1
|
Piontkowski ZT, Hayes DC, McDonald A, Pattison K, Butler KS, Timlin JA. Label-Free, Noninvasive Bone Cell Classification by Hyperspectral Confocal Raman Microscopy. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:147-155. [PMID: 38425368 PMCID: PMC10900511 DOI: 10.1021/cbmi.3c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
Characterizing and identifying cells in multicellular in vitro models remain a substantial challenge. Here, we utilize hyperspectral confocal Raman microscopy and principal component analysis coupled with linear discriminant analysis to form a label-free, noninvasive approach for classifying bone cells and osteosarcoma cells. Through the development of a library of hyperspectral Raman images of the K7M2-wt osteosarcoma cell lines, 7F2 osteoblast cell lines, RAW 264.7 macrophage cell line, and osteoclasts induced from RAW 264.7 macrophages, we built a linear discriminant model capable of correctly identifying each of these cell types. The model was cross-validated using a k-fold cross validation scheme. The results show a minimum of 72% accuracy in predicting cell type. We also utilize the model to reconstruct the spectra of K7M2 and 7F2 to determine whether osteosarcoma cancer cells and normal osteoblasts have any prominent differences that can be captured by Raman. We find that the main differences between these two cell types are the prominence of the β-sheet protein secondary structure in K7M2 versus the α-helix protein secondary structure in 7F2. Additionally, differences in the CH2 deformation Raman feature highlight that the membrane lipid structure is different between these cells, which may affect the overall signaling and functional contrasts. Overall, we show that hyperspectral confocal Raman microscopy can serve as an effective tool for label-free, nondestructive cellular classification and that the spectral reconstructions can be used to gain deeper insight into the differences that drive different functional outcomes of different cells.
Collapse
Affiliation(s)
- Zachary T. Piontkowski
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Dulce C. Hayes
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Anthony McDonald
- Sandia
National Laboratories, Department of Applied
Optics and Plasma Sciences, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kalista Pattison
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Kimberly S. Butler
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| | - Jerilyn A. Timlin
- Sandia
National Laboratories, Department of Molecular
and Microbiology, 1515
Eubank Blvd. SE, Albuquerque, New Mexico 87123, United States
| |
Collapse
|
2
|
Tseng YH, Ma TL, Tan DH, Su AJA, Washington KM, Wang CC, Huang YC, Wu MC, Su WF. Injectable Hydrogel Guides Neurons Growth with Specific Directionality. Int J Mol Sci 2023; 24:ijms24097952. [PMID: 37175657 PMCID: PMC10178216 DOI: 10.3390/ijms24097952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Visual disabilities affect more than 250 million people, with 43 million suffering from irreversible blindness. The eyes are an extension of the central nervous system which cannot regenerate. Neural tissue engineering is a potential method to cure the disease. Injectability is a desirable property for tissue engineering scaffolds which can eliminate some surgical procedures and reduce possible complications and health risks. We report the development of the anisotropic structured hydrogel scaffold created by a co-injection of cellulose nanofiber (CNF) solution and co-polypeptide solution. The positively charged poly (L-lysine)-r-poly(L-glutamic acid) with 20 mol% of glutamic acid (PLLGA) is crosslinked with negatively charged CNF while promoting cellular activity from the acid nerve stimulate. We found that CNF easily aligns under shear forces from injection and is able to form hydrogel with an ordered structure. Hydrogel is mechanically strong and able to support, guide, and stimulate neurite growth. The anisotropy of our hydrogel was quantitatively determined in situ by 2D optical microscopy and 3D X-ray tomography. The effects of PLLGA:CNF blend ratios on cell viability, neurite growth, and neuronal signaling are systematically investigated in this study. We determined the optimal blend composition for stimulating directional neurite growth yielded a 16% increase in length compared with control, reaching anisotropy of 30.30% at 10°/57.58% at 30°. Using measurements of calcium signaling in vitro, we found a 2.45-fold increase vs. control. Based on our results, we conclude this novel material and unique injection method has a high potential for application in neural tissue engineering.
Collapse
Affiliation(s)
- Yun-Hsiu Tseng
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Tien-Li Ma
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Dun-Heng Tan
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - An-Jey A Su
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kia M Washington
- Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Chun-Chieh Wang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Ching Huang
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Green Technology, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| |
Collapse
|
3
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Ma T, Tsai C, Luo S, Chen W, Huang Y, Su W. Chemical structures and compositions of peptide copolymer films affect their functional properties for cell adhesion and cell viability. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Riedel S, Ward D, Kudláčková R, Mazur K, Bačáková L, Kerns JG, Allinson SL, Ashton L, Koniezcny R, Mayr SG, Douglas TEL. Electron Beam-Treated Enzymatically Mineralized Gelatin Hydrogels for Bone Tissue Engineering. J Funct Biomater 2021; 12:jfb12040057. [PMID: 34698221 PMCID: PMC8544455 DOI: 10.3390/jfb12040057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/27/2022] Open
Abstract
Biological hydrogels are highly promising materials for bone tissue engineering (BTE) due to their high biocompatibility and biomimetic characteristics. However, for advanced and customized BTE, precise tools for material stabilization and tuning material properties are desired while optimal mineralisation must be ensured. Therefore, reagent-free crosslinking techniques such as high energy electron beam treatment promise effective material modifications without formation of cytotoxic by-products. In the case of the hydrogel gelatin, electron beam crosslinking further induces thermal stability enabling biomedical application at physiological temperatures. In the case of enzymatic mineralisation, induced by Alkaline Phosphatase (ALP) and mediated by Calcium Glycerophosphate (CaGP), it is necessary to investigate if electron beam treatment before mineralisation has an influence on the enzymatic activity and thus affects the mineralisation process. The presented study investigates electron beam-treated gelatin hydrogels with previously incorporated ALP and successive mineralisation via incubation in a medium containing CaGP. It could be shown that electron beam treatment optimally maintains enzymatic activity of ALP which allows mineralisation. Furthermore, the precise tuning of material properties such as increasing compressive modulus is possible. This study characterizes the mineralised hydrogels in terms of mineral formation and demonstrates the formation of CaP in dependence of ALP concentration and electron dose. Furthermore, investigations of uniaxial compression stability indicate increased compression moduli for mineralised electron beam-treated gelatin hydrogels. In summary, electron beam-treated mineralized gelatin hydrogels reveal good cytocompatibility for MG-63 osteoblast like cells indicating a high potential for BTE applications.
Collapse
Affiliation(s)
- Stefanie Riedel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; (R.K.); (S.G.M.)
- Division of Surface Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
- Correspondence: (S.R.); (T.E.L.D.)
| | - Daniel Ward
- Division of Biomedical and Life Sciences (BLS), Faculty of Health and Medicine, Furness College, Lancaster University, Lancaster LA1 4YG, UK; (D.W.); (S.L.A.)
| | - Radmila Kudláčková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic; (R.K.); (L.B.)
| | - Karolina Mazur
- Faculty of Materials Engineering and Physics, Institute of Materials Engineering, Tadeusz Kosciuszko Cracow University of Technology, al. Jana Pawła II 37, 31-864 Cracow, Poland;
| | - Lucie Bačáková
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic; (R.K.); (L.B.)
| | - Jemma G. Kerns
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YW, UK;
| | - Sarah L. Allinson
- Division of Biomedical and Life Sciences (BLS), Faculty of Health and Medicine, Furness College, Lancaster University, Lancaster LA1 4YG, UK; (D.W.); (S.L.A.)
| | - Lorna Ashton
- Chemistry Department, Lancaster University, Lancaster LA1 4YB, UK;
| | - Robert Koniezcny
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; (R.K.); (S.G.M.)
| | - Stefan G. Mayr
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany; (R.K.); (S.G.M.)
- Division of Surface Physics, Faculty of Physics and Earth Science, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany
| | - Timothy E. L. Douglas
- Engineering Department, Lancaster University, Lancaster LA1 4YW, UK
- Materials Science Institute (MSI), Lancaster University, Lancaster LA1 4YW, UK
- Correspondence: (S.R.); (T.E.L.D.)
| |
Collapse
|
6
|
Fejza A, Poletto E, Carobolante G, Camicia L, Andreuzzi E, Capuano A, Pivetta E, Pellicani R, Colladel R, Marastoni S, Doliana R, Iozzo RV, Spessotto P, Mongiat M. Multimerin-2 orchestrates the cross-talk between endothelial cells and pericytes: A mechanism to maintain vascular stability. Matrix Biol Plus 2021; 11:100068. [PMID: 34435184 PMCID: PMC8377000 DOI: 10.1016/j.mbplus.2021.100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
The ECM Multimerin-2 is a substrate for pericyte adhesion. The recruitment of pericytes leads to enhanced Multimerin-2 expression by endothelial cells. Multimerin-2 induces the expression of important cytokines both in endothelial cells and pericytes. The deposition of Multimerin-2 is key for the endothelial cell/pericyte crosstalk required for the establishment of vascular stability.
Tumor angiogenesis is vital for the growth and development of various solid cancers and as such is a valid and promising therapeutic target. Unfortunately, the use of the currently available anti-angiogenic drugs increases the progression-free survival by only a few months. Conversely, targeting angiogenesis to prompt both vessel reduction and normalization, has been recently viewed as a promising approach to improve therapeutic efficacy. As a double-edged sword, this line of attack may on one side halt tumor growth as a consequence of the reduction of nutrients and oxygen supplied to the tumor cells, and on the other side improve drug delivery and, hence, efficacy. Thus, it is of upmost importance to better characterize the mechanisms regulating vascular stability. In this context, recruitment of pericytes along the blood vessels is crucial to their maturation and stabilization. As the extracellular matrix molecule Multimerin-2 is secreted by endothelial cells and deposited also in juxtaposition between endothelial cells and pericytes, we explored Multimerin-2 role in the cross-talk between the two cell types. We discovered that Multimerin-2 is an adhesion substrate for pericytes. Interestingly, and consistent with the notion that Multimerin-2 is a homeostatic molecule deposited in the later stages of vessel formation, we found that the interaction between endothelial cells and pericytes promoted the expression of Multimerin-2. Furthermore, we found that Multimerin-2 modulated the expression of key cytokines both in endothelial cells and pericytes. Collectively, our findings posit Multimerin-2 as a key molecule in the cross-talk between endothelial cells and pericytes and suggest that the expression of this glycoprotein is required to maintain vascular stability.
Collapse
Key Words
- Ang-2, Angiopeietin-2
- Angiogenesis
- CD248, cluster of differentiation 248
- CD93, cluster of differentiation 93
- ECM, extracellular matrix
- EDEN, EMI Domain ENdowed
- Extracellular matrix
- HB-EGF, heparin binding epidermal growth factor
- HBVP, human brain vascular pericytes
- HDMEC, human dermal vascular endothelial cells
- HUVEC, human umbilical vein endothelial cells
- Notch-3-R, Notch Receptor 3
- PDGF, platelet-derived growth factor
- VEGFA, vascular endothelial growth factor A
- VEGFR2, vascular endothelial growth factor receptor 2
- VSMCs, vascular smooth muscle cells
- Vascular stability
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberta Colladel
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefano Marastoni
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
7
|
Sharma A, Goring A, Johnson PB, Emery RJH, Hesse E, Boyde A, Olsen BR, Pitsillides AA, Oreffo ROC, Mahajan S, Clarkin CE. Multiscale molecular profiling of pathological bone resolves sexually dimorphic control of extracellular matrix composition. Dis Model Mech 2021; 14:dmm048116. [PMID: 33563616 PMCID: PMC7988766 DOI: 10.1242/dmm.048116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/21/2021] [Indexed: 11/28/2022] Open
Abstract
Collagen assembly during development is essential for successful matrix mineralisation, which determines bone quality and mechanocompetence. However, the biochemical and structural perturbations that drive pathological skeletal collagen configuration remain unclear. Deletion of vascular endothelial growth factor (VEGF; also known as VEGFA) in bone-forming osteoblasts (OBs) induces sex-specific alterations in extracellular matrix (ECM) conformation and mineralisation coupled to vascular changes, which are augmented in males. Whether this phenotypic dimorphism arises as a result of the divergent control of ECM composition and its subsequent arrangement is unknown and is the focus of this study. Herein, we used murine osteocalcin-specific Vegf knockout (OcnVEGFKO) and performed ex vivo multiscale analysis at the tibiofibular junction of both sexes. Label-free and non-destructive polarisation-resolved second-harmonic generation (p-SHG) microscopy revealed a reduction in collagen fibre number in males following the loss of VEGF, complemented by observable defects in matrix organisation by backscattered electron scanning electron microscopy. This was accompanied by localised divergence in collagen orientation, determined by p-SHG anisotropy measurements, as a result of OcnVEGFKO. Raman spectroscopy confirmed that the effect on collagen was linked to molecular dimorphic VEGF effects on collagen-specific proline and hydroxyproline, and collagen intra-strand stability, in addition to matrix carbonation and mineralisation. Vegf deletion in male and female murine OB cultures in vitro further highlighted divergence in genes regulating local ECM structure, including Adamts2, Spp1, Mmp9 and Lama1. Our results demonstrate the utility of macromolecular imaging and spectroscopic modalities for the detection of collagen arrangement and ECM composition in pathological bone. Linking the sex-specific genetic regulators to matrix signatures could be important for treatment of dimorphic bone disorders that clinically manifest in pathological nano- and macro-level disorganisation. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Alice Goring
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Peter B. Johnson
- School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Roger J. H. Emery
- Department of Surgery and Cancer, Faculty of Medicine, St Mary's Campus, Imperial College London, London W2 1PG, UK
| | - Eric Hesse
- Institute of Molecular Musculoskeletal Research, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Munich 80336, Germany
| | - Alan Boyde
- Dental Physical Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
| | - Bjorn R. Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Andrew A. Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK
| | - Richard O. C. Oreffo
- Centre for Human Development, Stem Cell and Regeneration, Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Sumeet Mahajan
- School of Chemistry and Institute for Life Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| | - Claire E. Clarkin
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
8
|
Sharma A, Goring A, Clarkin CE. Commentary: A Cost-Effective Method to Enhance Adenoviral Transduction of Primary Murine Osteoblasts and Bone Marrow Stromal Cells. Front Endocrinol (Lausanne) 2020; 11:419. [PMID: 32670202 PMCID: PMC7330116 DOI: 10.3389/fendo.2020.00419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Aikta Sharma
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | - Claire E. Clarkin
- School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|