1
|
Sun Y, Xiao L, Wu W. In Situ Carbon-Confined MoSe 2 Catalyst with Heterojunction for Highly Selective CO 2 Hydrogenation to Methanol. Molecules 2024; 29:2186. [PMID: 38792048 PMCID: PMC11123706 DOI: 10.3390/molecules29102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
The synthesis of methanol from CO2 hydrogenation is an effective measure to deal with global climate change and an important route for the chemical fixation of CO2. In this work, carbon-confined MoSe2 (MoSe2@C) catalysts were prepared by in situ pyrolysis using glucose as a carbon source. The physico-chemical properties and catalytic performance of CO2 hydrogenation to yield methanol were compared with MoSe2 and MoSe2/C. The results of the structure characterization showed MoSe2 displayed few layers and a small particle size. Owing to the synergistic effect of the Mo2C-MoSe2 heterojunction and in situ carbon doping, MoSe2@C with a suitable C/Mo mole ratio in the precursor showed excellent catalytic performance in the synthesis of methanol from CO2 hydrogenation. Under the optimal catalyst MoSe2@C-55, the selectivity of methanol reached 93.7% at a 9.7% conversion of CO2 under optimized reaction conditions, and its catalytic performance was maintained without deactivation during a continuous reaction of 100 h. In situ diffuse infrared Fourier transform spectroscopy studies suggested that formate and CO were the key intermediates in CO2 hydrogenation to methanol.
Collapse
Affiliation(s)
| | - Linfei Xiao
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| | - Wei Wu
- National Center for International Research on Catalytic Technology, School of Chemistry and Material Sciences, Heilongjiang University, Harbin 150080, China;
| |
Collapse
|
2
|
Cai Y, Liu W, Yu Y, Liu L, Pei Q, Wu H, He T, Guo J, Wu A, Chen P. Transition Metal-Free Hydrogenolysis of Anilines to Arenes Mediated by Lithium Hydride. J Am Chem Soc 2022; 144:17441-17448. [DOI: 10.1021/jacs.2c05586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongli Cai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Yang Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ligao Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Qijun Pei
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Han Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Teng He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianping Guo
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anan Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| | - Ping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Liu X, Guo S, Cui H, Li Z, Liang Z, Li X, Zhao J, Yuan L, Zhao L. Synthesis of NiW catalysts supported on hierarchically meso/microporous KIT-5/Beta composites and their hydrodenitrogenation performance of quinoline. NEW J CHEM 2022. [DOI: 10.1039/d2nj03632k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Meso/microporous composite material KIT-5/Beta (KB) with a cubic Fm3m mesoporous structure and BEA microporous structure was successfully synthesized by an in situ assembly method.
Collapse
Affiliation(s)
- Xing Liu
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqing Guo
- School of Environmental Science and Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Haitao Cui
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Zhenrong Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Zhenhui Liang
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Jiantao Zhao
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Lijing Yuan
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Liangfu Zhao
- Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|