1
|
Zhao J, Li X, Zhang M, Xu Z, Qin X, Liu Y, Han L, Li G. Enhancing the catalytic performance of Co-N-C derived from ZIF-67 by mesoporous silica encapsulation for chemoselective hydrogenation of furfural. NANOSCALE 2023; 15:4612-4619. [PMID: 36763350 DOI: 10.1039/d2nr05831f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developing Cr-free and non-noble metal catalysts with high activity, selectivity and durability for chemoselective hydrogenation of furfural to furfuryl alcohol is highly desirable yet challenging. In this study, we design a hollow mesoporous Co-N-C@mSiO2 nanostructure derived from ZIF-67 via the encapsulation-pyrolysis strategy. The Co-N-C@mSiO2 catalyst exhibits excellent catalytic performance in the furfural hydrogenation towards furfuryl alcohol with good stability, and is much better than the Co-N-C catalyst originating from plain ZIF-67 and other reported transition metal catalysts. Characterization methods and control experiments show that Co-Nx species rather than Co metal should be catalytically active sites for the above reaction. The enhanced performance is associated with abundant Co-Nx active sites, good mass transport, and the SiO2 shell protection. This work provides a novel and facile strategy for preparing highly efficient non-precious metal catalysts to replace Cr-based and noble metal catalysts for furfural hydrogenation.
Collapse
Affiliation(s)
- Jianbo Zhao
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Xiaomeng Li
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Meng Zhang
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Zhuo Xu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Xiaomei Qin
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Yingfan Liu
- School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China.
| | - Lifeng Han
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou 450001, P. R. China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| |
Collapse
|
2
|
García-Sancho C, Mérida-Robles JM, Cecilia-Buenestado JA, Moreno-Tost R, Maireles-Torres PJ. The Role of Copper in the Hydrogenation of Furfural and Levulinic Acid. Int J Mol Sci 2023; 24:2443. [PMID: 36768767 PMCID: PMC9916970 DOI: 10.3390/ijms24032443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Currently, there is a great interest in the development of sustainable and green technologies for production of biofuels and chemicals. In this sense, much attention is being paid to lignocellulosic biomass as feedstock, as alternative to fossil-based resources, inasmuch as its fractions can be transformed into value-added chemicals. Two important platform molecules derived from lignocellulosic sugars are furfural and levulinic acid, which can be transformed into a large spectrum of chemicals, by hydrogenation, oxidation, or condensation, with applications as solvents, agrochemicals, fragrances, pharmaceuticals, among others. However, in many cases, noble metal-based catalysts, scarce and expensive, are used. Therefore, an important effort is performed to search the most abundant, readily available, and cheap transition-metal-based catalysts. Among these, copper-based catalysts have been proposed, and the present review deals with the hydrogenation of furfural and levulinic acid, with Cu-based catalysts, into several relevant chemicals: furfuryl alcohol, 2-methylfuran, and cyclopentanone from FUR, and γ-valerolactone and 2-methyltetrahydrofuran from LA. Special emphasis has been placed on catalytic processes used (gas- and liquid-phase, catalytic transfer hydrogenation), under heterogeneous catalysis. Moreover, the effect of addition of other metal to Cu-based catalysts has been considered, as well as the issue related to catalyst stability in reusing studies.
Collapse
Affiliation(s)
| | - Josefa María Mérida-Robles
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | | - Ramón Moreno-Tost
- Departamento de Química Inorgánica, Cristalografía y Mineralogía (Unidad Asociada al ICP-CSIC), Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Málaga, Spain
| | | |
Collapse
|
3
|
Liu S, Govindarajan N, Chan K. Understanding Activity Trends in Furfural Hydrogenation on Transition Metal Surfaces. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sihang Liu
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | - Nitish Govindarajan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
- Materials Science Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Karen Chan
- Catalysis Theory Center, Department of Physics, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Singh G, Gahtori J, Poddar MK, Samanta C, Bhattacharya S, Biradar AV, Bordoloi A. Studies on Synthesis of Sub‐Nanometre Size Pt Particles Stabilized on ZrO
2
Matrix for Formic Acid Mediated Synthesis of γ‐Valerolactone. ChemistrySelect 2022. [DOI: 10.1002/slct.202200029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gurmeet Singh
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Jyoti Gahtori
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Mukesh Kumar Poddar
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - Chanchal Samanta
- />Corporate R&D Centre, Bharat Petroleum Corporation Limited Greater Noida 201306 India
| | - Sumantra Bhattacharya
- Department of Chemistry National Institute of Technology Sikkim. Barfung Block Ravangla South Sikkim 737139 India
| | - Ankush V. Biradar
- CSIR- Central Salt & Marine Chemicals Research Institute Bhavnagar India
| | - Ankur Bordoloi
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| |
Collapse
|
5
|
Effect of Co-Doping on Cu/CaO Catalysts for Selective Furfural Hydrogenation into Furfuryl Alcohol. NANOMATERIALS 2022; 12:nano12091578. [PMID: 35564286 PMCID: PMC9102403 DOI: 10.3390/nano12091578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023]
Abstract
Cu/CaO catalysts with fine-tuned Co-doping for excellent catalytic performance of furfural (FAL) hydrogenation to furfuryl alcohol (FOL) were synthesized by a facile wetness impregnation method. The optimal Co1.40Cu1/CaO catalyst, with a Co to Cu mole ratio of 1.40:1, exhibited a 100% FAL conversion with a FOL yield of 98.9% at 100 °C and 20 bar H2 pressure after 4 h. As gained from catalyst characterizations, Co addition could facilitate the reducibility of the CoCu system. Metallic Cu, Co-Cu alloys, and oxide species with CaO, acting as the major active components for the reaction, were formed after reduction at 500 °C. Additionally, this combination of Co and Cu elements could result in an improvement of catalyst textures when compared with the bare CaO. Smaller catalyst particles were formed after the addition of Co into Cu species. It was found that the addition of Co to Cu on the CaO support could fine-tune the appropriate acidic and basic sites to boost the FOL yield and selectivity with suppression of undesired products. These observations could confirm that the high efficiency and selectivity are mainly attributed to the synergistic effect between the catalytically active Co-Cu species and the CaO basic sites. Additionally, the FAL conversion and FOL yield insignificantly changed throughout the third consecutive run, confirming a high stability of the developed Co1.40Cu1/CaO catalyst.
Collapse
|
6
|
Guo Q, Hou X, Xu W, Liu J. Efficient conversion of furfural to cyclopentanol over lignin activated carbon supported Ni-Co catalyst. RSC Adv 2022; 12:11843-11852. [PMID: 35481064 PMCID: PMC9016743 DOI: 10.1039/d2ra00016d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Ni3Co1/ELAC catalyst, prepared by the enzymatically hydrolyzed lignin activated carbon as a carrier and a 3 : 1 ratio content of nickel and cobalt, can selectively convert furfural to cyclopentanol (CPL) in aqueous solution. We used activated carbon prepared by the phosphoric acid method as the carrier, and investigated the effect of the carrier on the catalyst activity. The ratio of bimetal (Ni, Co) content and reaction conditions (reaction temperature, reaction time, initial H2 pressure) have also been investigated in the furfural hydrogenation. With the optimal Ni3Co1/ELAC catalyst, the conversion rate of furfural and the selectivity of CPL were 100% and 94.1%, respectively. In this process, some important catalysts were studied by XRD, XPS, ICP-AES, BET and TEM characterization. Through experimental results and other people's research, we deduced a reasonable reaction path and verified it by replacing the reaction substrate and solvents. Finally, the experiment proved that the formation of CPL by furfural required the occurrence of a rearrangement reaction and the participation of aqueous solution. Ni3Co1/ELAC catalyst, prepared from enzymatically hydrolyzed lignin activated carbon as a carrier and a 3 : 1 ratio content of nickel and cobalt, can selectively convert furfural to cyclopentanol (CPL) in aqueous solution.![]()
Collapse
Affiliation(s)
- Qi Guo
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering SFA Nanjing 210042 Jiangsu Province China .,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Xinglong Hou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering SFA Nanjing 210042 Jiangsu Province China .,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| | - Wei Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering SFA Nanjing 210042 Jiangsu Province China
| | - Junli Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab. of Biomass Energy and Material, National Engineering Lab. for Biomass Chemical Utilization, Key and Open Lab. on Forest Chemical Engineering SFA Nanjing 210042 Jiangsu Province China .,Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
7
|
Bezerra DM, Ferreira GR, Assaf EM. Catalysts applied in biogas reforming: phases behavior study during the H2 reduction and dry reforming by in situ X-ray diffraction. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-021-00213-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Wang Y, Liu S, Guo Q, Zhang Y. Ni@C@CNT catalyst derived from CNT doped Ni‐MOF for furfural hydrogenation to tetrahydrofurfuryl alcohol. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yuan Wang
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Shanshan Liu
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Qirui Guo
- School of Chemistry and Environmental Engineering Yancheng Teachers University Yancheng China
| | - Yidong Zhang
- School of Chemistry and Chemical Engineering Yancheng Institute of Technology Yancheng China
| |
Collapse
|
9
|
Kamble PA, Kantam ML, Rathod VK. Hydrogenation of Furfural to Furfuryl Alcohol over Nickel Supported Bentonite Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202101370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paresh A. Kamble
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| | | | - Virendra K. Rathod
- Department of Chemical Engineering Institute of Chemical Technology Mumbai 400019 India
| |
Collapse
|
10
|
Tolek W, Nanthasanti N, Pongthawornsakun B, Praserthdam P, Panpranot J. Effects of TiO 2 structure and Co addition as a second metal on Ru-based catalysts supported on TiO 2 for selective hydrogenation of furfural to FA. Sci Rep 2021; 11:9786. [PMID: 33963216 PMCID: PMC8105368 DOI: 10.1038/s41598-021-89082-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/12/2021] [Indexed: 11/17/2022] Open
Abstract
The TiO2 supported Ru-based catalysts were prepared with 1.5 wt% Ru and 0-0.8 wt% Co on various TiO2 (anatase, rutile, P-25, and sol-gel TiO2) and studied in the liquid-phase selective hydrogenation of furfural to furfuryl alcohol (FA) under mild conditions (50 °C and 2 MPa H2). The presence of high anatase crystallographic composition on TiO2 support was favorable for enhancing hydrogenation activity, while the strong interaction between Ru and TiO2 (Ru-TiOx sites) was required for promoting the selectivity to FA. The catalytic performances of bimetallic Ru-Co catalysts were improved with increasing Co loading due to the synergistic effect of Ru-Co alloying system together with the strong interaction between Ru and Co as revealed by XPS, H2-TPR, and TEM-EDX results. The enhancement of reducibility of Co oxides in the bimetallic Ru-Co catalysts led to higher hydrogenation activity with the Ru-0.6Co/TiO2 catalyst exhibited the best performances in FA selective hydrogenation of furfural to FA under the reaction conditions used.
Collapse
Affiliation(s)
- Weerachon Tolek
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Natdanai Nanthasanti
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Boontida Pongthawornsakun
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Joongjai Panpranot
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Feng Y, Long S, Tang X, Sun Y, Luque R, Zeng X, Lin L. Earth-abundant 3d-transition-metal catalysts for lignocellulosic biomass conversion. Chem Soc Rev 2021; 50:6042-6093. [PMID: 34027943 DOI: 10.1039/d0cs01601b] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transformation of biomass to chemicals and fuels is a long-term goal in both science and industry. However, high cost is one of the major obstacles to the industrialization of this sustainable technology. Thus, developing catalysts with high activity and low-cost is of great importance for biomass conversion. The last two decades have witnessed the increasing achievement of the use of earth-abundant 3d-transition-metals in catalysis due to their low-cost, high efficiency and excellent stability. Here, we aim to review the fast development and recent advances of 3d-metal-based catalysts including Cu, Fe, Co, Ni and Mn in lignocellulosic biomass conversion. Moreover, present research trends and invigorating perspectives on future development are given.
Collapse
Affiliation(s)
- Yunchao Feng
- College of Energy, Xiamen University, Xiamen 361102, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Akmaz S, Algorabi S, Koc SN. Furfural hydrogenation to 2‐methylfuran over efficient sol‐gel copper‐cobalt/zirconia catalyst. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.23953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Solmaz Akmaz
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Serap Algorabi
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| | - Serkan N. Koc
- Department of Chemical Engineering Istanbul University‐Cerrahpaşa Istanbul Turkey
| |
Collapse
|
13
|
Development of bimetallic Ni-Cu/SiO2 catalysts for liquid phase selective hydrogenation of furfural to furfuryl alcohol. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Zhao M, Yang N, Li Z, Xie H. MOFs Derived Catalysts Prepared by Pyrolysis for Hydrogenation of Bio‐Based Furfural: A Mini‐Review. ChemistrySelect 2020. [DOI: 10.1002/slct.202003770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mei‐Xia Zhao
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education, China University of Mining & Technology, Xuzhou Jiangsu China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology Xuzhou, Jiangsu China
| | - Ning Yang
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
- Jiangsu Collaborative Innovation Center for Building Energy Saving and Construct Technology Xuzhou, Jiangsu China
| | - Zhi‐Xin Li
- School of Chemistry and Chemical Engineer Shandong University, Jinan Shandong China
- Key Laboratory of Coal Processing and Efficient Utilization Ministry of Education, China University of Mining & Technology, Xuzhou Jiangsu China
| | - Heng‐Shen Xie
- Jiangsu Vocational Institute of Architectural Technology Xuzhou, Jiangsu China
| |
Collapse
|
15
|
Yu Z, Lu X, Wang X, Xiong J, Li X, Zhang R, Ji N. Metal-Catalyzed Hydrogenation of Biomass-Derived Furfural: Particle Size Effects and Regulation Strategies. CHEMSUSCHEM 2020; 13:5185-5198. [PMID: 32738188 DOI: 10.1002/cssc.202001467] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/30/2020] [Indexed: 06/11/2023]
Abstract
The hydrogenation of furfural (FUR), a typical bio-based furan derivative, is a critical reaction within the roadmap for upgrading lignocellulosic biomass into high value-added chemicals and liquid fuels, the performance of which is strongly correlated with the catalysts' intrinsic peculiarities. Metal catalysts with tailorable sizes, uniform dispersions and robust sintering resistance are generally recognized as a prerequisite for obtaining better hydrogenation activity, selectivity and stability, which has prompted intensive research into metal particle size effects and their regulation strategies. The roles of metal particle sizes and corresponding dispersions of metal catalysts used for FUR hydrogenation have been clearly recognized to be crucial over the past decade. In this regard, this systematic Minireview aims to provide profound insights into particle size effects in the metal-catalyzed hydrogenation of FUR, as well as conditional and structural approaches to regulating these effects. In addition, from the aspect of catalyst stability, the impacts and improvements of the metal particle sintering issue are analyzed. Moreover, several suggestions are proposed in response to the challenges in regulating particle size effects. Furthermore, the viewpoints presented herein would potentially contribute to the rational development of metal hydrogenation catalysts and further help to boost a more sustainable biomass refining system.
Collapse
Affiliation(s)
- Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Xuebin Lu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaotong Wang
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| | - Jian Xiong
- Department of Chemistry & Environmental Science, School of Science, Tibet University, Lhasa, 850000, P.R. China
| | - Xiaoyun Li
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P.R. China
| |
Collapse
|
16
|
Luneau M, Lim JS, Patel DA, Sykes ECH, Friend CM, Sautet P. Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chem Rev 2020; 120:12834-12872. [DOI: 10.1021/acs.chemrev.0c00582] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Mathilde Luneau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jin Soo Lim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Dipna A. Patel
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E. Charles H. Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Cynthia M. Friend
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
17
|
Li ZX, Wei XY, Yang Z, Li J, Yan WW, Bie LL, Zhang YY, Li S, Zong ZM. Selective hydrogenation of bio-based furfural over Co-based catalysts derived from zeolitic imidazolate frame materials. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Abo El-Yazeed WS, Abou El-Reash YG, Elatwy LA, Ahmed AI. Facile fabrication of bimetallic Fe-Mg MOF for the synthesis of xanthenes and removal of heavy metal ions. RSC Adv 2020; 10:9693-9703. [PMID: 35497246 PMCID: PMC9050136 DOI: 10.1039/c9ra10300g] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/28/2020] [Indexed: 11/21/2022] Open
Abstract
This work reported the preparation of Mg-MOF, Fe-MOF and Fe-Mg MOF by a solvothermal technique and their characterization with FT-IR, XRD, SEM, EDS, TEM and S BET analyses. The nanoparticle diameter ranged from 3.1 to 10.9 nm. The acidity of the MOFs was measured by nonaqueous potentiometric titration of n-butylamine. It was observed that the formation of a bimetallic MOF sharply increases the surface acidity and the catalytic activity. The catalytic results of the Fe-Mg MOF catalyzing the synthesis of 14-aryl-14-H-dibenzo[a,j]xanthenes in comparison with those of parent MOFs showed a higher yield of the desired product in a lower time and among various Fe : Mg, the (0.6 : 1) Fe-Mg MOF showed the highest catalytic activity and acidity. Even after the 4th run, the Fe-Mg MOF catalyst still maintained nearly the initial catalytic activity. The adsorption performance of Mg-MOF, Fe-MOF and Fe-Mg MOF was evaluated by batch experiments. The effect of contact time, the solution pH, the adsorbent dose and the initial concentration of the heavy metal ions was discussed. It was found that the capacity of the bimetallic Fe-Mg MOF for Pb(ii), Cu(ii) and Cd(ii) adsorption was higher than that of the Mg-MOF and Fe-MOF, the kinetic data followed the pseudo-second-order kinetic model and the isothermal data obeyed the Langmuir isotherm model. The mechanism of the removal of the heavy metal ions was discussed.
Collapse
Affiliation(s)
- W S Abo El-Yazeed
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
- Department of Chemistry, College of Sciences and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| | - Y G Abou El-Reash
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - L A Elatwy
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| | - Awad I Ahmed
- Chemistry Department, Faculty of Science, Mansoura University Mansoura Egypt
| |
Collapse
|
19
|
Li JR, Wang FK, He C, Huang C, Xiao H. Catalytic total oxidation of toluene over carbon-supported Cu Co oxide catalysts derived from Cu-based metal organic framework. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Functionalized Metal-Organic Framework Catalysts for Sustainable Biomass Valorization. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/1201923] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Currently, pristine and functionalized metal-organic frameworks (MOFs) are introduced in heterogeneous catalysis for biomass upgrading owing to the specific texture properties including regular higher-order structure, high specific surface area, and the precisely tailored diversity. The purpose of this review is to afford a comprehensive discussion of the most applications in biomass refinery. We highlight recently developed four types of MOFs like pristine MOFs and their composites, MOF-supported metal NPs, acid-functionalized MOFs, and biofunctionalized MOFs for production of green, sustainable, and industrially acceptable biomass-derived platform molecules: (1) upgrading of saccharides, (2) upgrading of furan derivatives, and (3) upgrading of other biobased compounds.
Collapse
|
21
|
Highly Selective Reduction of Bio-Based Furfural to Furfuryl Alcohol Catalyzed by Supported KF with Polymethylhydrosiloxane (PMHS). J CHEM-NY 2020. [DOI: 10.1155/2020/4809127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogenation of bio-based furfural (FUR) to furfuryl alcohol (FFA) is tremendously expanding the application of biomass in many industries such as resins, biofuels, and pharmaceuticals. However, mass manufacture of FFA from FUR is restrained by strict requirements of reaction conditions and expensive catalysts. In this work, an economical and benign catalytic system, containing an easily prepared and reusable catalyst 5 wt.% KF/ZrO2 and a low-cost hydrogen source polymethylhydrosiloxane (PMHS), was developed to be efficient for the hydrogenation of FUR to high-value FFA under mild conditions. The catalyst reactivity was found to be remarkably influenced by the support acid-base properties and KF loading doge. In the presence of 5 wt.% KF/ZrO2, a high FFA yield of 97% and FUR conversion of 99% could be obtained at 25°C in just 0.5 h, which was superior to those attained with other tested catalysts. The KF/ZrO2 catalyst could be recycled at least five times, with the FFA yield slightly decreasing from 97% to 71%. The spare decrease in FFA yield is possibly attributed to the catalyst pore blocking, as clarified by SEM, BET, XPS, and ICP-MS measurements of the fresh and reused catalysts.
Collapse
|
22
|
Ruan L, Zhang H, Zhou M, Zhu L, Pei A, Wang J, Yang K, Zhang C, Xiao S, Chen BH. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Sankar V, Karthik P, Neppolian B, Sivakumar B. Metal–organic framework mediated expeditious synthesis of benzimidazole and benzothiazole derivatives through an oxidative cyclization pathway. NEW J CHEM 2020. [DOI: 10.1039/c9nj04431k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report facile synthesis of various benzimidazoles and benzothiazoles by using the NH2-MIL-125(Ti) MOF as an efficient oxidant-free heterogeneous catalyst with good yield.
Collapse
Affiliation(s)
- Velayudham Sankar
- Department of Chemistry and SRM Research Institute
- SRM Institute of Science and Technology
- Chennai-603203
- India
| | - Peramaiah Karthik
- Department of Chemistry and SRM Research Institute
- SRM Institute of Science and Technology
- Chennai-603203
- India
| | - Bernaurdshaw Neppolian
- Department of Chemistry and SRM Research Institute
- SRM Institute of Science and Technology
- Chennai-603203
- India
| | - Bitragunta Sivakumar
- Department of Chemistry and SRM Research Institute
- SRM Institute of Science and Technology
- Chennai-603203
- India
- Department of Chemistry
| |
Collapse
|
24
|
Fang R, Dhakshinamoorthy A, Li Y, Garcia H. Metal organic frameworks for biomass conversion. Chem Soc Rev 2020; 49:3638-3687. [DOI: 10.1039/d0cs00070a] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review narrates the recent developments on the catalytic applications of pristine metal–organic frameworks (MOFs), functionalized MOFs, guests embedded over MOFs and MOFs derived carbon composites for biomass conversion into platform chemicals.
Collapse
Affiliation(s)
- Ruiqi Fang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | | | - Yingwei Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Hermenegildo Garcia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV)
- Universitat Politècnica de València
- 46022 Valencia
- Spain
- Centre of Excellence for Advanced Materials Research
| |
Collapse
|
25
|
Li ZX, Wei XY, Liu GH, Meng XL, Yang Z, Niu S, Zhang D, Gao HS, Ma ZH, Zong ZM. Highly selective hydrogenation of furfural and levulinic acid over Ni0.09Zn/NC600 derived from ZIFW-8. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2019.110651] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Aljammal N, Jabbour C, Thybaut JW, Demeestere K, Verpoort F, Heynderickx PM. Metal-organic frameworks as catalysts for sugar conversion into platform chemicals: State-of-the-art and prospects. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213064] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Abstract
Furfural has been considered as one of the most promising platform molecules directly derived from biomass. The hydrogenation of furfural is one of the most versatile reactions to upgrade furanic components to biofuels. For instance, it can lead to plenty of downstream products, such as (tetrahydro)furfuryl alcohol, 2-methyl(tetrahydro)furan, lactones, levulinates, cyclopentanone(l), or diols, etc. The aim of this review is to discuss recent advances in the catalytic hydrogenation of furfural towards (tetrahydro)furfuryl alcohol and 2-methyl(tetrahydro)furan in terms of different non-noble metal and noble metal catalytic systems. Reaction mechanisms that are related to the different catalytic materials and reaction conditions are properly discussed. Selective hydrogenation of furfural could be modified not only by varying the types of catalyst (nature of metal, support, and preparation method) and reaction conditions, but also by altering the reaction regime, namely from batch to continuous flow. In any case, furfural catalytic hydrogenation is an open research line, which represents an attractive option for biomass valorization towards valuable chemicals and fuels.
Collapse
|
28
|
Highly selective hydrogenation of furfural to furan-2-ylmethanol over a Cu/C derived from copper-organic frameworks. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Highly Selective Hydrogenation of Furfural to Furan-2-ylmethanol over Zeolitic Imidazolate Frameworks-67-Templated Magnetic Cu–Co/C. Catal Letters 2019. [DOI: 10.1007/s10562-019-02925-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
30
|
Long J, Xu Y, Zhao W, Li H, Yang S. Heterogeneous Catalytic Upgrading of Biofuranic Aldehydes to Alcohols. Front Chem 2019; 7:529. [PMID: 31403043 PMCID: PMC6676456 DOI: 10.3389/fchem.2019.00529] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022] Open
Abstract
Heterogeneous catalytic conversion of lignocellulosic components into valuable chemicals and biofuels is one of the promising ways for biomass valorization, which well meets green chemistry metrics, and can alleviate environmental and economic issues caused by the rapid depletion of fossil fuels. Among the identified biomass derivatives, furfural (FF) and 5-hydroxymethylfurfural (HMF) stand out as rich building blocks and can be directly produced from pentose and hexose sugars, respectively. In the past decades, much attention has been attracted to the selective hydrogenation of FF and 5-hydroxymethylfurfural using various heterogeneous catalysts. This review evaluates the recent progress of developing different heterogeneous catalytic materials, such as noble/non-noble metal particles, solid acids/bases, and alkali metal salts, for the efficient reduction of bio-based furanic aldehydes to alcohols. Emphasis is laid on the insights and challenges encountered in those biomass transformation processes, along with the focus on the understanding of reaction mechanisms to clarify the catalytic role of specific active species. Brief outlook is also made for further optimization of the catalytic systems and processes for the upgrading of biofuranic compounds.
Collapse
Affiliation(s)
| | | | | | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Ministry of Education, Guizhou University, Guiyang, China
| |
Collapse
|
31
|
Zhang F, Li Z, Ma C, Han X, Dong X, Dong Z, Zhang X. N‐Doped Hierarchical Porous Carbon Embedded Synergistic Bimetallic CoCu NPs with Unparalleled Catalytic Performance. ChemCatChem 2019. [DOI: 10.1002/cctc.201900283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fengwei Zhang
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
| | - Zhihong Li
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
- Institute of Molecular ScienceShanxi University Taiyuan 030006 P.R. China
| | - Chunlan Ma
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
- Institute of Molecular ScienceShanxi University Taiyuan 030006 P.R. China
| | - Xu Han
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
- Institute of Molecular ScienceShanxi University Taiyuan 030006 P.R. China
| | - Xue Dong
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
| | - Zhengping Dong
- School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 P.R. China
| | - Xian‐Ming Zhang
- Institute of crystalline materialsShanxi University Taiyuan 030006 P.R. China
| |
Collapse
|
32
|
Efficient and Selective Ni/Al2O3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02766-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Catalytic transfer hydrogenation of bio-based furfural by palladium supported on nitrogen-doped porous carbon. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Long J, Zhao W, Xu Y, Wu W, Fang C, Li H, Yang S. Low-temperature catalytic hydrogenation of bio-based furfural and relevant aldehydes using cesium carbonate and hydrosiloxane. RSC Adv 2019; 9:3063-3071. [PMID: 35518956 PMCID: PMC9059981 DOI: 10.1039/c8ra08616h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/10/2019] [Indexed: 11/21/2022] Open
Abstract
Selective hydrogenation of unsaturated compounds is mainly carried out by using high-pressure hydrogen in the presence of a precious or transition metal catalyst. Here, we describe a benign approach to efficiently catalyze the hydrogenation of furfural (FUR) to furfuryl alcohol (FFA) over commercially available cesium carbonate using nontoxic and cheap polymethylhydrosiloxane (PMHS) as hydrogen source. Good to excellent FFA yields (≥90%) could be obtained at 25-80 °C by appropriate control of the catalyst dosage, reaction time, and the hydride amount. FUR-to-FFA hydrogenation was clarified to follow a pseudo-first order kinetics with low apparent activation energy of 20.6 kJ mol-1. Mechanistic insights manifested that PMHS was redistributed to H3SiMe, which acted as the active silane for the hydrogenation reactions. Importantly, this catalytic system was able to selectively reduce a wide range of aromatic aldehydes to the corresponding alcohols in good yields of 81-99% at 25-80 °C in 2-6 h.
Collapse
Affiliation(s)
- Jingxuan Long
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Wenfeng Zhao
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Yufei Xu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Weibo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Chengjiang Fang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural Bioengineering, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for Research & Development of Fine Chemicals, Guizhou University Guiyang Guizhou 550025 China +86-(851)-8829-2170 +86-(851)-8829-2171
| |
Collapse
|
35
|
Zn-Co@N-Doped Carbon Derived from ZIFs for High-Efficiency Synthesis of Ethyl Methyl Carbonate: The Formation of ZnO and the Interaction between Co and Zn. Catalysts 2019. [DOI: 10.3390/catal9010094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In this work, a series of Zn-Co@N-doped carbon materials were prepared by pyrolysis of Co/Zn-ZIF precursors under a N2 atmosphere and used for high-efficiency synthesis of ethyl methyl carbonate (EMC) from dimethyl carbonate (DMC) and diethyl carbonate (DEC). The Co to Zn molar ratio and calcination temperature were varied to study the physical and chemical properties of Zn-Co@N-doped carbon materials identified by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET), inductively coupled plasma (ICP), thermogravimetric analysis (TG) and temperature programmed desorption (TPD) analysis. It was deduced that the formation of a ZnO crystalline structure and the interaction between zinc and cobalt providing weak basic sites and strong basic sites, respectively, in different samples significantly affected their catalytic performance. The catalyst activated the reaction most effectively when the Co to Zn molar ratio was 1.0 and calcination temperature was 600 °C. With the DMC to DEC molar ratio controlled at 1:1, a superior yield of around 51.50% of product EMC can be gained over catalyst ZnCo/NC-600 at 100 °C with 1 wt% catalyst loading in 7 h.
Collapse
|
36
|
El-Yazeed WSA, Ahmed AI. Monometallic and bimetallic Cu–Ag MOF/MCM-41 composites: structural characterization and catalytic activity. RSC Adv 2019; 9:18803-18813. [PMID: 35516892 PMCID: PMC9064976 DOI: 10.1039/c9ra03310f] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/07/2019] [Indexed: 12/17/2022] Open
Abstract
Monometallic and bimetallic MOF/MCM-41 composites (Cu, Ag and Cu–Ag) were synthesized via a solvothermal method. The synthesized composites were characterized by XRD, FTIR, SEM, EDX and BET surface area measurements. The acidity was determined through two techniques; potentiometric titration with n-butyl amine for determining the strength and the total number of acid sites and FTIR spectra of chemisorbed pyridine on the surface of MOFs for determining the type of acid sites (Brønsted and/or Lewis). All the prepared MOFs showed Lewis-acid sites and the higher acidity was observed for the bimetallic Cu–Ag MOF/MCM-41 composite. The catalytic activity was examined on the synthesis of 1-amidoalkyl-2-naphthol via the reaction of benzaldehyde, 2-naphthol and benzamide. The best yield (92.86%) was obtained in the least time (10 min) with a molar ratio 1.2 : 1.2 : 1.7 of benzaldehyde : β-naphthol : benzamide and 0.1 g bimetallic Cu–Ag MOF/MCM-41 composite under solvent-free conditions at 130 °C. Reuse of the catalysts showed that they could be used at least four times without any reduction in the catalytic activity. Monometallic and bimetallic MOF/MCM-41 composites (Cu, Ag and Cu–Ag) were synthesized via a solvothermal method.![]()
Collapse
Affiliation(s)
| | - Awad I. Ahmed
- Chemistry Department
- Faculty of Science
- Mansoura University
- Mansoura
- Egypt
| |
Collapse
|
37
|
Sepúlveda C, Cruces K, Gajardo J, Seguel J, García R, Salinas D, Fierro JLG, Ghampson IT, Serpell R, Escalona N. The promoter effect of Co on the catalytic activity of the Cu oxide active phase supported on Al2O3 in the hydrogenolysis of glycerol. NEW J CHEM 2019. [DOI: 10.1039/c9nj03534f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CuCo2O4 species formed by CoO addition on CuO/Al2O3 had a beneficial effect on the catalytic activity in the hydrogenolysis of glycerol.
Collapse
|
38
|
Liu J, Li XM, He J, Wang LY, Lei JD. Combining the Photocatalysis and Absorption Properties of Core-Shell Cu-BTC@TiO₂ Microspheres: Highly Efficient Desulfurization of Thiophenic Compounds from Fuel. MATERIALS 2018; 11:ma11112209. [PMID: 30405062 PMCID: PMC6266854 DOI: 10.3390/ma11112209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 11/27/2022]
Abstract
A core-shell Cu-benzene-1,3,5-tricarboxylic acid (Cu-BTC)@TiO2 was successfully synthesized for photocatalysis-assisted adsorptive desulfurization to improve adsorptive desulfurization (ADS) performance. Under ultraviolet (UV) light irradiation, the TiO2 shell on the surface of Cu-BTC achieved photocatalytic oxidation of thiophenic S-compounds, and the Cu-BTC core adsorbed the oxidation products (sulfoxides and sulfones). The photocatalyst and adsorbent were combined using a distinct core-shell structure. The morphology and structure of the fabricated Cu-BTC@TiO2 microspheres were verified by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, X-ray powder diffraction, nitrogen adsorption-desorption and X-ray photoelectron spectroscopy analyses. A potential formation mechanism of Cu-BTC@TiO2 is proposed based on complementary experiments. The sulfur removal efficiency of the microspheres was evaluated by selective adsorption of benzothiophene (BT) and dibenzothiophene (DBT) from a model fuel with a sulfur concentration of 1000 ppmw. Within a reaction time of 20 min, the BT and DBT conversion reached 86% and 95%, respectively, and achieved ADS capacities of 63.76 and 59.39 mg/g, respectively. The BT conversion and DBT conversion obtained using Cu-BTC@TiO2 was 6.5 and 4.6 times higher, respectively, than that obtained using Cu-BTC. A desulfurization mechanism was proposed, the interaction between thiophenic sulfur compounds and Cu-BTC@TiO2 microspheres was discussed, and the kinetic behavior was analyzed.
Collapse
Affiliation(s)
- Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xiao-Min Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jing He
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Lu-Ying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Jian-Du Lei
- MOE Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
39
|
Chatterjee M, Chatterjee A, Ishizaka T, Kawanami H. Defining Pt-compressed CO 2 synergy for selectivity control of furfural hydrogenation. RSC Adv 2018; 8:20190-20201. [PMID: 35541652 PMCID: PMC9080760 DOI: 10.1039/c8ra03719a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 05/24/2018] [Indexed: 01/29/2023] Open
Abstract
The development of a sustainable methodology for catalytic transformation of biomass-derived compounds to value-added chemicals is highly challenging. Most of the transitions are dominated by the use of additives, complicated reaction steps and large volumes of organic solvents. Compared to traditional organic solvents, alternative reaction media, which could be an ideal candidate for a viable extension of biomass-related reactions are rarely explored. Here, we elucidate a selective and efficient transformation of a biomass-derived aldehyde (furfural) to the corresponding alcohol, promoted in compressed CO2 using a Pt/Al2O3 catalyst. Furfural contains a furan ring with C[double bond, length as m-dash]C and an aldehyde group, and is extremely reactive in a hydrogen atmosphere, resulting in several by-products and a threat to alcohol selectivity as well as catalyst life. The process described has a very high reaction rate (6000 h-1) with an excellent selectivity/yield (99%) of alcohol, without any organic solvents or metal additives. This strategy has several key features over existing methodologies, such as reduced waste, and facile product separation and purification (reduced energy consumption). Combining the throughput of experimental observation and molecular dynamics simulation, indeed the high diffusivity of compressed CO2 controls the mobility of the compound, and eventually maintains the activity of the catalyst. Results are also compared for different solvents and solvent-less conditions. In particular, combination of an effective Pt catalyst with compressed CO2 provides an encouraging alternative solution for upgradation of biomass related platform molecules.
Collapse
Affiliation(s)
- Maya Chatterjee
- Microflow Chemistry Group, Research Institute for Chemical Process Technology, AIST Tohoku 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan +81 22 237 5388 +81 22 237 5213
| | - Abhijit Chatterjee
- Materials Science, Dassault Systemes, BIOVIA K.K. Tokyo Think Park Tower, 2-1-1 Osaki Shinagawa-ku 141-6020 Japan
| | - Takayuki Ishizaka
- Microflow Chemistry Group, Research Institute for Chemical Process Technology, AIST Tohoku 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan +81 22 237 5388 +81 22 237 5213
| | - Hajime Kawanami
- Microflow Chemistry Group, Research Institute for Chemical Process Technology, AIST Tohoku 4-2-1, Nigatake, Miyagino-ku Sendai 983-8551 Japan +81 22 237 5388 +81 22 237 5213
- CREST, Japan Science and Technology (JST) 4-1-8, Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
40
|
Jackson MA, White MG, Haasch RT, Peterson SC, Blackburn JA. Hydrogenation of furfural at the dynamic Cu surface of CuOCeO2/Al2O3 in a vapor phase packed bed reactor. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2017.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Sudarsanam P, Zhong R, Van den Bosch S, Coman SM, Parvulescu VI, Sels BF. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chem Soc Rev 2018; 47:8349-8402. [DOI: 10.1039/c8cs00410b] [Citation(s) in RCA: 367] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Functionalised heterogeneous catalysts show great potentials for efficient valorisation of renewable biomass to value-added chemicals and high-energy density fuels.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ruyi Zhong
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
- Dalian Institute of Chemical Physics
| | - Sander Van den Bosch
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Simona M. Coman
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
42
|
Double-active sites cooperatively catalyzed transfer hydrogenation of ethyl levulinate over a ruthenium-based catalyst. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Hoang TT, To TA, Cao VT, Nguyen AT, Nguyen TT, Phan NT. Direct oxidative C H amination of quinoxalinones under copper-organic framework catalysis. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|