1
|
Deltourbe LG, Sugrue J, Maloney E, Dubois F, Jaquaniello A, Bergstedt J, Patin E, Quintana-Murci L, Ingersoll MA, Duffy D. Steroid hormone levels vary with sex, aging, lifestyle, and genetics. SCIENCE ADVANCES 2025; 11:eadu6094. [PMID: 40153492 PMCID: PMC11952096 DOI: 10.1126/sciadv.adu6094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/24/2025] [Indexed: 03/30/2025]
Abstract
Steroid hormone levels vary greatly among individuals, between sexes, with age, and across health and disease. What drives variance in steroid hormones and how they vary in individuals over time are not well studied. To address these questions, we measured 17 steroid hormones in a sex-balanced cohort of 949 healthy donors aged 20 to 69 years. We investigated associations between steroid levels and biological sex, age, clinical and demographic data, genetics, and plasma proteomics. Steroid hormone levels were strongly affected by sex and age, and a high number of lifestyle habits. Key observations were the broad impact of hormonal birth control in female donors and the relationship with smoking in male donors. In a 10-year follow-up study, we identified significant associations between steroid hormone levels and health status only in male donors. These observations highlight biological and lifestyle parameters affecting steroid hormones, and underlie the importance of considering sex, age, and potentially gendered behaviors in the treatment of hormone-related diseases.
Collapse
Affiliation(s)
- Léa G. Deltourbe
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris 75014, and Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Jamie Sugrue
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
| | - Elizabeth Maloney
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Frontiers of Innovation in Research and Education PhD Program, LPI Doctoral School, Université Paris Cité, Paris, France
| | - Florian Dubois
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Anthony Jaquaniello
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
| | - Jacob Bergstedt
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris 75015, France
- Chair Human Genomics and Evolution, Collège de France, Paris, France
| | - Molly A. Ingersoll
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris 75014, and Department of Immunology, Institut Pasteur, Paris 75015, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris 75015, France
- Single Cell Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Short E, Ajjan R, Barber TM, Benson I, Higginbotham V, Huckstepp R, Kanamarlapudi V, Mumwiro N, Calimport SRG, Bentley B. Adrenal cortex senescence: an ageing-related pathology? J Endocrinol Invest 2025:10.1007/s40618-025-02566-9. [PMID: 40131721 DOI: 10.1007/s40618-025-02566-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/06/2025] [Indexed: 03/27/2025]
Abstract
The adrenal glands are a pair of endocrine organs that produce and secrete mineralocorticoids, glucocorticoids, sex hormones, adrenaline, and noradrenaline. They have a vital role in a range of physiological processes including regulating electrolyte balance, blood pressure and metabolism, immunomodulation, sexual development and the stress response. Adrenal cortex senescence describes the ageing-related decline in the normal functioning of the adrenal cortex, characterised by an alteration in the output of adrenal cortical hormones, in particular reduced secretion of dehydroepiandrosterone (DHEA) and sulfated dehydroepiandrosterone (DHEAS). Such endocrine aberrations may be implicated in adverse clinical outcomes including mood disturbances, impairment in cognitive functioning, metabolic dysfunction and osteopenia. This paper shall address whether adrenal cortex senescence should be recognised as an ageing-related pathology, which has recently been defined as one that develops and/or progresses with increasing chronological age, that is associated with, or contributes to, functional decline, and is evidenced by studies in humans.
Collapse
Affiliation(s)
- Emma Short
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK.
- Department of Cellular Pathology, Swansea Bay University Health Board, Swansea, UK.
| | - Ramzi Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Thomas M Barber
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, University Hospitals Coventry and Warwickshire, Clifford Bridge Road, Coventry, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Ian Benson
- University of Glasgow Medical School, Glasgow, UK
| | | | | | | | | | - Stuart R G Calimport
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
| | - Barry Bentley
- Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK
- Collaboration for the Advancement of Sustainable Medical Innovation (CASMI), University College London, London, UK
- Center for Engineering in Medicine and Surgery, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Children's, Boston, MA, USA
| |
Collapse
|
3
|
Ruiz-Pozo VA, Cadena-Ullauri S, Tamayo-Trujillo R, Guevara-Ramírez P, Paz-Cruz E, Castañeda Cataña MA, Zambrano AK. Interplay between endogenous hormones and immune systems in human metapneumovirus pathogenesis and management. Front Pharmacol 2025; 16:1568828. [PMID: 40176892 PMCID: PMC11961889 DOI: 10.3389/fphar.2025.1568828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/03/2025] [Indexed: 04/05/2025] Open
Abstract
The present review explores the role of endogenous hormones, such as cortisol, melatonin, thyroid hormones, sex hormones, and insulin, in the modulation of the immune response to a human metapneumovirus (hMPV) infection. hMPV is a respiratory pathogen responsible for severe infections, particularly in vulnerable populations like children and the elderly. The virus triggers inflammatory responses through various molecular processes, including cytokine production and immune signaling pathways. Notably, these processes can be influenced by endocrine factors, such as hormones. Cortisol, through hypothalamic-pituitary-adrenal (HPA) axis activation, modulates inflammation but may contribute to immunosuppression. Melatonin inhibits the NLRP3 inflammasome, reducing lung inflammation. Thyroid hormones regulate immune responses via nuclear factor kappa B (NF-κB) and JAK/STAT pathways, while hypothyroidism may alter infection severity. Sex hormones, particularly estrogens, enhance antiviral immunity, whereas androgens may have variable effects on immune modulation. Insulin influences inflammation through NF-κB suppression, with insulin resistance potentially worsening viral pathogenesis. Therapeutic implications suggest that modulating these hormonal pathways could aid in hMPV management. Strategies such as hormone therapy, glucocorticoid regulation, and nanoparticle-based drug delivery are potential routes of intervention. The aim of the present review is to understand the complex interplay between endogenous hormones and the immune system during an hMPV infection by describing the complex molecular mechanisms associated with these processes.
Collapse
Affiliation(s)
- Viviana A. Ruiz-Pozo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Patricia Guevara-Ramírez
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Elius Paz-Cruz
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| | - Mayra A. Castañeda Cataña
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN). Laboratorio de Estrategias Antivirales, UBA-CONICET, Buenos Aires, Argentina
| | - Ana Karina Zambrano
- Universidad UTE, Facultad de Ciencias de la Salud Eugenio Espejo, Centro de Investigación Genética y Genómica, Quito, Ecuador
| |
Collapse
|
4
|
Zhao R, Wang J, Chung SK, Xu B. New insights into anti-depression effects of bioactive phytochemicals. Pharmacol Res 2025; 212:107566. [PMID: 39746497 DOI: 10.1016/j.phrs.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/04/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Depression is one of the most common psychological disorders, and due to its high prevalence and mortality rates, it imposes a significant disease burden. Contemporary treatments for depression involve various synthetic drugs, which have limitations such as side effects, single targets, and slow onset of action. Unlike synthetic medications, phytochemicals offer the benefits of a multi-target and multi-pathway mode of treatment for depression. In this literature review, we describe the pharmacological actions, experimental models, and clinical trials of the antidepressant effects of various phytochemicals. Additionally, we summarize the potential mechanisms by which these phytochemicals prevent depression, including regulating neurotransmitters and their receptors, the HPA axis, inflammatory responses, managing oxidative stress, neuroplasticity, and the gut microbiome. Phytochemicals exert therapeutic effects through multiple pathways and targets, making traditional Chinese medicine (TCM) a promising adjunctive antidepressant for the prevention, alleviation, and treatment of depression. Therefore, this review aims to provide robust evidence for subsequent research into developing phytochemical resources as effective antidepressant agents.
Collapse
Affiliation(s)
- Ruohan Zhao
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China.
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
5
|
Kastelan D, Dusek T. Do adrenal incidentalomas have an impact on mental health? A comprehensive review. Eur J Endocrinol 2025; 192:R1-R6. [PMID: 39891589 DOI: 10.1093/ejendo/lvaf011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 12/14/2024] [Accepted: 01/30/2025] [Indexed: 02/03/2025]
Abstract
Adrenal incidentalomas (AIs) are increasingly detected during imaging performed for conditions unrelated to adrenal pathology. Numerous studies have shown that the presence of AI is associated with a higher frequency of hypertension, type 2 diabetes, dyslipidemia, obesity, and osteoporosis. This increased morbidity is mostly related to mild autonomous cortisol secretion, which is the most common hormonal abnormality in these patients. It is well known that glucocorticoid excess affects the hippocampus and prefrontal cortex, brain structures involved in mood regulation and cognitive processes, leading to a wide range of psychiatric symptoms, including depression. While these effects are well documented in patients with Cushing's syndrome, data on mental health changes in patients with AIs remain scarce. Additionally, the few existing studies have several limitations, leaving important clinical questions unanswered. Consequently, the extent to which AIs are associated with impaired mental health and whether patients would benefit from surgical treatment remains unclear. Addressing these challenges is crucial for developing adequate management strategies. This review explores potential psychological and psychiatric implications of AIs. By synthesizing existing literature, we aim to explain the relationship between AIs and mental health disorders, providing a background for future research and clinical practice guidelines.
Collapse
Affiliation(s)
- Darko Kastelan
- Department of Endocrinology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| | - Tina Dusek
- Department of Endocrinology, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, Salata 3, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Erceg N, Micic M, Forouzan E, Knezevic NN. The Role of Cortisol and Dehydroepiandrosterone in Obesity, Pain, and Aging. Diseases 2025; 13:42. [PMID: 39997049 PMCID: PMC11854441 DOI: 10.3390/diseases13020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Obesity, chronic pain, and aging are prevalent global challenges with profound implications for health and well-being. Central to these processes are adrenal hormones, particularly cortisol and dehydroepiandrosterone (DHEA), along with its sulfated form (DHEAS). Cortisol, essential for stress adaptation, can have adverse effects on pain perception and aging when dysregulated, while DHEA/S possess properties that may mitigate these effects. This review explores the roles of cortisol and DHEA/S in the contexts of obesity, acute and chronic pain, aging, and age-related diseases. We examine the hormonal balance, specifically the cortisol-to-DHEA ratio (CDR), as a key marker of stress system functionality and its impact on pain sensitivity, neurodegeneration, and physical decline. Elevated CDR and decreased DHEA/S levels are associated with worsened outcomes, including increased frailty, immune dysfunction, and the progression of age-related conditions such as osteoporosis and Alzheimer's disease. This review synthesizes the current literature to highlight the complex interplay between these hormones and their broader implications for health. It aims to provide insights into potential future therapies to improve pain management and promote healthy weight and aging. By investigating these mechanisms, this work contributes to a deeper understanding of the physiological intersections between pain, aging, and the endocrine system.
Collapse
Affiliation(s)
- Nikolina Erceg
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Miodrag Micic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
| | - Eli Forouzan
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA; (N.E.); (M.M.)
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Fernández-Pinteño A, Pilla R, Suchodolski J, Apper E, Torre C, Salas-Mani A, Manteca X. Age-Related Changes in Gut Health and Behavioral Biomarkers in a Beagle Dog Population. Animals (Basel) 2025; 15:234. [PMID: 39858234 PMCID: PMC11758293 DOI: 10.3390/ani15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
The gut and the gut microbiome communicate with the nervous system through the gut-brain axis via neuroimmune and neuroendocrine mechanisms. Despite existing research, studies exploring this link in aging dogs are limited. This study aims to examine multiple blood and fecal biomarkers of intestinal health, along with various behavioral indicators based on saliva, blood, observations, and activity, in different age populations (junior: <2 y.o.; adult: 2-7 y.o.; senior: >7 y.o.) of thirty-seven Beagle dogs. In our study, Bacteroides were significantly higher in senior dogs. The relative abundance of Faecalibacterium and Blautia showed age-related trends, higher in senior and junior dogs, respectively. Fecal short-chain fatty acid concentration, especially acetate, increased with age, while propionate was higher in junior dogs. For the behavioral indicators we considered, blood thyroxine concentration, playing, exploring, and total activity were higher in junior dogs. The differences observed between the biomarkers of gut health and behavior, particularly those significant for the age correlations, emphasize the importance of considering age-related factors when studying the gut microbiome and behavior. However, further research is needed to better understand the mechanisms and specific pathways involved in the relationship between the studied biomarkers and age.
Collapse
Affiliation(s)
- Anna Fernández-Pinteño
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Rachel Pilla
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.)
| | - Jan Suchodolski
- Gastrointestinal Laboratory, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX 77843, USA; (R.P.); (J.S.)
| | - Emmanuelle Apper
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Celina Torre
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Anna Salas-Mani
- Department of Research and Development, Affinity Petcare, 08902 L’Hospitalet de Llobregat, Spain; (E.A.); (C.T.); (A.S.-M.)
| | - Xavier Manteca
- School of Veterinary Science, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain;
| |
Collapse
|
8
|
Sofer Y, Osher E, Ahmad WA, Greenman Y, Moshe Y, Shaklai S, Yaron M, Serebro M, Tordjman K, Stern N. Cortisol Secretion in Obesity Revisited: Lower Basal Serum and Salivary Cortisol with Diminished Cortisol Response to the Low Dose ACTH Challenge. Obes Facts 2025; 18:178-186. [PMID: 39778537 PMCID: PMC12017752 DOI: 10.1159/000543449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Some clinical resemblance may exist between obesity, particularly abdominal obesity, and Cushing's syndrome. This has stimulated ongoing interest in the role of cortisol's secretion pattern, control, and metabolism in obesity. GOALS The aim of the study was to investigate whether basal and stimulated levels of cortisol differ between healthy people with obesity and individuals with normal weight. METHODS Total, free, and salivary cortisol was tested at baseline state and after 1 μg ACTH stimulation in 60 healthy subjects with obesity and 54 healthy lean controls. RESULTS Baseline total cortisol was lower in subjects with obesity compared to lean controls (347 [265-452] nmol/L vs. 422 [328-493] nmol/L, respectively; p < 0.05). Similarly, basal salivary cortisol was significantly lower in subjects with obesity (7.5 [5.2-9.7] nmol/L vs. 10.7 [7.5-17.6] nmol/L; p < 0.05). Upon challenge with ACTH, total peak serum and salivary peak cortisol responses were significantly lower in people with obesity than in lean subjects (665.16 ± 151.8 vs. 728.64 ± 124.2 nmol/L; p < 0.05 and 31.66 [19-38.64] vs. 40.05 [31.46-46.64] nmol/L; p < 0.05, respectively). Additionally, baseline total cortisol and salivary cortisol were inversely related to BMI (r = -0.24, r = -0.27; p < 0.05 for both) and waist circumference (r = -0.27, r = -0.34; p < 0.05 for both). CONCLUSION Baseline as well as peak stimulated total serum and salivary cortisol were significantly lower in subjects with obesity. It thus appears that obesity is not associated with enhanced basal or ACTH-stimulated cortisol.
Collapse
Affiliation(s)
- Yael Sofer
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Esther Osher
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Wiessam Abu Ahmad
- Braun School of Public Health and Community Medicine, Hebrew University-Hadassah, Jerusalem, Israel
| | - Yona Greenman
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaffa Moshe
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
| | - Sigal Shaklai
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Marianna Yaron
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
| | - Merav Serebro
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Tordjman
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Naftali Stern
- Institute of Endocrinology, Metabolism and Hypertension, Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Liu ZY, Zhang H, Sun XL, Liu JY. Causal association between metabolites and age-related macular degeneration: a bidirectional two-sample mendelian randomization study. Hereditas 2024; 161:51. [PMID: 39707561 DOI: 10.1186/s41065-024-00356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Age-related macular degeneration (AMD) is the leading cause of visual impairment in the elderly population. Accumulating evidence has revealed the possible association between metabolites and AMD. This study aimed to assess the effect of plasma metabolites on AMD and its two subtypes using a bidirectional two-sample Mendelian randomization approach. METHODS The causality between plasma metabolites and AMD was assessed by a bidirectional two-sample Mendelian randomization (MR) analysis using the genome-wide association studies (GWAS) summary statistics of 1400 genetically determined metabolites (GDMs) and AMD. For this MR analysis, inverse variance weighted (IVW) was used as the primary method, with weighted median, MR-Egger, weighted mode, and simple mode as supplementary methods to examine the causality. MR-Egger intercept, Cochran's Q, and MR-PRESSO test were employed to evaluate possible pleiotropy and heterogeneity. RESULTS The results of IVW showed significant causal associations between 13 GDMs and AMD. 1-stearoyl-GPE (18:0), androstenediol (3β,17β) monosulfate, stearoyl sphingomyelin (d18:1/18:0), xylose, and X-11,850 exhibited a protective effect on AMD, while gulonate and mannonate increased the risk of AMD. 1-stearoyl-GPE (18:0) and X-11,850 exhibited protective effects on dry AMD. DHEAS, 1-stearoyl-GPE (18:0), 5α-androstan-3β,17β-diol disulfate, xylose, androstenediol (3β,17β) monosulfate, and N2-acetyl, N6, N6-dimethyllysine exhibited a protective effect on wet AMD, while succinimide, 16a-hydroxy DHEA 3-sulfate, and X-13,553 increased the risk of wet AMD. Horizontal pleiotropy and heterogeneity did not distort the causal estimates. In the reverse MR analysis, AMD reduced the androstenediol (3β,17β) monosulfate level, and increased the stearoyl sphingomyelin(d18:1/18:0) level. CONCLUSION This study supported the effect of plasma metabolites on AMD, providing novel insights for clinical diagnosis and prevention strategy.
Collapse
Affiliation(s)
- Zhen-Yu Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China.
| | - Hang Zhang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Xiu-Li Sun
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| | - Jian-Ying Liu
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, No. 1, Dongjiaomin Lane, Dongcheng District, Beijing, 100730, China
| |
Collapse
|
10
|
da C Pinaffi-Langley AC, Pinto CB, Mukli P, Peterfi A, Kaposzta Z, Owens CD, Szarvas Z, Muranyi M, Adams C, Shahriari A, Balasubramanian P, Ungvari Z, Csiszar A, Conley S, Hord NG, Anderson L, Tarantini S, Yabluchanskiy A. Energy metabolism dysregulation, cerebrovascular aging, and time-restricted eating: Current evidence and proof-of-concept findings. PNAS NEXUS 2024; 3:pgae505. [PMID: 39584020 PMCID: PMC11582367 DOI: 10.1093/pnasnexus/pgae505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/26/2024] [Indexed: 11/26/2024]
Abstract
Dysregulated energy metabolism is a hallmark of aging, including brain aging; thus, strategies to restore normal metabolic regulation are at the forefront of aging research. Intermittent fasting, particularly time-restricted eating (TRE), is one of these strategies. Despite its well-established effectiveness in improving metabolic outcomes in older adults, the effect of TRE on preserving or improving cerebrovascular health during aging remains underexplored. We explored how aging itself affects energy metabolism and contextualized these age-related changes to cerebrovascular health. We also conducted a literature search on PubMed and Scopus to identify and summarize current studies on TRE in older adults. Finally, we provided preliminary data from our proof-of-concept pilot trial on the effect of 6-month TRE on cerebrovascular health in older adults. Current evidence shows the potential of TRE to improve energy metabolism and physiological outcomes in older adults. TRE may improve cerebrovascular function indirectly due to its effect on glucose homeostasis. However, to date, direct evidence of the effect of TRE on cerebrovascular parameters is lacking. TRE is a well-tolerated and promising dietary intervention for promoting and maintaining cerebrovascular health in older adults. Further studies on TRE in older adults must be better controlled for energy balance to elucidate its independent effects from those of caloric restriction.
Collapse
Affiliation(s)
- Ana Clara da C Pinaffi-Langley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Camila B Pinto
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Peter Mukli
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Anna Peterfi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Zalan Kaposzta
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Cameron D Owens
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zsofia Szarvas
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
| | - Mihaly Muranyi
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Cheryl Adams
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Ali Shahriari
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Priya Balasubramanian
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Zoltan Ungvari
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Anna Csiszar
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Shannon Conley
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Norman G Hord
- Department of Nutritional Sciences, College of Education and Human Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Leah Anderson
- Department of Nutritional Sciences, College of Allied Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Public Health, International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Semmelweis University, Budapest H-1085, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Neurosurgery, Vascular Cognitive Impairment and Neurodegeneration Program, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences, Oklahoma City, OK 73104, USA
| |
Collapse
|
11
|
Lai G, Malavolta M, Marcozzi S, Bigossi G, Giuliani ME, Casoli T, Balietti M. Late-onset major depressive disorder: exploring the therapeutic potential of enhancing cerebral brain-derived neurotrophic factor expression through targeted microRNA delivery. Transl Psychiatry 2024; 14:352. [PMID: 39227372 PMCID: PMC11371930 DOI: 10.1038/s41398-024-02935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 09/05/2024] Open
Abstract
Major depressive disorder (MDD) is a severe psychiatric condition that significantly impacts the overall quality of life. Although MDD can occur across all age groups, it is notably prevalent among older individuals, with the aggravating circumstance that the clinical condition is frequently overlooked and undertreated. Furthermore, older adults often encounter resistance to standard treatments, experience adverse events, and face challenges associated with polypharmacy. Given that late-life MDD is associated with heightened rates of disability and mortality, as well as imposing a significant economic and logistical burden on healthcare systems, it becomes imperative to explore novel therapeutic approaches. These could serve as either supplements to standard guidelines or alternatives for non-responsive patients, potentially enhancing the management of geriatric MDD patients. This review aims to delve into the potential of microRNAs targeting Brain-Derived Neurotrophic Factor (BDNF). In MDD, a significant decrease in both central and peripheral BDNF has been well-documented, raising implications for therapy response. Notably, BDNF appears to be a key player in the intricate interplay between microRNA-induced neuroplasticity deficits and neuroinflammation, both processes deeply implicated in the onset and progression of the disease. Special emphasis is placed on delivery methods, with a comprehensive comparison of the strengths and weaknesses of each proposed approach. Our hypothesis proposes that employing multiple microRNAs concurrently, with the ability to directly influence BDNF and activate closely associated pathways, may represent the most promising strategy. Regarding vehicles, although the perfect nanoparticle remains elusive, considering the trade-offs, liposomes emerge as the most suitable option.
Collapse
Affiliation(s)
- Giovanni Lai
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy.
| | - Serena Marcozzi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Maria Elisa Giuliani
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, Ancona, Italy
| | - Tiziana Casoli
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Marta Balietti
- Center of Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
12
|
Case BF, Groffen J, Galligan TM, Bodinof Jachowski CM, Hallagan JJ, Hildreth SB, Alaasam V, Keith Ray W, Helm RF, Hopkins WA. Androgen and glucocorticoid profiles throughout extended uniparental paternal care in the eastern hellbender salamander (Cryptobranchus a. alleganiensis). Gen Comp Endocrinol 2024; 355:114547. [PMID: 38772453 DOI: 10.1016/j.ygcen.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The behavioral endocrinology associated with reproduction and uniparental male care has been studied in teleosts, but little is known about hormonal correlates of uniparental male care in other ectotherms. To address this gap, we are the first to document the seasonal steroid endocrinology of uniparental male hellbender salamanders during the transition from pre-breeding to nest initiation, and through the subsequent eight months of paternal care. In doing so, we investigated the correlates of nest fate and clutch size, exploring hellbenders' alignment with several endocrinological patterns observed in uniparental male fish. Understanding the endocrinology of hellbender paternal care is also vital from a conservation perspective because high rates of nest failure were recently identified as a factor causing population declines in this imperiled species. We corroborated previous findings demonstrating testosterone and dihydrotestosterone (DHT) to be the primary androgens in hellbender reproduction, and that cortisol circulates as the most abundant glucocorticoid. However, we were unable to identify a prolactin or a "prolactin-like" peptide in circulation prior to or during parental care. We observed ∼ 80 % declines in both primary androgens during the transition from pre-breeding to nest initiation, and again as paternal care progressed past its first month. In the days immediately following nest initiation, testosterone and DHT trended higher in successful individuals, but did not differ with males' clutch size. We did not observe meaningful seasonality in baseline glucocorticoids associated with breeding or nesting. In contrast, stress-induced glucocorticoids were highest at pre-breeding and through the first two months of care, before declining during the latter-most periods of care as larvae approach emergence from the nest. Neither baseline nor stress-induced glucocorticoids varied significantly with either nest fate or clutch size. Both stress-induced cortisol and corticosterone were positively correlated with total length, a proxy for age in adult hellbenders. This is consistent with age-related patterns in some vertebrates, but the first such pattern observed in a wild amphibian population. Generally, we found that nesting hellbenders adhere to some but not all of the endocrinological patterns observed in uniparental male teleosts prior to and during parental care.
Collapse
Affiliation(s)
- Brian F Case
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA.
| | - Jordy Groffen
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA
| | - Thomas M Galligan
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA
| | | | - John J Hallagan
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA
| | - Sherry B Hildreth
- Virginia Tech, Fralin Life Sciences Institute, Blacksburg, VA 24060, USA
| | - Valentina Alaasam
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA
| | - W Keith Ray
- Virginia Tech, Fralin Life Sciences Institute, Blacksburg, VA 24060, USA
| | - Richard F Helm
- Virginia Tech, Department of Biochemistry, Blacksburg, VA 24060, USA
| | - William A Hopkins
- Virginia Tech, Department of Fish and Wildlife Conservation, Blacksburg, VA 24060, USA
| |
Collapse
|
13
|
Kahlon A, Lippmann S, Feehan J, Apostolopoulos V, Sah R. Does loneliness impair immunity? Maturitas 2024:108095. [PMID: 39214726 DOI: 10.1016/j.maturitas.2024.108095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Affiliation(s)
- Amrit Kahlon
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Steven Lippmann
- University of Louisville School of Medicine, Louisville, KY, USA
| | - Jack Feehan
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Vasso Apostolopoulos
- School of Health & Biomedical Sciences, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Ranjit Sah
- Department of Microbiology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India; Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune 411018, Maharashtra, India
| |
Collapse
|
14
|
Sen O, Uzun U, Aydin N, Guldogan I. Effect of cortisol and glycosylated-hemoglobin levels on mortality in intensive care unit. Saudi Med J 2024; 45:476-480. [PMID: 38734442 PMCID: PMC11147561 DOI: 10.15537/smj.2024.45.5.20240076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES To research the effects of blood cortisol and hemoglobinA1c (HBA1C) levels on mortality in patients admitted to the intensive care unit (ICU) and whether these factors could be used as reliable indicators for mortality risk assessment in these patients. METHODS After receiving approval from the ethics committee, 79 patients admitted to ICU were included in the study. From patient files, we collected data on demographics (age, gender), presence of diabetes mellitus, and levels of cortisol, HbA1C, glucose, and lactate measured during hospitalization, along with acute physiology and chronic health evaluation (APACHE) II scores calculated within the first 24 hours. In our study, we planned to investigate the relationship between patients' cortisol and HbA1C levels and mortality. RESULTS A total of 79 patients were included in the study. The mortality rate of the patients included in the study was 65.8%. In the model established with all variables, only cortisol level (p=0.017) and APACHE II score (p=0.005) were defined to affect mortality. CONCLUSION Cortisol levels at the time of admission to the ICU were found to affect mortality and can be considered a predictive factor, while HBA1C levels showed no such effect. Our findings indicate that neither cortisol nor HBA1C levels had an impact on the duration of mechanical ventilation or length of stay in the ICU.
Collapse
Affiliation(s)
- Oznur Sen
- From the Department of Anesthesiology and Reanimation Unit (Sen, Aydin), SBU Haseki Training and Research Hospital, Istanbul; and From the Department of Anesthesiology and Reanimation Unit (Uzun, Guldogan), SBU Tepecik Training and Research Hospital, İzmir, Turkey.
| | - Ugur Uzun
- From the Department of Anesthesiology and Reanimation Unit (Sen, Aydin), SBU Haseki Training and Research Hospital, Istanbul; and From the Department of Anesthesiology and Reanimation Unit (Uzun, Guldogan), SBU Tepecik Training and Research Hospital, İzmir, Turkey.
| | - Nurdan Aydin
- From the Department of Anesthesiology and Reanimation Unit (Sen, Aydin), SBU Haseki Training and Research Hospital, Istanbul; and From the Department of Anesthesiology and Reanimation Unit (Uzun, Guldogan), SBU Tepecik Training and Research Hospital, İzmir, Turkey.
| | - Isil Guldogan
- From the Department of Anesthesiology and Reanimation Unit (Sen, Aydin), SBU Haseki Training and Research Hospital, Istanbul; and From the Department of Anesthesiology and Reanimation Unit (Uzun, Guldogan), SBU Tepecik Training and Research Hospital, İzmir, Turkey.
| |
Collapse
|
15
|
Yiallouris A, Filippou C, Themistocleous SC, Menelaou K, Kalodimou V, Michaeloudes C, Johnson EO. Aging of the adrenal gland and its impact on the stress response. VITAMINS AND HORMONES 2024; 124:341-366. [PMID: 38408802 DOI: 10.1016/bs.vh.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This article discusses the physiological and anatomical changes of adrenal gland with age and the effects this has overall on how the organ responds to stress. Physiological changes entail a decrease in adrenocorticoid hormone secretion however cortisol levels remain intact leading to a disruptive stress response. Additionally, loss of zonation of the organ also occurs. Both characteristics in combination with chronic stress affect overall health. Complex interplay between adrenal aging and stress responsiveness is confounded further by the impact they expel on other systems, such as the thyroid hormone. The body undergoes age-related transformations modifying rate of cellular growth, differentiation, senescence, and hormone production. Given the multiplicity and complexity of hormones, their production must be considered to develop appropriate interventions to mitigate its effect on age related diseases in health.
Collapse
Affiliation(s)
- Andreas Yiallouris
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalampos Filippou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Sophia C Themistocleous
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Katerina Menelaou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Vasiliki Kalodimou
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Charalambos Michaeloudes
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus
| | - Elizabeth O Johnson
- Medical Innovation Center (MEDIC), School of Medicine, European University Cyprus, Diogenis Str., Engomi, Nicosia, Cyprus.
| |
Collapse
|
16
|
Terekhina OL, Kirova YI. [The effect of ethylmethylhydroxypyridine succinate on the parameters of chronic neuroinflammation and plastic processes in the brain of old rats during course of dexamethasone administration]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:115-121. [PMID: 39435787 DOI: 10.17116/jnevro2024124091115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
OBJECTIVE To study was to evaluate the potential modulatory impact of succinate/SUCNR1 signaling on the non-genomic immunosuppressive and gene-mediated inflammatory-degenerative effects of glucocorticoid receptor (GR) activation in the cerebral cortex (CC) of aging rats. MATERIAL AND METHODS Using Western blot analysis, we assessed the expression level of pro-inflammatory (TNF-α, IL-1β), anti-inflammatory cytokines (IL-10, TGF-β1), mitochondriogenesis markers (PGC-1α, NDUFV2, SDHA, cyt c1, COX2, ATP5A), angiogenesis marker VEGF, neurotrophin BDNF, GR, succinate receptor SUCNR1 in the CC of 18-month-old rats with isolated administration of the highly specific GR ligand dexamethasone (1 mg/kg, i.p., daily, 10 days) and its combined administration with the succinate-containing drug Mexidol (100 mg/kg, i.p., daily, 10 days). RESULTS Dexamethasone caused a decrease in the content of all detectable parameters in the CC of 18-month-old rats, including anti-inflammatory IL-10, TGF-β1, PGC-1α, VEGF, BDNF, which progressed by 10 days, amounting to 40-60%, which is consistent with the literature data on transrepression by GR of key pro-inflammatory (NFkB, AP1, STAT1), anti-inflammatory (PPARγ, ERRα), pro-anabolic transcription factors (estrogen, androgen receptors). The administration of Mexidol daily an hour after the injection of dexamethasone did not affect the dexamethasone-induced suppression of pro-inflammatory cytokines, but increased the expression levels of anti-inflammatory cytokines, protein markers of mitochondrio-, angio- and synaptogenesis. CONCLUSION The study demonstrates for the first time the prospect and pathogenetic foundation of the combined use of dexamethasone and Mexidol in an aging body in order to minimize the activity of GC aimed at suppressing pro-anabolic programs and mechanisms for resolving inflammation.
Collapse
Affiliation(s)
- O L Terekhina
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Yu I Kirova
- Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
17
|
Balietti M, Galeazzi R, Giacconi R, Santillo E, Giuli C. Early Benefits with Potential Long-Term Risks of a Comprehensive Intervention on Serum Cortisol Levels and Cognitive Performance in Patients with Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:1445-1453. [PMID: 38225963 PMCID: PMC10789291 DOI: 10.3233/adr-230125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024] Open
Abstract
Background Elevated cortisol levels represent a risk factor for Alzheimer's disease (AD), prompting treatments to lower hormone concentrations for preventive or therapeutic purposes. Objective To assess the efficacy of a comprehensive intervention (CI) in modulating serum cortisol levels in patients with AD. Methods CI consisted in a 2-month protocol involving cognitive stimulation, psychological support, lifestyle guidance, leisure activities, and socialization. AD subjects were randomly assigned to experimental (EG, n = 45) and control (CG, n = 45) groups. A wide range of sociodemographic, cognitive, psychosocial, and functional conditions were evaluated before, at the conclusion, and 24 months after CI. Data about lifestyle and drug prescription were also recorded. Results Baseline evaluations revealed that higher cortisol levels correlated with worse cognitive status (higher CDR and ADAS-Cog values and lower MMSE scores), increased depressive symptoms, and reduced physical and social engagement. Following CI, EG exhibited reduced cortisol levels, improved overall cognitive status, and enhanced verbal working memory and executive functions compared to CG. However, at the 24-month follow-up, EG displayed a rebound effect, characterized by elevated cortisol levels and cognitive decline compared to CG. Conclusions These findings strengthen the adverse relationship between excessive cortisol and deficits in cognition/behavior in AD, demonstrate the short-term benefits of CI, and emphasize the potential long-term risks, which may be attributed to the fragile nature of the AD brain. Comprehensive interventions can yield positive results, but careful calibration of type and duration is necessary, considering disease progression and the potential need for re-administration.
Collapse
Affiliation(s)
- Marta Balietti
- Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Roberta Galeazzi
- Clinic of Laboratory and Precision Medicine, IRCCS INRCA, Ancona, Italy
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | | | - Cinzia Giuli
- Geriatric Operative Unit, IRCCS INRCA, Fermo, Italy
| |
Collapse
|
18
|
Amir Hamzah K, Toms LM, Kucharski N, Orr J, Turner NP, Hobson P, Nichols DS, Ney LJ. Sex-dimorphism in human serum endocannabinoid and n-acyl ethanolamine concentrations across the lifespan. Sci Rep 2023; 13:23059. [PMID: 38155287 PMCID: PMC10754838 DOI: 10.1038/s41598-023-50426-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023] Open
Abstract
The endocannabinoid (ECB) system has recently been considered a potential treatment target for various clinical disorders. However, research around age- and sex-related changes within the ECB system is relatively limited. To improve our understanding of these changes, the current study measured arachidonoyl ethanolamide (AEA), 2-arachidonoyl glycerol (2-AG), oleoylethanolamine (OEA), palmitoylethanolamine (PEA), arachidonic acid (AA), cortisol, and progesterone in pooled serum samples stratified by sex (male and female) and age groups (5-15; 15-30; 30-45; 45-60; 60-75; 85+), using liquid-chromatography tandem mass spectrometry. Serum progesterone levels significantly increased in females of the 15-30 and 30-45 age groups, before declining. Significantly higher cortisol, AEA, 2-AG, OEA, and PEA were found in males and in older age, while significantly higher AA was found in females. Our results indicate that ECBs and related hormones exhibit sexual dimorphism in the age ranges that correspond with female pregnancy, menopause, and post menopause. Male testosterone levels most likely influences male ECB changes throughout the lifespan. Future research could capitalise on these findings by performing repeated measurements in individuals in a longitudinal style, to further refine the temporal profile of age-specific changes to the ECB system identified here.
Collapse
Affiliation(s)
- Khalisa Amir Hamzah
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia.
| | - Leisa-Maree Toms
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Nathaniel Kucharski
- School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Kelvin Grove, Australia
| | - Julia Orr
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
| | - Natalie P Turner
- The Centre for Children's Health Research (CCHR), Queensland University of Technology, 62 Graham Street, South Brisbane, QLD, 4101, Australia
| | - Peter Hobson
- The University of Queensland, Queensland Alliance for Environmental Health Sciences, Woolloongabba, QLD, Australia
- Sullivan and Nicolaides Pathology, 24 Hurworth Street, Bowen Hills, QLD, 4006, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Sydney, Australia
| | - Luke J Ney
- School of Psychology and Counselling, Faculty of Health, Queensland University of Technology, 149 Victoria Park Road, Kelvin Grove, Brisbane, 4059, Australia
| |
Collapse
|
19
|
Hernández-Urbán AJ, Drago-Serrano ME, Cruz-Baquero A, García-Hernández AL, Arciniega-Martínez IM, Pacheco-Yépez J, Guzmán-Mejía F, Godínez-Victoria M. Exercise improves intestinal IgA production by T-dependent cell pathway in adults but not in aged mice. Front Endocrinol (Lausanne) 2023; 14:1190547. [PMID: 38130396 PMCID: PMC10733478 DOI: 10.3389/fendo.2023.1190547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Hypermutated high-affinity immunoglobulin A (IgA), neutralizes toxins and drives the diversification of bacteria communities to maintain intestinal homeostasis although the mechanism underlies the impact of moderate aerobic exercise (MAE) on the IgA-generation via T-dependent (TD) is not fully know. Therefore, the aim of this study was to determine the effect of long-time MAE on the production of IgA through the TD pathway in Peyer´s patches of the small intestine from aged mice. Methods MAE protocol consisted of twenty 3-month-old (young) BALB/c mice running in an endless band at 0° inclination and a speed of 10 m/h for 5 days a week and resting 2 days on the weekend until reaching 6-month-old (adulthood, n=10) or 24-month-old (aging, n=10). Groups of young, adult, or elderly mice were included as sedentary controls (n=10/per group). At 6 or 24 months old, all were sacrificed, and small intestine samples were dissected to prepare intestinal lavages for IgA quantitation by ELISA and to obtain suspensions from Peyer´s patches (PP) and lamina propria (LP) cells for analysis of T, B, and plasma cell subpopulations by flow cytometry and mRNA analysis expression by RT-qPCR of molecular factors related to differentiation of B cells to IgA+ plasma cells, class switch recombination, and IgA-synthesis. Statistical analysis was computed with two-way ANOVA (factor A=age, factor B=group) and p<0.05 was considered for statistically significant differences. Results Compared to age-matched sedentary control, in exercised elderly mice, parameters were either increased (IgA concentration, IL-21, IL-10 and RDH mRNA expression), decreased (α-chain mRNA, B cells, mIgA+ B cells, mIgM+ B cells and IL-4 mRNA) or unchanged (PP mIgA+ plasmablasts and LP cyt-IgA+ plasma cells). Regarding the exercised adult mice, they showed an up-modulation of IgA-concentration, mRNA expression IL-21, IL-10, and RDH and cells (PP B and T cells, mIgM+ plasmablasts and LP cyt-IgA+plasma cells). Conclusion Our findings suggest that MAE restored the IgA production in adult mice via the TD cell pathway but does not in aged mice. Other studies are necessary to know in more detail the impact of long-time MAE on the TD pathway to produce IgA in aging.
Collapse
Affiliation(s)
- Angel Joel Hernández-Urbán
- Laboratorio de Citometria de Flujo e Investigación en Inmunología Clínica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | - Andrea Cruz-Baquero
- Laboratorio de Inmunología en Enfermedades Infecciosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
- Programa Bacteriología y Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Colegio Mayor de Cundinamarca, Bogotá, Colombia
| | - Ana Lilia García-Hernández
- Laboratorio de Investigación Odontológica, Sección Osteoinmunologia e Inmunidad Oral, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Ivonne Maciel Arciniega-Martínez
- Laboratorio de Inmunonutrición, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Judith Pacheco-Yépez
- Laboratorio de Inmunología en Enfermedades Infecciosas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fabiola Guzmán-Mejía
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Mexico City, Mexico
| | - Marycarmen Godínez-Victoria
- Laboratorio de Citometria de Flujo e Investigación en Inmunología Clínica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
20
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
21
|
Żelaźniewicz A, Nowak-Kornicka J, Pawłowski B. Birth size and the serum level of biological age markers in men. Sci Rep 2023; 13:14231. [PMID: 37648769 PMCID: PMC10469219 DOI: 10.1038/s41598-023-41065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023] Open
Abstract
Previous studies showed that intrauterine growth restrictions, resulting in smaller body size at birth, are associated with altered development and the risk of age-related diseases in adult life. Thus, prenatal development may predict aging trajectories in humans. The study aimed to verify if body size at birth is related to biological age in adult men. The study sample consisted of 159 healthy, non-smoking men with a mean age of 35.24 (SD 3.44) years. Birth weight and length were taken from medical records. The ponderal index at birth was calculated. Biological age was evaluated based on serum levels of s-Klotho, hsCRP, DHEA/S, and oxidative stress markers. Pregnancy age at birth, lifestyle, weight, cortisol, and testosterone levels were controlled. The results showed no relationship between birth size and s-Klotho, DHEA/S level, inflammation, or oxidative stress. Also, men born as small-for-gestational-age (N = 49) and men born as appropriate-for-gestational-age (N = 110) did not differ in terms of biological age markers levels. The results were similar when controlled for pregnancy week at birth, chronological age, BMI, testosterone, or cortisol level. The results suggest that there is no relationship between intrauterine growth and biomarkers of aging in men aged 30-45 years from the affluent population.
Collapse
Affiliation(s)
- Agnieszka Żelaźniewicz
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland.
| | - Judyta Nowak-Kornicka
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland
| | - Bogusław Pawłowski
- Department of Human Biology, University of Wrocław, Ul. Przybyszewskiego 63, 51-148, Wrocław, Poland
| |
Collapse
|
22
|
Rahman SA, Gathungu RM, Marur VR, St Hilaire MA, Scheuermaier K, Belenky M, Struble JS, Czeisler CA, Lockley SW, Klerman EB, Duffy JF, Kristal BS. Age-related changes in circadian regulation of the human plasma lipidome. Commun Biol 2023; 6:756. [PMID: 37474677 PMCID: PMC10359364 DOI: 10.1038/s42003-023-05102-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Aging alters the amplitude and phase of centrally regulated circadian rhythms. Here we evaluate whether peripheral circadian rhythmicity in the plasma lipidome is altered by aging through retrospective lipidomics analysis on plasma samples collected in 24 healthy individuals (9 females; mean ± SD age: 40.9 ± 18.2 years) including 12 younger (4 females, 23.5 ± 3.9 years) and 12 middle-aged older, (5 females, 58.3 ± 4.2 years) individuals every 3 h throughout a 27-h constant routine (CR) protocol, which allows separating evoked changes from endogenously generated oscillations in physiology. Cosinor regression shows circadian rhythmicity in 25% of lipids in both groups. On average, the older group has a ~14% lower amplitude and a ~2.1 h earlier acrophase of the lipid circadian rhythms (both, p ≤ 0.001). Additionally, more rhythmic circadian lipids have a significant linear component in addition to the sinusoidal across the 27-h CR in the older group (44/56) compared to the younger group (18/58, p < 0.0001). Results from individual-level data are consistent with group-average results. Results indicate that prevalence of endogenous circadian rhythms of the human plasma lipidome is preserved with healthy aging into middle-age, but significant changes in rhythmicity include a reduction in amplitude, earlier acrophase, and an altered temporal relationship between central and lipid rhythms.
Collapse
Grants
- R01 HL128538 NHLBI NIH HHS
- T32 HL007901 NHLBI NIH HHS
- R01 AG006072 NIA NIH HHS
- R01 HD107064 NICHD NIH HHS
- U01 NS114001 NINDS NIH HHS
- R01 HL132556 NHLBI NIH HHS
- UL1 TR001102 NCATS NIH HHS
- UL1 RR025758 NCRR NIH HHS
- R01 HL162102 NHLBI NIH HHS
- R01 HL166205 NHLBI NIH HHS
- R01 HL159207 NHLBI NIH HHS
- U54 AG062322 NIA NIH HHS
- R01 NS114526 NINDS NIH HHS
- R01 HL140335 NHLBI NIH HHS
- R01 HL114088 NHLBI NIH HHS
- R01 NS099055 NINDS NIH HHS
- R21 DA052861 NIDA NIH HHS
- R03 AG071922 NIA NIH HHS
- The work was supported by grants from the NIH: R01-HL132556 (BSK), R01-HL140335 (BSK), R01-HL114088 (EBK), R01-AG06072 (JFD), and R01-HL159207 (SAR). KS was supported by a T32 HL07901 and a NIA F32 AG316902. EBK was supported by NIH R01NS099055, U01NS114001, U54AG062322, R21DA052861, R21DA052861, R01NS114526-02S1, R01-HD107064, DoD W81XWH201076; and Leducq Foundation for Cardiovascular Research. The clinical research projects described were supported by NIH grant 1UL1 TR001102-01, 8UL1TR000170-05, UL1 RR025758, Harvard Clinical and Translational Science Center, from the National Center for Advancing Translational Science. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources, the National Center for Advancing Translational Science or the National Institutes of Health.
Collapse
Affiliation(s)
- Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Rose M Gathungu
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Enara Bio, The Magdalen Centre, Oxford Science Park, 1 Robert Robinson Avenue, Oxford, OX4 4GA, UK
| | - Vasant R Marur
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Quantitative Biosciences, Merck & Co., Inc, 320 Bent St, Cambridge, MA, 02141, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Computer and Data Sciences, School of Science and Engineering, Merrimack College, 315 Turnpike Street, North Andover, MA, 01845, USA
| | - Karine Scheuermaier
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193, Johannesburg, South Africa
| | - Marina Belenky
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Jackson S Struble
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Elizabeth B Klerman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeanne F Duffy
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, 221 Longwood Ave, Boston, MA, 02115, USA.
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|