (Cys-Alg) to form liposome-in-alginate hydrogels (AINS-Lip-Gel). An ex vivo study proves that intestinal permeation of AINS and AINS-Lip is approximately 2.0 and 6.0-fold, respectively, higher than that of free insulin. The hydrogel retarded early release of insulin (∼30%) from the liposomes and enhanced the intestinal mucosal retention. In vivo experiments revealed that the AINS-Lip-Gel released insulin in a controlled manner and possessed strong hypoglycemic effects. We conclude that liposome-in-alginate hydrogels loaded with AINS represent an attractive strategy for the oral delivery of insulin.
Collapse
|
24
|
Tang B, Yang X, Zhang A, Wang Q, Fan L, Fang G. Polypseudorotaxane hydrogel based on Tween 80 and α-cyclodextrin for sustained delivery of low molecular weight heparin. Carbohydr Polym 2022; 297:120002. [DOI: 10.1016/j.carbpol.2022.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
|
25
|
Advanced Formulations/Drug Delivery Systems for Subcutaneous Delivery of Protein-Based Biotherapeutics. J Pharm Sci 2022; 111:2968-2982. [PMID: 36058255 DOI: 10.1016/j.xphs.2022.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 12/14/2022]
Abstract
Multiple advanced formulations and drug delivery systems (DDSs) have been developed to deliver protein-based biotherapeutics via the subcutaneous (SC) route. These formulations/DDSs include high-concentration solution, co-formulation of two or more proteins, large volume injection, protein cluster/complex, suspension, nanoparticle, microparticle, and hydrogel. These advanced systems provide clinical benefits related to efficacy and safety, but meanwhile, have more complicated formulations and manufacturing processes compared to conventional solution formulations. To develop a fit-for-purpose formulation/DDS for SC delivery, scientists need to consider multiple factors, such as the primary indication, targeted site, immunogenicity, compatibility, biopharmaceutics, patient compliance, etc. Next, they need to develop appropriate formulation (s) and manufacturing processes using the QbD principle and have a control strategy. This paper aims to provide a comprehensive review of advanced formulations/DDSs recently developed for SC delivery of proteins, as well as some knowledge gaps and potential strategies to narrow them through future research.
Collapse
|