1
|
Su X, He J, Khan MA, Chang K, Liu Y, Guo G, Li X, Jin F, Kuang M, Gouda S, Huang Q. Potential Application Performance of Hydrochar from Kitchen Waste: Effects of Salt, Oil, Moisture, and pH. TOXICS 2023; 11:679. [PMID: 37624184 PMCID: PMC10459985 DOI: 10.3390/toxics11080679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
The surge in kitchen waste production is causing food-borne disease epidemics and is a public health threat worldwide. Additionally, the effectiveness of conventional treatment approaches may be hampered by KW's high moisture, salt, and oil content. Hydrothermal carbonization (HTC) is a promising new technology to convert waste biomass into environmentally beneficial derivatives. This study used simulated KW to determine the efficacy of hydrothermal derivatives (hydrochar) with different salt and oil content, pH value, and solid-liquid ratio for the removal of cadmium (Cd) from water and identify their high heating value (HHV). The findings revealed that the kitchen waste hydrochar (KWHC) yield decreased with increasing oil content. When the water content in the hydrothermal system increased by 90%, the yield of KWHC decreased by 65.85%. The adsorption capacity of KWHC remained stable at different salinities. The KWHC produced in the acidic environment increases the removal efficiency of KWHC for Cd. The raw material was effectively transformed into a maximum HHV (30.01 MJ/kg). HTC is an effective and secure method for the resource utilization of KW based on the adsorption capacity and combustion characteristic indices of KWHC.
Collapse
Affiliation(s)
- Xuesong Su
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Jizu He
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | | | - Kenlin Chang
- Institute of Environmental Engineering, Department of Public Health, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Yin Liu
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Genmao Guo
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Xiaohui Li
- Hainan Inspection and Detection Center for Modern Agriculture, Haikou 570100, China
| | - Fangming Jin
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| | - Meijuan Kuang
- Hainan Pujin Environmental Engineeering, Haikou 570100, China
| | - Shaban Gouda
- Agricultural and Biosystems Engineering Department, Faculty of Agriculture, Benha University, Toukh 13736, Egypt
| | - Qing Huang
- School of Ecology & Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Xu S, Duan Y, Zou S, Liu H, Luo L, Wong JWC. Evaluations of biochar amendment on anaerobic co-digestion of pig manure and sewage sludge: waste-to-methane conversion, microbial community, and antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2022; 346:126400. [PMID: 34822984 DOI: 10.1016/j.biortech.2021.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Effects of biochar on co-digestion of pig manure and dewatered sewage sludge under different total solids (TS) were investigated. Biochar could accelerate the start-up of methanogenesis and shorten the adaptation phase. At TS5%, the methane daily production in biochar group was 60.6% higher than the control; nevertheless, when TS increased, the gap between two groups gradually narrowed. Additionally, the change on antibiotics resistance genes (ARGs) was also affected by TS and the biochar addition. Moreover, biochar was beneficial to reduce ARGs in liquid phase. At TS14%, the total ARGs abundance in the liquid phase of biochar group was 41.4% lower than the control, among which the reduction rates of etB(P), sul1, rpoB2, macA, mupA and mupB were more prominent. These findings could provide useful guidance for developing ARGs elimination strategy before their release into the environment.
Collapse
Affiliation(s)
- Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yuting Duan
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Simin Zou
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Liwen Luo
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China.
| |
Collapse
|