1
|
Morales MV, Conesa JM, Campos‐Castellanos E, Guerrero‐Ruiz A, Rodríguez‐Ramos I. Critical Factors Affecting the Selective Transformation of 5-Hydroxymethylfurfural to 3-Hydroxymethylcyclopentanone Over Ni Catalysts. CHEMSUSCHEM 2024; 17:e202400559. [PMID: 38860533 PMCID: PMC11632584 DOI: 10.1002/cssc.202400559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/12/2024]
Abstract
The ring-rearrangement of 5-hydroxymethylfurfural (HMF) to 3-hydroxymethylcyclopentanone (HCPN) was investigated over Ni catalysts supported on different carbon supports and metallic oxides with different structure and acid-base properties. Their catalytic performance was tested in a batch stirred reactor in aqueous solution at 180 °C and 30 bar of H2. Under these conditions, the HMF hydrogenation proceeds through three possible competitive routes: (i) a non-water path leading to the total hydrogenation product, 2,5-di-hydroxymethyl-tetrahydrofuran (DHMTHF), and two parallel acid-catalyzed water-mediated routes responsible for (ii) ring-opening and (iii) ring-rearrangement reaction products. All catalyst systems primarily produced HCPN, but reaction rates and product distribution were influenced by several variables, some of them intensely analyzed in this work. The most proper conditions resulted to be the presence of the medium/strong Lewis's acidity of a Ni/ZrO2 catalyst (initial TOF=5.99 min-1 and 73 % HCPN selectivity) or the Brønsted acidity originated by an oxidized high surface area graphite, Ni/HSAG-ox (initial TOF=5.92 min-1 and 87 % HCPN selectivity). However, too high density of acidic sites on the catalyst support (Ni/Al2O3) and sulfur impurities from the HMF feedstock led to catalyst deactivation by coke deposition and Ni poisoning, respectively.
Collapse
Affiliation(s)
- María V. Morales
- Instituto de Catálisis y PetroleoquímicaCSIC28049MadridSpain
- Departamento de Química Inorgánica y Química Técnica, UNED28232Las RozasMadridSpain
| | - José M. Conesa
- Instituto de Catálisis y PetroleoquímicaCSIC28049MadridSpain
- Departamento de Química Inorgánica y Química Técnica, UNED28232Las RozasMadridSpain
| | | | - Antonio Guerrero‐Ruiz
- Departamento de Química Inorgánica y Química Técnica, UNED28232Las RozasMadridSpain
- Grupo de Diseño y Aplicación de Catalizadores HeterogéneosUnidad Asociada UNED-CSIC (ICP)Spain
| | - Inmaculada Rodríguez‐Ramos
- Instituto de Catálisis y PetroleoquímicaCSIC28049MadridSpain
- Grupo de Diseño y Aplicación de Catalizadores HeterogéneosUnidad Asociada UNED-CSIC (ICP)Spain
| |
Collapse
|
2
|
Duan Y, Cheng Y, Hu Z, Wang C, Sui D, Yang Y, Lu T. A Comprehensive Review on Metal Catalysts for the Production of Cyclopentanone Derivatives from Furfural and HMF. Molecules 2023; 28:5397. [PMID: 37513268 PMCID: PMC10383880 DOI: 10.3390/molecules28145397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The catalytic transformation of biomass-based furan compounds (furfural and HMF) for the synthesis of organic chemicals is one of the important ways to utilize renewable biomass resources. Among the numerous high-value products, cyclopentanone derivatives are a kind of valuable compound obtained by the hydrogenation rearrangement of furfural and HMF in the aqueous phase of metal-hydrogen catalysis. Following the vast application of cyclopentanone derivatives, this reaction has attracted wide attention since its discovery, and a large number of catalytic systems have been reported to be effective in this transformation. Among them, the design and synthesis of metal catalysts are at the core of the reaction. This review briefly introduces the application of cyclopentanone derivatives, the transformation mechanism, and the pathway of biomass-based furan compounds for the synthesis of cyclopentanone derivatives. The important progress of metal catalysts in the reaction since the first report in 2012 up to now is emphasized, the characteristics and catalytic performance of different metal catalysts are introduced, and the critical role of metal catalysts in the reaction is discussed. Finally, the future development of this transformation process was prospected.
Collapse
Affiliation(s)
- Ying Duan
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yiyi Cheng
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Chenxu Wang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Dong Sui
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yanliang Yang
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Tianliang Lu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
3
|
Zhang C, Lv X, Zhang X, Huo S, Song H, Guan Y, Gao X. Progress in Selective Conversion of 5‐Hydroxymethylfurfural to DHMF and DMF. ChemistrySelect 2022. [DOI: 10.1002/slct.202201255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chi Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xuechuan Lv
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaofan Zhang
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
- Olefin Factory of Fushun Petrochemical Company Petrochina, Fushun 113001, Liaoning China
| | - Sihan Huo
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Hanlin Song
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Yining Guan
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| | - Xiaohan Gao
- School of Petrochemical Engineering Liaoning Petrochemical University Liaoning Fushun 113001 China
| |
Collapse
|
4
|
Hurtado B, Arias KS, Climent MJ, Concepción P, Corma A, Iborra S. Selective Conversion of HMF into 3-Hydroxymethylcyclopentylamine through a One-Pot Cascade Process in Aqueous Phase over Bimetallic NiCo Nanoparticles as Catalyst. CHEMSUSCHEM 2022; 15:e202200194. [PMID: 35362654 PMCID: PMC9401071 DOI: 10.1002/cssc.202200194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) has been successfully valorized into 3-hydroxymethylcyclopentylamine through a one-pot cascade process in aqueous phase by coupling the hydrogenative ring-rearrangement of HMF into 3-hydroxymethylcyclopentanone (HCPN) with a subsequent reductive amination with ammonia. Mono- (Ni@C, Co@C) and bimetallic (NiCo@C) nanoparticles with different Ni/Co ratios partially covered by a thin carbon layer were prepared and characterized. Results showed that a NiCo catalyst, (molar ratio Ni/Co=1, Ni0.5 Co0.5 @C), displayed excellent performance in the hydrogenative ring-rearrangement of HMF into HCPN (>90 % yield). The high selectivity of the catalyst was attributed to the formation of NiCo alloy structures as hydrogenating sites that limited competitive reactions such as the hydrogenation of furan ring and the over-reduction of the formed HPCN. The subsequent reductive amination of HPCN with aqueous ammonia was performed giving the target cyclopentylaminoalcohol in 97 % yield. Moreover, the catalyst exhibited high stability maintaining its activity and selectivity for repeated reaction cycles.
Collapse
Affiliation(s)
- Beatriz Hurtado
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Karen S. Arias
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Maria J. Climent
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Patricia Concepción
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| | - Sara Iborra
- Instituto de Tecnología Química (UPV-CSIC)Universitat Politècnica de ValènciaAvda dels Tarongers s/n46022ValenciaSpain
| |
Collapse
|
5
|
Longo L, Taghavi S, Ghedini E, Menegazzo F, Di Michele A, Cruciani G, Signoretto M. Selective Hydrogenation of 5-Hydroxymethylfurfural to 1-Hydroxy-2,5-hexanedione by Biochar-Supported Ru Catalysts. CHEMSUSCHEM 2022; 15:e202200437. [PMID: 35394696 DOI: 10.1002/cssc.202200437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The development of sustainable and efficient catalysts -namely Ru supported on activated biochars- is carried out for the selective hydrogenation of 5-hydroxymethylfurfural (HMF) to 1-hydroxy-2,5-hexanedione (HHD). Activated biochars obtained from pyrolysis and steam-based physical activation of two different biomasses from animal (leather tannery waste; ALw ) and vegetal (hazelnut shells; AHSw ) origins show completely different chemical, textural, and morphological properties. Compared to ALw , after impregnation with 0.5 wt % Ru, AHSw , with inner micro-mesochannels and cavities and higher layer stacking disorder, leads to better trapping and anchoring of Ru nanoparticles on the catalyst and a suitable Ru single crystal dispersion. This leads to a highly active Ru/AHSw catalyst in the proposed reaction, giving more than 80 % selectivity to HHD and full HMF conversion at 100 °C with 30 bar H2 for 3 h. Ru/AHSw also shows promising performance compared to a commercial Ru/C catalyst.
Collapse
Affiliation(s)
- Lilia Longo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Somayeh Taghavi
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Elena Ghedini
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Federica Menegazzo
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| | - Alessandro Di Michele
- Department of Physics and Geology, University of Perugia, Via Pascoli, 06123, Perugia, Italy
| | - Giuseppe Cruciani
- Department of Physics and Earth Science, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
| | - Michela Signoretto
- CATMAT Lab, Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice and INSTM RUVe, via Torino 155, 30172, Venezia Mestre, Italy
| |
Collapse
|
6
|
Nakatsuji H, Kamishima T, Nonaka T, Koseki Y, Kasai H. Conversion of 2,5-Bis(hydroxymethyl)furan to Highly Oxidized Cyclopentenones under Catalyst-Free Condition in Water. CHEM LETT 2022. [DOI: 10.1246/cl.220027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hirotaka Nakatsuji
- Genesis research institute, Inc. East Tokyo laboratory, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Takaaki Kamishima
- Genesis research institute, Inc. East Tokyo laboratory, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Toshiyuki Nonaka
- Genesis research institute, Inc. East Tokyo laboratory, 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
7
|
Dutta S, Bhat NS. Catalytic Transformation of Biomass-Derived Furfurals to Cyclopentanones and Their Derivatives: A Review. ACS OMEGA 2021; 6:35145-35172. [PMID: 34984249 PMCID: PMC8717399 DOI: 10.1021/acsomega.1c05861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 05/08/2023]
Abstract
Furfural (FF) and 5-(hydroxymethyl)furfural (HMF) are well-recognized biomass-derived chemical building blocks with established applications and markets for several of their derivatives. Attaining a wide spectrum of petrochemicals is the primary target of a biorefinery that employs FF and HMF as the chemical feedstock. In this regard, cyclopentanone (CPN) is a crucial petrochemical intermediate used for synthesizing a diverse range of compounds with immense commercial prospects. The hydrogenative ring rearrangement of FF to CPN in an aqueous medium under catalytic hydrogenation conditions was first reported in 2012, whereas the first report on the catalytic conversion of HMF to 3-(hydroxymethyl)cyclopentanone (HCPN) was published in 2014. Over the past decade, several investigations have been undertaken in converting FF and HMF to CPN and HCPN, respectively. The research studies aimed to improve the scalability, selectivity, environmental footprint, and cost competitiveness of the process. A blend of theoretical and experimental studies has helped to develop efficient, inexpensive, and recyclable heterogeneous catalysts that work under mild reaction conditions while providing excellent yields of CPN and HCPN. The time is ripe to consolidate the data in this area of research and analyze them rigorously in a review article. This work will assist both beginners and experts of this field in acknowledging the accomplishments to date, recognize the challenges, and strategize the way forward.
Collapse
Affiliation(s)
- Saikat Dutta
- Department of Chemistry, National
Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| | - Navya Subray Bhat
- Department of Chemistry, National
Institute of Technology Karnataka, Mangalore 575025, Karnataka, India
| |
Collapse
|
8
|
Pérez JMM, Lucio‐Ortiz CJ, Rosa JR, Maldonado CS, De Haro Del Río DA, Sandoval‐Rangel L, Garza‐Navarro MA, Martínez‐Vargas DX, Morales‐Leal FJ. Dry Reforming of Methane for Hydrogen Production Using Bimetallic Catalysts of Pt‐Fe Supported on γ‐Alumina. ChemistrySelect 2021. [DOI: 10.1002/slct.202102877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- José Manuel Martínez Pérez
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Carlos J. Lucio‐Ortiz
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Javier Rivera Rosa
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Carolina Solis Maldonado
- Universidad Veracruzana Facultad de Ciencias Químicas Av. Venustiano Carranza S/N Col. Revolución, C. P. 93390 Poza Rica, Veracruz México
| | - David A. De Haro Del Río
- Universidad Autónoma de Nuevo León Facultad de Ciencias Químicas Ave. Universidad S/N Cd. Universitaria, C.P. 66455 San Nicolás de los Garza N.L. México
| | - Ladislao Sandoval‐Rangel
- Tecnológico de Monterrey Escuela de Ingeniería y Ciencias Ave. Eugenio Garza Sada 2501, C.P. 64849 Monterrey N.L., México
| | - M. A. Garza‐Navarro
- Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Av. Universidad S/N Cd. Universitaria, C.P. 64455 San Nicolás de los Garza N.L., México
| | | | - Francisco José Morales‐Leal
- Instituto Mexicano del Petróleo Eje Central Lázaro Cárdenas Norte 152 Col. San Bartolo Atepehuacan, C.P. 07730 Gustavo A. Madero, Ciudad de México México
| |
Collapse
|
9
|
Tong Z, Gao R, Li X, Guo L, Wang J, Zeng Z, Deng Q, Deng S. Highly Controllable Hydrogenative Ring Rearrangement and Complete Hydrogenation Of Biobased Furfurals over Pd/La
2
B
2
O
7
(B=Ti, Zr, Ce). ChemCatChem 2021. [DOI: 10.1002/cctc.202101063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zhikun Tong
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Rui Gao
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Xiang Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Lingyun Guo
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Jun Wang
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Zheling Zeng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Qiang Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization Nanchang University) Ministry of Education School of Resource Environmental and Chemical Engineering Nanchang University No. 999 Xuefu Avenue Nanchang 330031 P. R. China
| | - Shuguang Deng
- School for Engineering of Matter Transport and Energy Arizona State University 551 E. Tyler Mall Tempe AZ 85287 USA
| |
Collapse
|
10
|
Weng R, Lu X, Ji N, Fukuoka A, Shrotri A, Li X, Zhang R, Zhang M, Xiong J, Yu Z. Taming the butterfly effect: modulating catalyst nanostructures for better selectivity control of the catalytic hydrogenation of biomass-derived furan platform chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01708j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This minireview highlights versatile routes for catalyst nanostructure modulation for better hydrogenation selectivity control of typical biomass-derived furan platform chemicals to tame the butterfly effect on the catalytic selectivity.
Collapse
Affiliation(s)
- Rengui Weng
- Indoor Environment Engineering Research Center of Fujian Province, Fujian University of Technology, Fuzhou 350118, P.R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Na Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-sen University, Guangdong 510275, P.R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P.R. China
| | - Ming Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| | - Jian Xiong
- School of Science, Tibet University, Lhasa 850000, P.R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|