1
|
Ranjbar M, Shab-Bidar S, Rostamian A, Mohammadi H, Tavakoli A, Djafarian K. Effects of intermittent fasting diet in overweight and obese postmenopausal women with rheumatoid arthritis: A randomized controlled clinical trial. Complement Ther Med 2025; 91:103189. [PMID: 40354829 DOI: 10.1016/j.ctim.2025.103189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/28/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Rheumatoid arthritis (RA), in the category of rheumatic diseases, is an autoimmune illness that affects joints and other parts of suffered patients. Intermittent fasting (IF) is a dietary pattern that has had beneficial impacts on several populations. This randomized controlled trial (RCT) hypothesized that IF can improve quality of life, clinical symptoms, inflammation, and oxidative stress in overweight and obese postmenopausal women with RA. METHOD This study was a controlled, parallel-group superiority design in which 44 overweight and obese postmenopausal women with RA were randomly allocated to receive either IF (n = 22) or the usual diet (n = 22) for 8 weeks. The intervention group received 16/8 IF, and the control group received the typical diet for 8 weeks. The primary outcome was the Health Assessment Questionnaire-Disability Index (HAQ-DI) questionnaire score. The secondary outcomes included body mass index (BMI) and morning joint stiffness (MS) and biochemical indicators, including serum concentrations of erythrocyte sedimentation rate (ESR), high sensitive c-reactive protein (hs-CRP), and total oxidant and antioxidant capacity (TOC and TAC), and oxidative stress index (OSI), and interleukin 6 (IL-6) were assessed at the baseline and end of the study. Disease severity was assessed using the Disease Activity Score-28 (DAS-28) and Clinical Disease Activity Index (CDAI). RESULTS The IF diet significantly improved BMI, DAS-28, CDAI, and HAQ (p-value<0.05 for all). However, there were no significant effects on the other study outcomes. CONCLUSION IF has beneficial effects on some outcomes related to RA patients, while it has no significant impact on inflammation and oxidative stress markers. More studies are needed to determine IF's effects on RA patients.
Collapse
Affiliation(s)
- Mahsa Ranjbar
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolrahman Rostamian
- Department of Internal Medicine, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Aryan Tavakoli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Kurosh Djafarian
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Institute, Sports Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Li C, Liu X, Chen X, Zhang J, Liao Y, Fan Z, Zhang X. Bu-Sui-Dan Enhances Osteoblast Differentiation by Upregulating VGLL4 to Counteract TEAD4-Mediated RUNX2 Transcription Suppression in Ovariectomized Rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118690. [PMID: 39142621 DOI: 10.1016/j.jep.2024.118690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Postmenopausal osteoporosis (PMOP) has been considered as a major causative factor for bone-joint pain and inducing pathologic fractures. Bu-Sui-Dan (BSD), a classic ancient herbal formula, has been shown to exhibit osteoprotective effects by promoting bone marrow development and bone growth. However, the exact mechanism of BSD are still unexplored. AIM OF STUDY The study aimed to investigate the protective effect of BSD against osteoporotic injury, and to explore whether BSD regulated BMSCs' osteogenic differentiation by targeting VGLL4, which in turn improved PMOP. MATERIALS AND METHODS The anti-osteoporotic effect of BSD was studied in ovariectomized (OVX) rats and bone marrow mesenchymal stem cells (BMSCs). Micro-CT imaging and HE staining were performed, and the levels of osteogenic protein RUNX2 and osteogenesis-related factor VGLL4 were determined. Co-immunoprecipitation (Co-IP) was further employed to delve into the effects of BSD on the interactions between TEAD4 and RUNX2. The key osteogenic factors 1ALP, COLl1A1, and Osterix expression were detected by RT-qPCR. Co-IP and proximity ligation assay (PLA) were employed to scrutinize the influence of BSD on TEAD4 and RUNX2 inter-binding. Moreover, VGLL4 knockdown in BMSCs was conducted to confirm the role of VGLL4 in the therapeutic mechanism of BSD. RESULTS BSD showed a dose-dependent protective effect against osteoporotic injury, as evidenced by improvement in bone volume, bone microarchitecture, and histomorphometry. Additionally, BSD treatment increased the levels of RUNX2 and its downstream target genes including ALP, COL1A1, and Osterix. Moreover, BSD upregulated VGLL4 expression and lessened TEAD4-RUNX2 interactions. In BMSCs experiment, BSD-containing serum could promote osteogenic differentiation of BMSCs, boosted the expression of osteogenesis-related factors and VGLL4 level. The knockdown of VGLL4 in BMSCs diminished the promotion effect of BSD in osteoblast differentiation, suggesting that VGLL4 play a vital role in the therapeutic effects exerted by BSD. CONCLUSION BSD ameliorated osteoporosis injury and promoted osteoblast differentiation through upregulation of VGLL4 levels, which in turn antagonized TEAD4-mediated RUNX2 transcriptional repression. Our study implied that BSD may be an osteoporosis therapeutic agent.
Collapse
Affiliation(s)
- Chao Li
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| | - Xiaofeng Liu
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xi Chen
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Jiayan Zhang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China; School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Yitao Liao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Zhihong Fan
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, 210023, Jiangsu, China.
| | - Xian Zhang
- Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi, 214000, Jiangsu, China.
| |
Collapse
|
3
|
Tao J, Li H, Wang H, Tan J, Yang X. Metabolic dysfunction-associated fatty liver disease and osteoporosis: the mechanisms and roles of adiposity. Osteoporos Int 2024; 35:2087-2098. [PMID: 39136721 DOI: 10.1007/s00198-024-07217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 11/21/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has recently been renamed metabolic dysfunction-associated fatty liver disease (MAFLD) by international consensus. Both MAFLD and osteoporosis are highly prevalent metabolic diseases. Recent evidence indicates that NAFLD increases the risk of low bone mineral density and osteoporosis, likely mediated by obesity. NAFLD has a close association with obesity and other metabolic disorders. Although obesity was previously thought to protect against bone loss, it now heightens osteoporotic fracture risk. This overview summarizes current clinical correlations between obesity, NAFLD, and osteoporosis, with a focus on recent insights into potential mechanisms interconnecting these three conditions. This study reviewed the scientific literature on the relationship between obesity, nonalcoholic fatty liver disease, and osteoporosis as well as the scientific literature that reveals the underlying pathophysiologic mechanisms between the three. Emerging evidence suggests obesity plays a key role in mediating the relationship between NAFLD and osteoporosis. Accumulating laboratory evidence supports plausible pathophysiological links between obesity, NAFLD, and osteoporosis, including inflammatory pathways, insulin resistance, gut microbiota dysbiosis, bone marrow adiposity, and alterations in insulin-like growth factor-1 signaling. Adiposity has important associations with NAFLD and osteoporosis, the underlying pathophysiologic mechanisms between the three may provide new therapeutic targets for this complex patient population.
Collapse
Affiliation(s)
- Jie Tao
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Li
- Department of Health Management Center, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Honggang Wang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Juan Tan
- Department of General Practice, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Xiaozhong Yang
- Department of Gastroenterology, the Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| |
Collapse
|
4
|
Vachliotis ID, Anastasilakis AD, Rafailidis V, Polyzos SA. Osteokines in Nonalcoholic Fatty Liver Disease. Curr Obes Rep 2024; 13:703-723. [PMID: 39225951 DOI: 10.1007/s13679-024-00586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW To critically summarize evidence on the potential role of osteokines in the pathogenesis and progression of nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS There are emerging data supporting that certain osteokines, which are specific bone-derived proteins, may beneficially or adversely affect hepatic metabolism, and their alterations in the setting of osteoporosis or other bone metabolic diseases may possibly contribute to the development and progression of NAFLD. There is evidence showing a potential bidirectional association between NAFLD and bone metabolism, which may imply the existence of a liver-bone axis. In this regard, osteocalcin, osteoprotegerin, bone morphogenic protein 4 (BMP4) and BMP6 appear to have a positive impact on the liver, thus possibly alleviating NAFLD, whereas osteopontin, receptor activator of nuclear factor kappa Β ligand (RANKL), sclerostin, periostin, BMP8B, and fibroblast growth factor 23 (FGF23) appear to have a negative impact on the liver, thus possibly exacerbating NAFLD. The potential implication of osteokines in NAFLD warrants further animal and clinical research in the field that may possibly result in novel therapeutic targets for NAFLD in the future.
Collapse
Affiliation(s)
- Ilias D Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | | | - Vasileios Rafailidis
- Department of Clinical Radiology, AHEPA University Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
5
|
Li J, Sun L, Wang F, Yin S, Li S, Zhang J, Wu D. Pro-differentiative, Pro-adhesive and Pro-migratory Activities of Isorhamnetin in MC3T3-E1 Osteoblasts via Activation of ERK-dependent BMP2-Smad Signaling. Cell Biochem Biophys 2024; 82:3607-3617. [PMID: 39136840 DOI: 10.1007/s12013-024-01450-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
Osteoporosis (OP) is an epidemic bone remodeling disorder of growing relevance with the aging population. Considering that isorhamnetin (ISO), a flavonoid derived from plant, has been newly reckoned as an active ingredient in treating OP, our paper was conducted to investigate the regulatory role and mechanism of ISO in OP. CCK-8 method detected cell activity. Alkaline phosphatase (ALP) assay kit, ALP staining and alizarin red S staining measured osteogenic differentiation. RT-qPCR and Western blot examined the expressions of osteoblast-related proteins. Wound healing and cell adhesion assays severally detected cell migration and adhesion. Also, Western blot tested the expressions of extracellular signal-regulated kinase (ERK) signaling-associated proteins. As illustrated, after MC3T3-E1 pre-osteoblasts were stimulated to differentiate to osteoblasts, ISO markedly promoted the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts in a concentration-dependent manner. In addition, administration of ISO functioned as an activator of ERK-dependent BMP2-Smad signaling in MC3T3-E1 osteoblasts and pretreatment with ERK inhibitor PD98059 partially compensated the impacts of ISO on MC3T3-E1 osteoblasts differentiation, mineralization, migration as well as adhesion. To be summarized, ISO might activate ERK-dependent BMP2-Smad signaling to facilitate the differentiation, mineralization, migration and adhesion of MC3T3-E1 osteoblasts, suggesting the protective potential of ISO in OP.
Collapse
Affiliation(s)
- Jing Li
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Lili Sun
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Fanli Wang
- Pharmacy Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Shihua Yin
- Sports Health Technology College, Jilin Sports University, Jilin, China
| | - Siwei Li
- Department of Orthopedics, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| | - Jiaoyue Zhang
- Genetic Testing Center, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China.
| | - Dengbin Wu
- Oncology Department, Ansteel Group Hospital, Anshan City, Liaoning, 114002, China
| |
Collapse
|
6
|
Bogdan-Andreescu CF, Bănățeanu AM, Albu CC, Poalelungi CV, Botoacă O, Damian CM, Dȋră LM, Albu ŞD, Brăila MG, Cadar E, Brăila AD. Oral Mycobiome Alterations in Postmenopausal Women: Links to Inflammation, Xerostomia, and Systemic Health. Biomedicines 2024; 12:2569. [PMID: 39595135 PMCID: PMC11592264 DOI: 10.3390/biomedicines12112569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The oral mycobiome plays a critical role in maintaining oral and systemic health, with its composition and function influenced by various physiological and environmental factors. This descriptive review explores the changes in the oral mycobiome among postmenopausal women, examining how aging and associated inflammatory processes contribute to these alterations. These changes are linked to an increased prevalence of xerostomia, oral dysbiosis, and inflammation, which can negatively impact both oral and systemic health. We discuss the impact of hormonal fluctuations and immune senescence on fungal diversity and abundance, highlighting key species implicated in oral and systemic diseases. The review also examines the role of systemic conditions and medications, which are common in postmenopausal women, in further exacerbating oral mycobiome alterations. Lastly, it highlights the need for future research to better understand these interactions and develop targeted therapeutic strategies. The current literature indicates a significant association between menopausal status, age-related mycobiome shifts, and increased inflammatory responses, suggesting potential pathways for intervention.
Collapse
Affiliation(s)
- Claudia Florina Bogdan-Andreescu
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Andreea-Mariana Bănățeanu
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Cristina-Crenguţa Albu
- Department of Genetics, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristian-Viorel Poalelungi
- Department of Obstetrics and Gynecology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Oana Botoacă
- Department of Speciality Disciplines, Faculty of Dental Medicine, “Titu Maiorescu” University, 031593 Bucharest, Romania; (C.F.B.-A.); (A.-M.B.); (O.B.)
| | - Constantin Marian Damian
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| | - Laurențiu Mihai Dȋră
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| | - Ştefan-Dimitrie Albu
- Department of Periodontology, Faculty of Dentistry, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Matei Georgian Brăila
- Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Emin Cadar
- Faculty of Pharmacy, “Ovidius” University, 900470 Constanta, Romania;
| | - Anca Daniela Brăila
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (C.M.D.); (L.M.D.); (A.D.B.)
| |
Collapse
|
7
|
Gu DR, Yang H, Kim SC, Lee SJ, Ha H. Water Extract of Pulsatilla koreana Nakai Inhibits Osteoclast Differentiation and Alleviates Ovariectomy-Induced Bone Loss. Int J Mol Sci 2024; 25:11616. [PMID: 39519166 PMCID: PMC11547052 DOI: 10.3390/ijms252111616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Pulsatilla koreana Nakai (P. koreana) is a perennial herb traditionally used to treat malaria and fever. Although the pharmacological properties of P. koreana have been explored in various contexts, its effects on bone diseases, such as osteoporosis, remain poorly studied. In this study, we investigated the effects of water extracts of P. koreana (WEPK) on osteoclasts, which play a crucial role in bone remodeling, and an ovariectomized (OVX) mouse model, which mimics osteoporosis. Phytochemical profiling of WEPK revealed several compounds that regulate bone or fat metabolism. WEPK suppressed osteoclast differentiation by downregulating the expression of receptor activator of nuclear factor-κB ligand (RANKL), a cytokine that induces osteoclastogenesis. Additionally, WEPK directly inhibited RANKL-induced differentiation of osteoclast precursors by downregulating nuclear factor of activated T cells 1 (NFATc1), the master transcription factor for osteoclastogenesis, by modulating its upstream regulators. In vivo, oral administration of WEPK suppressed bone loss, reduced weight gain, and mitigated fat accumulation in the liver and gonadal tissues of OVX mice. Given its positive impact on bone and fat accumulation under estrogen deficiency, WEPK may serve as a promising alternative therapy for postmenopausal osteoporosis, especially when accompanied by other metabolic disorders, such as obesity and fatty liver.
Collapse
Affiliation(s)
| | | | | | | | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (D.R.G.); (H.Y.); (S.C.K.); (S.-J.L.)
| |
Collapse
|
8
|
Yang S, Chen Q, Fan Y, Zhang C, Cao M. The essential role of dual-energy x-ray absorptiometry in the prediction of subclinical cardiovascular disease. Front Cardiovasc Med 2024; 11:1377299. [PMID: 39280034 PMCID: PMC11393745 DOI: 10.3389/fcvm.2024.1377299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Subclinical cardiovascular disease (Sub-CVD) is an early stage of cardiovascular disease and is often asymptomatic. Risk factors, including hypertension, diabetes, obesity, and lifestyle, significantly affect Sub-CVD. Progress in imaging technology has facilitated the timely identification of disease phenotypes and risk categorization. The critical function of dual-energy x-ray absorptiometry (DXA) in predicting Sub-CVD was the subject of this research. Initially used to evaluate bone mineral density, DXA has now evolved into an indispensable tool for assessing body composition, which is a pivotal determinant in estimating cardiovascular risk. DXA offers precise measurements of body fat, lean muscle mass, bone density, and abdominal aortic calcification, rendering it an essential tool for Sub-CVD evaluation. This study examined the efficacy of DXA in integrating various risk factors into a comprehensive assessment and how the application of machine learning could enhance the early discovery and control of cardiovascular risks. DXA exhibits distinct advantages and constraints compared to alternative imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography. This review advocates DXA incorporation into cardiovascular health assessments, emphasizing its crucial role in the early identification and management of Sub-CVD.
Collapse
Affiliation(s)
- Sisi Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Fan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Yang Q, Wang X, Liu Y, Liu J, Zhu D. Metabolic factors are not the direct mediators of the association between type 2 diabetes and osteoporosis. Front Endocrinol (Lausanne) 2024; 15:1404747. [PMID: 39119008 PMCID: PMC11306037 DOI: 10.3389/fendo.2024.1404747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024] Open
Abstract
Objective The causal relationship between type 2 diabetes mellitus (T2DM) and osteoporosis (OS) remains unclear. This study aims to investigate the causal relationship and explore the potential metabolic mechanism and its mediating role. Methods We conducted a comprehensive study, gathering data on 490,089 T2DM patients from the genome-wide association study (GWAS) database and selecting OS data from FinnGen and MRC-IEU sources, including 212,778 and 463,010 patients, respectively, for causal analysis. Simultaneously, we explored the potential roles of three obesity traits and 30 metabolic and inflammation-related mediating variables in the causal relationship. Results There is a strong causal relationship between T2DM and OS. The data from our two different database sources appeared in the same direction, but after correcting for body mass index (BMI), waist circumference (WC), and waist-to-hip ratio (WHR), the direction became the same. T2DM may increase the risk of OS [odds ratio (OR) > 1.5, p < 0.001]. Steiger's test results show that there is no reverse causality. No risk factors related to glycolipid metabolism, amino acid metabolism, and inflammation were found to mediate the causal relationship. Conclusion This study's findings indicate a robust causal relationship between T2DM and OS, influenced by relevant factors such as BMI. Our results shed light on the pathogenesis of OS and underscore the importance for clinicians to treat metabolic disorders to prevent osteoporosis.
Collapse
Affiliation(s)
- Qifan Yang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Xinyu Wang
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Yanwei Liu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| | - Jing Liu
- Department of Gynecology and Obstetrics, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong Zhu
- Department of Orthopedics, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
郭 琴, 郭 苑, 廖 凤, 陶 莹. [Tanshinone ⅡA Ameliorates Cartilage Degeneration in Ovariectomized Rats by Regulating TGF-β1/Smad2/MMPs Signaling Pathway]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:878-885. [PMID: 39170014 PMCID: PMC11334281 DOI: 10.12182/20240760204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Indexed: 08/23/2024]
Abstract
Objective To investigate the ameliorative effect of tanshinone ⅡA (Tan) on osteoarticular degeneration in ovariectomized rats (a postmenopausal estrogen deficiency model) and the mechanisms involved. Methods Eight-week-old female Sprague Dawley (SD) rats were randomly allocated to 5 groups (n=10 each), including a Sham operation group (Sham), an ovariectomy group (OVX), and low, medium, and high-dose Tan groups. Eight weeks after bilateral ovariectomy, the rats in the low, medium, and high-dose Tan groups were treated with Tan at the doses of 5, 10, and 20 mg/kg for a duration of 28 days. Evaluation of the rat articular cartilage was performed using X-ray imaging, anatomical observation, hematoxylin and eosin (H&E) staining, and toluidine blue staining. Immunohistochemistry was performed to assess the expression levels of transforming growth factor β1 (TGF-β1), phosphorylated-smad2 (p-Smad2), type Ⅱ collagen (CⅡ), matrix metalloproteinase 9 (MMP-9), and MMP-13 in the cartilage tissue. Results The knee joints of the OVX rats exhibited narrowed joint spaces, osteophyte formation, cartilage erosion or even localized cartilage cracks, faded methylene blue staining on the cartilage surface, disordered arrangement of chondrocytes, unclear or interrupted tidal line, and increased Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores compared to those of the Sham group (P<0.01), as revealed by X-ray imaging, anatomical observation, and histological examination results. Tan ameliorated the degenerative changes in the knee joint caused by OVX in a dose-dependent manner while improving Kellgren-Lawrence grading, Pelletier grading, Mankin grading, and OARSI scores. Immunohistochemistry findings showed that TGF-β1, p-Smad2, and CⅡ expression levels were significantly increased (P<0.01), while MMP-9 and MMP-13 expression levels were significantly decreased (P<0.01) in the articular cartilage of the Tan group compared to those of the OVX group, with all these effects being dose-dependent. Conclusion Tan mitigates articular cartilage degeneration in ovariectomized rats, which may be related to the regulation of TGF-β1/Smad2/MMPs signaling pathway.
Collapse
Affiliation(s)
- 琴 郭
- 广东药科大学附属第一医院/第一临床医学院 妇产科 (广州 510080)Department of Obstetrics and Gynecology, The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 苑莉 郭
- 广东药科大学附属第一医院/第一临床医学院 妇产科 (广州 510080)Department of Obstetrics and Gynecology, The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 凤儿 廖
- 广东药科大学附属第一医院/第一临床医学院 妇产科 (广州 510080)Department of Obstetrics and Gynecology, The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou 510080, China
| | - 莹 陶
- 广东药科大学附属第一医院/第一临床医学院 妇产科 (广州 510080)Department of Obstetrics and Gynecology, The First Affiliated Hospital/The First Clinical Medicine School of Guangdong Pharmaceutical University, Guangzhou 510080, China
| |
Collapse
|
11
|
Palacios S, González SP, Sánchez-Prieto M, Fasero M. Clinical challenges and considerations in pharmacotherapy of osteoporosis due to menopause. Expert Opin Pharmacother 2024; 25:1359-1372. [PMID: 39039930 DOI: 10.1080/14656566.2024.2383639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Osteoporosis is a chronic systemic skeletal disorder characterized by compromised bone strength and an increased risk of fracture, with a high prevalence worldwide. It is associated with a negative quality of life and an increased morbidity and mortality. Postmenopausal women are more prone to develop osteoporosis, and many of them will suffer at least one fragility fracture along their lifetime. AREAS COVERED This review starts by summarizing the pathogenesis of postmenopausal osteoporosis (PMO), with focus on the estrogen deficiency-associated bone loss. It continues with the current PMO diagnostic and fracture risk prediction tools, and it finally addresses management of PMO. All the efficacy and safety profiles of the current and future osteoporosis medications are reviewed. Furthermore, strategies to optimize the long-term disease management are discussed. For this review, only publications in English language were selected. References were extracted from PubMed, Embase, and Medline. EXPERT OPINION PMO disease management is far from being ideal. Educational and communication programs with the goal of improving disease knowledge and awareness, as well as reducing the health-care gap, should be implemented. In addition, most effective sequential prevention and treatment strategies should be initiated from the early menopause.
Collapse
Affiliation(s)
- Santiago Palacios
- Department of Obstetrics and Gynecology, Institute Palacios of Woman's Health, Madrid, Spain
| | - Silvia P González
- Department of Obstetrics and Gynecology, HM Gabinete Velázquez. Menopause and Osteoporosis Unit, Madrid, Spain
| | | | - María Fasero
- Menopause Unit, Clínica Corofas, Universidad Francisco de Vitoria, Madrid, Spain
| |
Collapse
|
12
|
Xia B, Dai X, Shi H, Yin J, Xu T, Liu T, Yue G, Guo H, Liang R, Liu Y, Gao J, Wang X, Chen X, Tang J, Wang L, Zhu R, Zhang D. Lycopene Promotes Osteogenesis and Reduces Adipogenesis through Regulating FoxO1/PPARγ Signaling in Ovariectomized Rats and Bone Marrow Mesenchymal Stem Cells. Nutrients 2024; 16:1443. [PMID: 38794681 PMCID: PMC11123960 DOI: 10.3390/nu16101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Recent interest in preventing the development of osteoporosis has focused on the regulation of redox homeostasis. However, the action of lycopene (LYC), a strong natural antioxidant compound, on osteoporotic bone loss remains largely unknown. Here, we show that oral administration of LYC to OVX rats for 12 weeks reduced body weight gain, improved lipid metabolism, and preserved bone quality. In addition, LYC treatment inhibited ROS overgeneration in serum and bone marrow in OVX rats, and in BMSCs upon H2O2 stimulation, leading to inhibiting adipogenesis and promoting osteogenesis during bone remodeling. At the molecular level, LYC improved bone quality via an increase in the expressions of FoxO1 and Runx2 and a decrease in the expressions of PPARγ and C/EBPα in OVX rats and BMSCs. Collectively, these findings suggest that LYC attenuates osteoporotic bone loss through promoting osteogenesis and inhibiting adipogenesis via regulation of the FoxO1/PPARγ pathway driven by oxidative stress, presenting a novel strategy for osteoporosis management.
Collapse
Affiliation(s)
- Bingke Xia
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Xuan Dai
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Hanfen Shi
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Jiyuan Yin
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianshu Xu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Tianyuan Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Gaiyue Yue
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Haochen Guo
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Ruiqiong Liang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| | - Yage Liu
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
- Food and Pharmacy College, Xuchang University, 88 Bayi Road, Xuchang 461000, China
| | - Junfeng Gao
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xinxiang Wang
- The Scientific Research Center, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China; (J.G.); (X.W.)
| | - Xiaofei Chen
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Jinfa Tang
- Department of Pharmacology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450003, China; (X.C.); (J.T.)
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ruyuan Zhu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongwei Zhang
- Diabetes Research Center, Traditional Chinese Medicine School, Beijing University of Chinese Medicine, Beijing 100029, China; (B.X.); (X.D.); (H.S.); (J.Y.); (T.X.); (T.L.); (G.Y.); (H.G.); (R.L.); (Y.L.)
| |
Collapse
|
13
|
Guan J, Liu T, Chen H, Yang K. Association of type 2 Diabetes Mellitus and bone mineral density: a two-sample Mendelian randomization study. BMC Musculoskelet Disord 2024; 25:130. [PMID: 38347501 PMCID: PMC10860277 DOI: 10.1186/s12891-024-07195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Observational studies have suggested that type 2 Diabetes Mellitus (DM2) is a potentially modifiable risk factor for lower BMD, but the causal relationship is unclear. This study aimed to examine whether the association of DM2 with lower BMD levels was causal by using Mendelian randomization (MR) analyses. METHODS We collected genome-wide association study data for DM2 and BMD of total body and different skeletal sites from the IEU database. Subsequently, we performed a two-sample Mendelian randomization analysis using the Two Sample MR package. RESULTS We identified a positive association between DM2 risk (61,714 DM2 cases and 596,424 controls) and total BMD, and other skeletal sites BMD, such as femoral neck BMD, ultra-distal forearm BMD and heel BMD. However, non-significant trends were observed for the effects of DM2 on lumbar-spine BMD. CONCLUSION In two-sample MR analyses, there was positive causal relationship between DM2 and BMD in both overall samples. In summary, while observational analyses consistently indicate a strong association between DM2 and low BMD, our MR analysis introduces a nuanced perspective. Contrary to the robust association observed in observational studies, our MR analysis suggests a significant link between DM2 and elevated BMD.
Collapse
Affiliation(s)
- Jianbin Guan
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Tao Liu
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Hao Chen
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China
| | - Kaitan Yang
- Honghui-hospital, Xi'an Jiaotong University, Xi'an, 710054, China.
- Shannxi Key Laboratory of Spine Bionic Treatment, Xi'an, China.
| |
Collapse
|
14
|
Huang C, Li Y, Li B, Liu X, Luo D, Liu Y, Wei M, Yang Z, Xu Y. Identifying potential ferroptosis key genes for diagnosis and treatment of postmenopausal osteoporosis through competitive endogenous RNA network analysis. Heliyon 2024; 10:e23672. [PMID: 38226266 PMCID: PMC10788451 DOI: 10.1016/j.heliyon.2023.e23672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 11/24/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Objective Postmenopausal osteoporosis (PMOP) is a common systemic metabolic bone disorder that is owing to the reduced estrogen secretion and imbalance of bone absorption and bone formation in postmenopausal women. Ferroptosis has been identified as a novel modulatory mechanism of osteoporosis. Nevertheless, the particular modulatory mechanism between ferroptosis and PMOP is still unclear. The objective of the current investigation was to detect potential biomarkers connected to ferroptosis in PMOP and discover its probable mechanism through bioinformatics. Methods We downloaded PMOP-related microarray datasets from the database of Gene Expression Omnibus (GEO) and obtained the differentially expressed genes (DEGs). Utilizing bioinformatics analysis, the DEGs were intersected with the ferroptosis dataset to obtain ferroptosis-connected mRNAs. Enrichment analysis employing KOBAS 3.0 was conducted to comprehend the biological functions and enrichment pathways of the DEGs. The generation of the protein-protein interaction (PPI) network was conducted with the aim of identifying central genes. Lastly, the coexpression and competitive endogenous RNA (ceRNA) networks were built using Cytoscape. With the help of external datasets GSE56815 to verify the reliability of the hub genes by plotting ROC curves. Results We identified 178 DE microRNAs (miRNAs), 138 DE circular RNAs (circRNAs), and 86 ferroptosis-related mRNAs. Enrichment analysis exhibited that mRNAs were primarily connected with the signaling pathways of PI3K/Akt, metabolism, mTOR, FoxO, HIF-1, AMPK, MAPK, ferroptosis, VEGF, and NOD-like receptors. Generation of the PPI network detected eight hub genes. The circRNA/miR-23b-3p/PTEN axis may relieve PMOP by inhibiting ferroptosis through targeting the pathway of PI3K/Akt signaling, which is a vital modulatory pathway for PMOP progression. Moreover, the ROC curves ultimately indicates that the four hub genes have greater diagnostic importance in PMOP samples in contrast to the normal group samples, which may be possible markers for PMOP diagnosis. Conclusions Bioinformatics analysis identified four hub genes, namely, PTEN, SIRT1, VEGFA, and KRAS, as potential biomarkers for PMOP diagnosis and management. Moreover, the circRNA/miR-23b-3p/PTEN axis may relieve PMOP by suppressing ferroptosis through targeting the pathway of PI3K/Akt signaling, providing a new avenue to explore the pathogenesis of PMOP.
Collapse
Affiliation(s)
- Chengcheng Huang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yang Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Bo Li
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Xiujuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Dan Luo
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yuan Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Mengjuan Wei
- Department of Endocrinology and Metabology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - ZhenGuo Yang
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| | - Yunsheng Xu
- Department of Orthopedic, The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, China
| |
Collapse
|
15
|
Wang TH, Li JB, Tian YG, Zheng JX, Li XD, Guo SZ. Association of TNF-α, IGF-1, and IGFBP-1 levels with the severity of osteopenia in mice with nonalcoholic fatty liver disease. J Orthop Surg Res 2023; 18:915. [PMID: 38041076 PMCID: PMC10691127 DOI: 10.1186/s13018-023-04385-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUNDS Nonalcoholic fatty liver disease (NAFLD) exhibits a close association with osteoporosis. This work aims to assess the potential effects of NAFLD on the progression of osteopenia in animal models. METHODS Forty-eight C57BL/6 female mice were randomly divided to wild-type (WT) group and high-fat diet (HFD) group. The corresponding detections were performed after sacrifice at 16, 24 and 32 weeks, respectively. RESULTS At 16 weeks, an remarkable increase in body weight and lipid aggregation in the hepatocytes of HFD group was observed compared to the WT group, while the bone structure parameters showed no significant difference. At 24 weeks, the levels of TNF-α and IL-6 in NAFLD mice were significantly increased, while the level of osteoprotegerin mRNA in bone tissue was decreased, and the level of receptor activator of nuclear factor Kappa-B ligand mRNA was increased. Meanwhile, the function of osteoclasts was increased, and the bone microstructure parameters showed significant changes. At 32 weeks, in the HFD mice, the mRNA levels of insulin-like growth factor-1 (IGF-1), runt-related transcription factor 2, and osterix mRNA were reduced, while the insulin-like growth factor binding protein-1 (IGFBP-1) level was increased. Simultaneously, the osteoblast function was decreased, and the differences of bone structure parameters were more significant, showing obvious osteoporosis. CONCLUSIONS The bone loss in HFD mice is pronounced as NAFLD progresses, and the changes of the TNF-α, IL-6, IGF-1, and IGFBP-1 levels may play critical roles at the different stages of NAFLD in HFD.
Collapse
Affiliation(s)
- Tong-Hao Wang
- Department of Orthopedics, The Third Central Hospital of Tianjin; The Third Central Clinical College of Tianjin Medical University; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Jian-Biao Li
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Yong-Gang Tian
- Department of Orthopedics, The Third Central Hospital of Tianjin; The Third Central Clinical College of Tianjin Medical University; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Jin-Xin Zheng
- Department of Orthopedics, The Third Central Hospital of Tianjin; The Third Central Clinical College of Tianjin Medical University; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Xiao-Dong Li
- Department of Orthopedics, The Third Central Hospital of Tianjin; The Third Central Clinical College of Tianjin Medical University; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Shu-Zhang Guo
- Department of Orthopedics, The Third Central Hospital of Tianjin; The Third Central Clinical College of Tianjin Medical University; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases; Artificial Cell Engineering Technology Research Center, Tianjin; Tianjin Institute of Hepatobiliary Disease, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
| |
Collapse
|
16
|
Wen R, Huang R, Xu K, Cheng Y, Yi X. Beneficial effects of Apelin-13 on metabolic diseases and exercise. Front Endocrinol (Lausanne) 2023; 14:1285788. [PMID: 38089606 PMCID: PMC10714012 DOI: 10.3389/fendo.2023.1285788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Apelin, a novel endogenous ligand of the G-protein-coupled receptor APJ, is encoded by the APLN gene and can be hydrolyzed into multiple subtypes, with Apelin-13 being one of the most active subtypes of the Apelin family. Recent studies have revealed that Apelin-13 functions as an adipokine that participates in the regulation of different biological processes, such as oxidative stress, inflammation, apoptosis, and energy metabolism, thereby playing an important role in the prevention and treatment of various metabolic diseases. However, the results of recent studies on the association between Apelin-13 and various metabolic states remain controversial. Furthermore, Apelin-13 is regulated or influenced by various forms of exercise and could therefore be categorized as a new type of exercise-sensitive factor that attenuates metabolic diseases. Thus, in this review, our purpose was to focus on the relationship between Apelin-13 and related metabolic diseases and the regulation of response movements, with particular reference to the establishment of a theoretical basis for improving and treating metabolic diseases.
Collapse
Affiliation(s)
- Ruiming Wen
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ruiqi Huang
- School of Physical Education, Liaoning Normal University, Dalian, Liaoning, China
| | - Ke Xu
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Yang Cheng
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
17
|
Wang Y, Han X, Shi J, Liao Z, Zhang Y, Li Y, Jiang M, Liu M. Distinct Metabolites in Osteopenia and Osteoporosis: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:4895. [PMID: 38068753 PMCID: PMC10708105 DOI: 10.3390/nu15234895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/04/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
Multiple studies have indicated that distinct metabolites are involved in the occurrence and development of osteopenia (ON) and osteoporosis (OP); however, these metabolites in OP and ON have not yet been classified and standardized. This systematic review and meta-analysis included 21 articles aiming to investigate the distinct metabolites in patients with ON and OP. The quality of the included articles was generally high; seventeen studies had >7 stars, and the remaining four received 6 stars. This systematic review showed that three metabolites (phosphatidylcholine (PC) (lipid metabolites), galactose (carbohydrate metabolites), and succinic acid (other metabolites)) increased, four (glycylglycine (gly-gly), cystine (amino acids), sphingomyelin (SM) (lipid metabolites) and glucose (carbohydrate metabolites)) decreased, and five (glutamine, hydroxyproline, taurine (amino acids), lysophosphatidylcholine (LPC) (lipid metabolites), and lactate (other metabolites)) had conflicting directions in OP/ON. The results of the meta-analysis show that gly-gly (MD = -0.77, 95%CI -1.43 to -0.11, p = 0.02) and cystine (MD = -5.52, 95%CI -7.35 to -3.68, p < 0.00001) decreased in the OP group compared with the healthy control group. Moreover, LPC (MD = 1.48, 95%CI 0.11 to 2.86, p = 0.03) increased in the OP group compared with the healthy control group. These results indicate that distinct metabolites were associated with ON and OP, which could be considered a predictor for OP.
Collapse
Affiliation(s)
- Yuhe Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Xu Han
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Jingru Shi
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Zeqi Liao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyue Zhang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Yuanyuan Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| | - Miao Jiang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Meijie Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.W.); (J.S.); (Z.L.); (Y.Z.); (Y.L.)
| |
Collapse
|
18
|
Lee SJ, Yang H, Kim SC, Gu DR, Ryuk JA, Jang SA, Ha H. Ethanol Extract of Radix Asteris Suppresses Osteoclast Differentiation and Alleviates Osteoporosis. Int J Mol Sci 2023; 24:16526. [PMID: 38003715 PMCID: PMC10671772 DOI: 10.3390/ijms242216526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Radix Asteris, the root of Aster tataricus L. f., is historically significant in East Asian medicine for treating respiratory conditions. Yet, its implications on bone health remain uncharted. This research investigated the impact of an aqueous ethanol extract of Radix Asteris (EERA) on osteoclast differentiation and its prospective contribution to osteoporosis management. We discerned that EERA retards osteoclast differentiation by inhibiting receptor activator of nuclear factor kappa-B ligand (RANKL) expression and obstructing RANKL-induced osteoclastogenesis. EERA markedly suppressed RANKL-induced expression of NFATc1, a pivotal osteoclastogenic factor, via modulating early RANK signaling. EERA's therapeutic potential was underscored by its defense against trabecular bone degradation and its counteraction to increased body and perigonadal fat in ovariectomized mice, mirroring postmenopausal physiological changes. In the phytochemical analysis of EERA, we identified several constituents recognized for their roles in regulating bone and fat metabolism. Collectively, our findings emphasize the potential of EERA in osteoclast differentiation modulation and in the management of osteoporosis and associated metabolic changes following estrogen depletion, suggesting its suitability as an alternative therapeutic strategy for postmenopausal osteoporosis intertwined with metabolic imbalances.
Collapse
Affiliation(s)
- Sung-Ju Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Hyun Yang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Seong Cheol Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Dong Ryun Gu
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Jin Ah Ryuk
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| | - Seon-A Jang
- Future Technology Research Center, KT&G Corporation, 30, Gajeong-ro, Yuseong-gu, Daejeon 34128, Republic of Korea;
| | - Hyunil Ha
- KM Convergence Research Division, Korea Institute of Oriental Medicine, Yuseong-daero 1672, Yuseong-gu, Daejeon 34054, Republic of Korea; (S.-J.L.); (H.Y.); (S.C.K.); (D.R.G.); (J.A.R.)
| |
Collapse
|
19
|
Zhang H, Zhou H, Shen X, Lin X, Zhang Y, Sun Y, Zhou Y, Zhang L, Zhang D. The role of cellular senescence in metabolic diseases and the potential for senotherapeutic interventions. Front Cell Dev Biol 2023; 11:1276707. [PMID: 37868908 PMCID: PMC10587568 DOI: 10.3389/fcell.2023.1276707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
Cellular senescence represents an irreversible state of cell cycle arrest induced by various stimuli strongly associated with aging and several chronic ailments. In recent years, studies have increasingly suggested that the accumulation of senescent cells is an important contributor to the decline of organ metabolism, ultimately resulting in metabolic diseases. Conversely, the elimination of senescent cells can alleviate or postpone the onset and progression of metabolic diseases. Thus, a close relationship between senescent cells and metabolic diseases is found, and targeting senescent cells has emerged as an alternative therapy for the treatment of metabolic diseases. In this review, we summarize the role of cellular senescence in metabolic diseases, explore relevant therapeutic strategies for metabolic diseases by removing senescent cells, and provide new insights into the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Huantong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Han Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xin Shen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Xingchen Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yuke Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yiyi Sun
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yi Zhou
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Lei Zhang
- School of Economy and Management, Zhejiang Sci-Tech University, Hangzhou, China
- Taizhou Hospital of Zhejiang Province, Zhejiang University, Taizhou, China
| | - Dayong Zhang
- School of Medicine, Hangzhou City University, Hangzhou, China
| |
Collapse
|
20
|
Lombardi G, Delvin E. Micro-RNA: A Future Approach to Personalized Diagnosis of Bone Diseases. Calcif Tissue Int 2023; 112:271-287. [PMID: 35182198 DOI: 10.1007/s00223-022-00959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/07/2022] [Indexed: 01/25/2023]
Abstract
Osteoporosis is a highly prevalent bone disease worldwide and the most studied bone-associated pathological condition. Although its diagnosis makes use of advanced and clinically relevant imaging and biochemical tools, the information suffers from several limitations and has little or no prognostic value. In this context, circulating micro-RNAs represent a potentially attractive alternative or a useful addition to the diagnostic arsenal and offer a greater prognostic potential than the conventional approaches. These short non-coding RNA molecules act as inhibitors of gene expression by targeting messenger RNAs with different degrees of complementarity, establishing a complex multilevel network, the basis for the fine modulation of gene expression that finally regulates every single activity of a cell. Micro-RNAs may passively and/or actively be released in the circulation by source cells, and being measurable in biological fluids, their concentrations may be associated to specific pathophysiological conditions. Mounting, despite debatable, evidence supports the use of micro-RNAs as markers of bone cell metabolic activity and bone diseases. Indeed, several micro-RNAs have been associated with bone mineral density, fractures and osteoporosis. However, concerns such as absence of comparability between studies and, the lack of standardization and harmonization of the methods, limit their application. In this review, we describe the pathophysiological bases of the association between micro-RNAs and the deregulation of bone cells activity and the processes that led to the identification of potential micro-RNA-based markers associated with metabolic bone diseases.
Collapse
Affiliation(s)
- Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Via Riccardo Galeazzi 4, 20161, Milano, Italy.
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Królowej Jadwigi 27/39, 61-871, Poznań, Poland.
| | - Edgard Delvin
- Ste-Justine University Hospital Research Centre & Department of Biochemistry, Université de Montreal, Montreal, QC, H3T 1C5, Canada
| |
Collapse
|
21
|
Wang S, Tang C, Chen J, Tang H, Zhang L, Tang G. Changes in Bone Marrow Fatty Acids Early after Ovariectomy-Induced Osteoporosis in Rats and Potential Functions. Metabolites 2022; 13:metabo13010036. [PMID: 36676961 PMCID: PMC9863616 DOI: 10.3390/metabo13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/11/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to investigate the changes in bone marrow fatty acids early after ovariectomy-induced osteoporosis in rats, and explore the potential function of the bone marrow fatty acids. Ninety-six female Sprague Dawley rats (12 weeks) were randomly divided into an ovariectomized (OVX) group and Sham group (N = 48/group) and received ovariectomy or Sham surgery, respectively. After 3, 5, 7,14, 21 and 28 days, eight rats in each group were sacrificed to detect the composition of bone marrow fatty acids by means of gas chromatography-mass spectrometry and evaluate the trabecular bone microarchitecture by means of microCT. Bone marrow rinsing fluid and serum were collected for the detection of nitric oxide synthase/nitric oxide (NOS/NO) and bone metabolism related parameters, respectively. Our results demonstrated that the bone microstructure was damaged significantly from 14 days after OVX surgery onwards. Sample clustering and group separation were observed between the OVX group and Sham group 3 and 14 days after surgery, which suggested the role of bone marrow fatty acids in the early stage of postmenopausal osteoporosis. Palmitoleate, myristate and arachidonate were found to play an important role in classification between the OVX group and Sham group on the 3rd day after surgery (VIP > 1, p < 0.05). Palmitoleate, myristate, alpha linolenate, stearate and eicosenoate were found to play an important role in classification between the OVX group and Sham group on the 14th day after surgery (VIP > 1, p < 0.05). The levels of myristate, palmitoleate, alpha linolenate and eicosenoate were significantly decreased in the OVX group, while the levels of arachidonate and stearate were significantly increased in OVX group (p < 0.05). Additionally, myristate, palmitoleate, alpha linoleate and eicosenoate were negatively correlated with C-terminal telopeptide of type 1 collagen (CTX-1, a bone resorption marker), while arachidonate was negative correlated with osteocalcin (OCN, a bone formation marker) (p < 0.05). A significant correlation was also found between eicosenoate and NOS (p < 0.05). Profound bone marrow fatty acids changes have taken place in the early stage of post-menopausal osteoporosis. They may affect bone formation though affecting the differentiation and function of osteoclasts or osteoblasts, respectively. The NOS/NO system may mediate the influence of eicosenoate on bone formation.
Collapse
Affiliation(s)
- Sizhu Wang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Cuisong Tang
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai 200072, China
| | - Jieying Chen
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Huan Tang
- Department of Radiology, Huadong Hospital of Fudan University, Shanghai 200040, China
| | - Lin Zhang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Correspondence: (L.Z.); (G.T.)
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Department of Radiology, Clinical Medical College of Shanghai Tenth People’s Hospital of Nanjing Medical University, Shanghai 200072, China
- Correspondence: (L.Z.); (G.T.)
| |
Collapse
|
22
|
Vachliotis ID, Anastasilakis AD, Goulas A, Goulis DG, Polyzos SA. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes Metab 2022; 24:1702-1720. [PMID: 35589613 DOI: 10.1111/dom.14774] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/01/2022] [Accepted: 05/17/2022] [Indexed: 11/11/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) and osteoporosis are two highly prevalent metabolic diseases. Increasing experimental evidence supports a pathophysiological link between NAFLD and osteoporosis. A key feature could be chronic, low-grade inflammation, which characterizes NAFLD and possibly affects bone metabolism. In this context, several factors, including but not limited to receptor activator of nuclear factor kappa-B ligand, osteoprotegerin, osteopontin and osteocalcin, may serve as mediators. In the clinical setting, most but not all epidemiological evidence indicates that NAFLD is associated with lower bone mineral density or osteoporosis in adults. Although an association between NAFLD and osteoporosis has not yet been established, and thus remains speculative, pharmacological considerations already exist. Some of the current and emerging pharmacological options for NAFLD have shown possible anti-osteoporotic properties (eg, vitamin E, obeticholic acid, semaglutide), while others (eg, pioglitazone, canagliflozin) have been associated with increased risk of fractures and may be avoided in patients with NAFLD and concomitant osteoporosis, especially those at high fracture risk. Conversely, some anti-osteoporotic medications (denosumab) might benefit NAFLD, while others (raloxifene) might adversely affect it and, consequently, may be avoided in patients with osteoporosis and NAFLD. If an association between NAFLD and osteoporosis is established, a medication that could target both diseases would be a great advancement. This review summarizes the main experimental and clinical evidence on the potential association between NAFLD and osteoporosis and focuses on treatment considerations derived from this potential association.
Collapse
Affiliation(s)
- Ilias D Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki, Greece
| | | | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
23
|
Anastasilakis AD, Pepe J, Napoli N, Palermo A, Magopoulos C, Khan AA, Zillikens MC, Body JJ. Response to Letter to the Editor From Taguchi: "Osteonecrosis of the Jaw and Antiresorptive Agents in Benign and Malignant Diseases: A Critical Review Organized by the ECTS". J Clin Endocrinol Metab 2022; 107:e2651-e2652. [PMID: 35213729 PMCID: PMC9113816 DOI: 10.1210/clinem/dgac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Athanasios D Anastasilakis
- Department of Endocrinology, 424 General Military Hospital, Thessaloniki 56429, Greece
- Correspondence: Dr. Athanasios Anastasilakis, Ring Road, 564 29 N. Efkarpia, Thessaloniki, Greece.
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Nicola Napoli
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Andrea Palermo
- Unit of Endocrinology and Diabetes, Departmental Faculty of Medicine and Surgery, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Christos Magopoulos
- Department of Oral and Maxillofacial Surgery, 424 General Military Hospital, Thessaloniki 56429, Greece
| | - Aliya A Khan
- Division of Endocrinology and Metabolism and Geriatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | - M Carola Zillikens
- Bone Center, Department of Internal Medicine, Erasmus MC, 2040 Rotterdam, The Netherlands
| | - Jean-Jacques Body
- Department of Medicine, CHU Brugmann, Université Libre de Bruxelles, 1050 Brussels, Belgium
| |
Collapse
|
24
|
Ding S, Xing S, Zhang Z, Sun Z, Dou X, He YS, Tang H, Weng W. The Effect of Bone Morphogenetic Protein 2 (BMP-2)/Estrogen Composite Nanoparticles on the Differentiation Function of Osteoporotic Bone Marrow Mesenchymal Stem Cells (BMSCs). J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The menopausal hormone abnormal changes such as estrogen deficiency and increased FSH secretion in female patients in old age may cause osteoporosis which is plagued by patients. The pathogenesis of osteoporosis is not yet fully understood. BMP in the transforming growth factor-β
superfamily is a key member in the process of bone growth and development, among which BMP-2 exerts critical roles. Impaired osteogenic differentiation of bone marrow mesenchymal stem cells (BMSC) contributes to the progress of osteoporosis. BMSC plays an indispensable role in treating osteoporosis
and can develop into different directions through induction. As the regenerative medicine nanotechnology has become a new medical method, it is believed that BMSC can be used to treat osteoporosis and other related diseases. Our study analyzed the effects of BMP-2/estrogen composite nanoparticles
on the proliferation and differentiation of osteoporotic BMSC cells to provide a reliable reference for the future treatment. Our results showed that BMP-2/estrogen composite nanoparticles promoted BMSC cell proliferation, increased ALP activity, decreased apoptosis rate, increased the expression
of Col-1, Runx2 and Osterix, upregulated the osteogenic marker BMP-2. As confirmed by Alizarin Red staining, it could differentiate into osteoblasts and the content of Trap was decreased. In conclusion, our study confirms that BMP-2/estrogen composite nanoparticles can promote BMSC cell proliferation,
osteogenic differentiation, and inhibit osteoclast differentiation, thereby providing new treatments and theoretical reference basis for treating osteoporosis.
Collapse
Affiliation(s)
- Shengdi Ding
- Department of Gynecology, Huzhou Cent Hosp, Affiliated Cent Hosp HuZhou University, Huzhou, Zhejiang Province, 313000, China
| | - Shitong Xing
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Zhanfeng Zhang
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Zhenguo Sun
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Xiaojie Dou
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Yu shou He
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Huibin Tang
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| | - Wei Weng
- Department of Orthopedics, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang Province, 313000, China
| |
Collapse
|
25
|
Zhao M, Mei F, Lu J, Xiang Q, Xia G, Zhang X, Liu Z, Zhang C, Shen X, Zhong Q. Gadus morhua Eggs Sialoglycoprotein Prevent Estrogen Deficiency-Induced High Bone Turnover by Controlling OPG/RANKL/TRAF6 Pathway and Serum Metabolism. Front Nutr 2022; 9:871521. [PMID: 35495954 PMCID: PMC9040668 DOI: 10.3389/fnut.2022.871521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/26/2022] Open
Abstract
In recent years, the development of safe and effective anti-osteoporosis factors has attracted extensive attention. In this study, an estrogen-deficient osteoporosis rat model was employed to study the improving mechanism of sialoglycoprotein isolated from Gadus morhua eggs (Gds) against osteoporosis. The results showed that compared with OVX, Gds ameliorated the trabecular microstructure, especially the increased trabecular thickness, decreased trabecular separation, and enhanced the trabecular number. The analysis of qRT-PCR and western blotting found that Gds reduced bone resorption by inhibiting RANKL-induced osteoclastogenesis. The LC-MS/MS was used to investigate serum metabolism, and the enrichment metabolites were analyzed by the KEGG pathway. The results revealed that the Gds significantly altered the fat anabolism pathway, which includes ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. Altogether, Gds could improve osteoporosis by suppressing high bone turnover via controlling OPG/RANKL/TRAF6 pathway, which is implicated with ovarian steroidogenesis pathway and arachidonic acid metabolism pathway. These findings indicated that Gds could be a candidate factor for anti-osteoporosis.
Collapse
Affiliation(s)
- Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Fengfeng Mei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Jinfeng Lu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Qingying Xiang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- *Correspondence: Guanghua Xia,
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Chenghui Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Collaborative Innovation Center of Provincial and Ministerial Co-construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
| | - Qiuping Zhong
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, School of Food Science and Engineering, Hainan University, Hainan, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China
- Qiuping Zhong,
| |
Collapse
|
26
|
Li H, Gou Y, Tian F, Lian Q, Hu Y, Zhang L. The combined anti-osteoporotic effects of simvastatin and exercise in ovariectomized mice fed a high-fat diet. Exp Gerontol 2022; 164:111794. [PMID: 35421557 DOI: 10.1016/j.exger.2022.111794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/13/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND To evaluate and compare the effects of the combined intervention of simvastatin and exercise on the bone degeneration in a mice model of osteoporosis (OP) induced by obesity and estrogen deficiency. METHODS 56 female 3-month-old C57BL/6 mice were given a standard diet or a high-fat diet after ovariectomy (OVX) or sham surgery. Drug administration and exercise training were initiated 72 h after surgical operation, which were treated with simvastatin (10 mg/kg/day) or exercise (15 m/min for 30 min/day) or combined with simvastatin and exercise at 72 h for 8 weeks. The pathology of OP was assessed by histomorphology analyses, immunohistochemistry (IHC), micro-computed tomography (Micro-CT), enzyme-linked immunosorbent assay (ELISA) and cell culture. RESULTS The coexistence of obesity and estrogen deficiency significantly further exacerbated OP pathology, and combined intervention showed a better significant anti-osteoporosis effect than monotherapy. In details, simvastatin combined with exercise ameliorated the abnormal bone mass, microstructure and bone marrow adipocyte differentiation, significantly increased osteoprotegerin (OPG), type 1 collagen (Col-I), RUNX2 and osteocalcin (OCN) expression, decreased the expression of receptor activator of nuclear factor-kappaB ligand (RANKL) and peroxisome proliferator-activated receptor γ (PPARγ). Furthermore, combined intervention markedly improved abnormal metabolic status, reduced the levels of serum glucose, insulin, triglycerides (TG), low-density lipoprotein (LDL), leptin, CTX-1 and IL-1β, and increased the level of OCN. CONCLUSIONS The coexistence of obesity and estrogen deficiency further aggravates bone tissue degeneration and abnormal metabolic pathology, which could be better inhibited by the combination with simvastatin and exercise instead of single intervention, suggesting that combined intervention may be a potential candidate for amelioration of the progression of OP.
Collapse
Affiliation(s)
- Hetong Li
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yu Gou
- Department of Orthopaedic Surgery, Tianjin Hospital, Tianjin University, Tianjin, PR China
| | - Faming Tian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Qiangqiang Lian
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, PR China
| | - Yunpeng Hu
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Liu Zhang
- Department of Orthopedic Surgery, Hebei Medical University, Shijiazhuang, Hebei, PR China.
| |
Collapse
|
27
|
Luo W, Zhang J, Xu L, Zhou Y, Xu D, Lv Q, Xiao Y, Yang Q. Use of zoledronic acid in antiosteoporosis treatment is associated with a decreased blood lipid level in postmenopausal women with osteoporosis: A cohort study in China. Postgrad Med 2022; 134:406-412. [PMID: 35264059 DOI: 10.1080/00325481.2022.2051983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE : This cohort study aimed to evaluate the protective effects of zoledronic acid (ZA) in lipidemia in postmenopausal women with osteoporosis. METHODS A total of 668 postmenopausal women with osteoporosis were regularly followed up for 12 months between January 2018 and August 2021 in the department of endocrinology and the health examination center of the hospital. They were included in this cohort study. They were divided into group I and group II depending on lipid metabolism disorder; Group II received atorvastatin 20 mg/d orally. Groups I and II, divided into experimental group (ZA exposure) and control group (ZA nonexposure), depending on treatment with or without ZA. All the data were collected from the hospital's medical record system and passed ethical review. RESULTS In group I, which was the ZA exposure group(n = 164), the level of low-density lipoprotein cholesterol (LDL-C) was significantly lower than that before ZA treatment(P = 0.017); in the ZA nonexposure group(n = 158), the levels of LDL-C, total cholesterol (TC) and triglycerides (TG) significantly increased after 12 months of follow-up, (P = 0.005, P < 0.001 and P = 0.001). At the baseline, no significant difference was found in blood lipid indicators between the ZA exposure and nonexposure groups (P > 0.05), but the levels of LDL-C and TC in the exposed group significantly decreased after 12 months of follow-up, (P = 0.008 and P = 0.027). Also, the ZA exposure group had 47 new cases of lipid metabolism disorder, while the nonexposure group had 43 new cases of lipid metabolism disorder after 12 months of follow-up. In group II, which was the ZA exposure group(n=155), the levels of LDL-C and TC were significantly lower than those before ZA treatment(P < 0.001 and P < 0.001). At the baseline, the ZA exposure and nonexposure groups(n = 191), had no significant difference in blood lipid indicators (P > 0.05), but the levels of LDL-C and TC significantly decreased in the exposed group after 12 months of follow-up, (P < 0.001 and P = 0.003). CONCLUSION This cohort study found that ZA might exert a protective effect on lipid metabolism in postmenopausal women with osteoporosis. In postmenopausal women with lipid disorders suffering from osteoporosis, the treatment with ZA combined with atorvastatin or ZA alone significantly reduced the level of blood lipid (especially LDL-C and TC) compared with atorvastatin alone.
Collapse
Affiliation(s)
- Wei Luo
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Jin Zhang
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Ling Xu
- Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Yao Zhou
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China.,Department of Endocrinology, Affiliated Hospital of Southwest Medical University, Luzhou City, Sichuan Province, China
| | - Dan Xu
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Qiuju Lv
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Yi Xiao
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| | - Qin Yang
- Department of Endocrinology, People's Hospital of Leshan, Leshan City, Sichuan Province, China
| |
Collapse
|
28
|
Lu L, Wang Z, Zhang H, Liu T, Fang H. Drynaria fortunei improves lipid profiles of elderly patients with postmenopausal osteoporosis via regulation of Notch1-NLRP3 inflammasome-mediated inflammation. Gynecol Endocrinol 2022; 38:176-180. [PMID: 34907823 DOI: 10.1080/09513590.2021.2015760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Dyslipidemia is a common comorbidity in elderly patients with postmenopausal osteoporosis (PMOP). Drynaria fortunei (Rhizoma drynariae) is well-known in traditional Chinese medicine for its ability to improve bone mineral density (BMD). However, whether and how Drynaria fortunei improves plasma lipid profiles in elderly PMOP patients remains unclear. METHODS Eighty elderly female patients with concurrent PMOP and hyperlipemia were randomly assigned to Drynaria fortunei 2(n = 40) or control (n = 40) groups. The clinical efficacies of Drynaria fortunei were evaluated. At 0, 3-, 6-, 9-, and 12-month of follow-up, plasma levels of IL-1β, IL-18, TNF-α, IL-6, IL-8, and IL-10 were measured using ELISA, whereas PBMC levels of NLRP3, ASC, caspase-1, NF-κB, SIRT1, and Notch1 were measured using RT-qPCR. PBMC isolated from PMOP patients were cultured and treated with Drynaria fortunei to determine its influence on NLRP3 inflammasome and associated cytokines. RESULTS Drynaria fortunei effectively improved patients' BMD and lipid profiles. IL-1β, IL-18, TNF-α, IL-6, IL-8 levels, as well as inflammasome-molecules of NLRP3, ASC, caspase-1, and NF-κB increased over time in the control group, but were significantly attenuated with Drynaria fortunei administration. In vitro, Drynaria fortunei suppressed NLRP3 inflammasome and associated cytokines by increasing SIRT1 or decreasing Notch1. Drynaria fortunei had inhibitory effects on NLRP3 inflammasome and Notch1 even when SIRT1 expression was suppressed. CONCLUSIONS Drynaria fortunei has been demonstrated to significantly improve lipid profiles for elderly PMOP patients. Drynaria fortunei may down-regulate Notch1 independently of SIRT1 to suppress NLRP3 inflammasome-mediated inflammation, thus improving plasma lipid profile.
Collapse
Affiliation(s)
- Lin Lu
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Zhi Wang
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Hanqing Zhang
- Department of Orthopedics, Wuhan Hospital of Traditional Chinese Medicine, Wuhan, PR China
| | - Tongou Liu
- Department of Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
- First Clinical Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| | - Hong Fang
- Department of Gynecology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, PR China
- First Clinical Medical College, Hubei University of Traditional Chinese Medicine, Wuhan, PR China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, PR China
| |
Collapse
|
29
|
Gyanewali S, Kesharwani P, Sheikh A, Ahmad FJ, Trivedi R, Talegaonkar S. Formulation development and in vitro-in vivo assessment of protransfersomal gel of anti-resorptive drug in osteoporosis treatment. Int J Pharm 2021; 608:121060. [PMID: 34500057 DOI: 10.1016/j.ijpharm.2021.121060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a major cause of morbidity, mortality, and economic burden worldwide. Despite being an effective in combating the bone-deteriorating disorders, bisphosphonates have several shortcomings including poor and variable bioavailability, low permeability, high toxicity, etc. In this study, we developed and optimized protransfersome formulation for the drug risedronate sodium (RIS-Na) with the goal of enhancing its bioavailability and hence patient compliance. Phase separation coacervation technique was utilized for development of optimized formulation. Optimization was achieved by using three-factor, three-level Box-Behnken design combined with Response Surface Methodology (RSM). This enabled us to decipher the effect of 3 independent variables (Phospholipid, Tween-80 and Sodium Deoxycholate) on three dependent parameters (entrapment efficiency, vesicle size and transdermal flux). Optimized formulation was further evaluated for pharmacokinetic and pharmacodynamic parameters. Smooth, spherical protransfersomes with a size of 260 ± 18 nm, having entrapment efficiency and flux of 80.4 ± 4.90% and 8.41 ± 0.148 μg/cm2/h, respectively were prepared. Ex vivo studies revealed a shorter lag time of 1.21 ± 0.18 h and higher flux associated with transdermal formulation. CLSM analysis further revealed better drug penetration (220 μm) through the skin in case of protransfersomes as compared to drug solution (72 μm). Additionally, biomechanical, biochemical, and histo-pathological studies further validated the results. Thus, it was concluded that protransfersome formulation has a great potential in providing better therapeutic efficacy of risedronate than its conventional counterpart.
Collapse
Affiliation(s)
- Suman Gyanewali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritu Trivedi
- Department of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| |
Collapse
|