1
|
Li S, Zeng L, Miao F, Li N, Liao W, Zhou X, Chen Y, Quan H, He Y, Zhang H, Li J, Yuan X. Knockdown of DNMT1 Induces SLCO3A1 to Promote Follicular Growth by Enhancing the Proliferation of Granulosa Cells in Mammals. Int J Mol Sci 2024; 25:2468. [PMID: 38473715 DOI: 10.3390/ijms25052468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/07/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
In female mammals, the proliferation and apoptosis of granulosa cells (GCs) have been shown to determine the fate of follicles. DNA methyltransferases (DNMTs) and SLCO3A1 have been reported to be involved in the survival of GCs and follicular growth. However, the molecular mechanisms enabling DNMTs to regulate the expression of SLCO3A1 to participate in follicular growth are unclear. In this study, we found that the knockdown of DNMT1 enhanced the mRNA and protein levels of SLCO3A1 by regulating the chromatin accessibility probably. Moreover, SLCO3A1 upregulated the mRNA and protein levels of MCL1, PCNA, and STAR to promote the proliferation of GCs and facilitated cell cycle progression by increasing the mRNA and protein levels of CCNE1, CDK2, and CCND1, but it decreased apoptosis by downregulating the mRNA and protein levels of CASP3 and CASP8. Moreover, SLCO3A1 promoted the growth of porcine follicles and development of mice follicles. In conclusion, the knockdown of DNMT1 upregulated the mRNA and protein levels of SLCO3A1, thereby promoting the proliferation of GCs to facilitate the growth and development of ovarian follicles, and these results provide new insights into investigations of female reproductive diseases.
Collapse
Affiliation(s)
- Shuo Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Liqing Zeng
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Fen Miao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Weili Liao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yongcai Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hongyan Quan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhou X, He Y, Li N, Bai G, Pan X, Zhang Z, Zhang H, Li J, Yuan X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis 2021; 12:653. [PMID: 34175894 PMCID: PMC8236063 DOI: 10.1038/s41419-021-03941-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
In female mammals, the proliferation, apoptosis, and estradiol-17β (E2) secretion of granulosa cells (GCs) have come to decide the fate of follicles. DNA methylation and RSPO2 gene of Wnt signaling pathway have been reported to involve in the survival of GCs and follicular development. However, the molecular mechanisms for how DNA methylation regulates the expression of RSPO2 and participates in the follicular development are not clear. In this study, we found that the mRNA and protein levels of RSPO2 significantly increased during follicular development, but the DNA methylation level of RSPO2 promoter decreased gradually. Inhibition of DNA methylation or DNMT1 knockdown could decrease the methylation level of CpG island (CGI) in RSPO2 promoter and upregulate the expression level of RSPO2 in porcine GCs. The hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of transcription factor E2F1 and promoted the transcriptional activity of RSPO2. Moreover, RSPO2 promoted the proliferation of GCs with increasing the expression level of PCNA, CDK1, and CCND1 and promoted the E2 secretion of GCs with increasing the expression level of CYP19A1 and HSD17B1 and inhibited the apoptosis of GCs with decreasing the expression level of Caspase3, cleaved Caspase3, cleaved Caspase8, cleaved Caspase9, cleaved PARP, and BAX. In addition, RSPO2 knockdown promoted the apoptosis of GCs, blocked the development of follicles, and delayed the onset of puberty with decreasing the expression level of Wnt signaling pathway-related genes (LGR4 and CTNNB1) in vivo. Taken together, the hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of E2F1 and enhanced the transcription of RSPO2, which further promoted the proliferation and E2 secretion of GCs, inhibited the apoptosis of GCs, and ultimately ameliorated the development of follicles through Wnt signaling pathway. This study will provide useful information for further exploration on DNA-methylation-mediated RSPO2 pathway during follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
3
|
Sha QQ, Zhu YZ, Xiang Y, Yu JL, Fan XY, Li YC, Wu YW, Shen L, Fan HY. Role of CxxC-finger protein 1 in establishing mouse oocyte epigenetic landscapes. Nucleic Acids Res 2021; 49:2569-2582. [PMID: 33621320 PMCID: PMC7969028 DOI: 10.1093/nar/gkab107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/15/2022] Open
Abstract
During oogenesis, oocytes gain competence and subsequently undergo meiotic maturation and prepare for embryonic development; trimethylated histone H3 on lysine-4 (H3K4me3) mediates a wide range of nuclear events during these processes. Oocyte-specific knockout of CxxC-finger protein 1 (CXXC1, also known as CFP1) impairs H3K4me3 accumulation and causes changes in chromatin configurations. This study investigated the changes in genomic H3K4me3 landscapes in oocytes with Cxxc1 knockout and the effects on other epigenetic factors such as the DNA methylation, H3K27me3, H2AK119ub1 and H3K36me3. H3K4me3 is overall decreased after knocking out Cxxc1, including both the promoter region and the gene body. CXXC1 and MLL2, which is another histone H3 methyltransferase, have nonoverlapping roles in mediating H3K4 trimethylation during oogenesis. Cxxc1 deletion caused a decrease in DNA methylation levels and affected H3K27me3 and H2AK119ub1 distributions, particularly at regions with high DNA methylation levels. The changes in epigenetic networks implicated by Cxxc1 deletion were correlated with the transcriptional changes in genes in the corresponding genomic regions. This study elucidates the epigenetic changes underlying the phenotypes and molecular defects in oocytes with deleted Cxxc1 and highlights the role of CXXC1 in orchestrating multiple factors that are involved in establishing the appropriate epigenetic states of maternal genome.
Collapse
Affiliation(s)
- Qian-Qian Sha
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China
| | - Ye-Zhang Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Xiang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, THU-PKU Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jia-Li Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiao-Ying Fan
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health GuangDong Laboratory), Guangzhou 510005, China
| | - Yan-Chu Li
- Fertility Preservation Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou 510317, China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Yun-Wen Wu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Wen L, Liu Q, Xu J, Liu X, Shi C, Yang Z, Zhang Y, Xu H, Liu J, Yang H, Huang H, Qiao J, Tang F, Chen ZJ. Recent advances in mammalian reproductive biology. SCIENCE CHINA. LIFE SCIENCES 2020; 63:18-58. [PMID: 31813094 DOI: 10.1007/s11427-019-1572-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 10/22/2019] [Indexed: 01/05/2023]
Abstract
Reproductive biology is a uniquely important topic since it is about germ cells, which are central for transmitting genetic information from generation to generation. In this review, we discuss recent advances in mammalian germ cell development, including preimplantation development, fetal germ cell development and postnatal development of oocytes and sperm. We also discuss the etiologies of female and male infertility and describe the emerging technologies for studying reproductive biology such as gene editing and single-cell technologies.
Collapse
Affiliation(s)
- Lu Wen
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qiang Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingjing Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Xixi Liu
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Chaoyi Shi
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Zuwei Yang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Yili Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Hefeng Huang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, China.
| | - Jie Qiao
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Department of Obstetrics and Gynecology Third Hospital, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Zi-Jiang Chen
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, 250021, China.
| |
Collapse
|
5
|
Guo X, Puttabyatappa M, Thompson RC, Padmanabhan V. Developmental Programming: Contribution of Epigenetic Enzymes to Antral Follicular Defects in the Sheep Model of PCOS. Endocrinology 2019; 160:2471-2484. [PMID: 31398247 PMCID: PMC6760338 DOI: 10.1210/en.2019-00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/22/2019] [Indexed: 12/27/2022]
Abstract
Prenatal testosterone (T)-treated sheep, similar to women with polycystic ovary syndrome (PCOS), manifest oligo-/anovulation, hyperandrogenism, and polyfollicular ovary. The polyfollicular ovarian morphology, a result of persistence of antral follicles, arises, in part, by transcriptional changes in key mediators of follicular development that, in turn, are driven by epigenetic mechanisms. We hypothesized that prenatal T excess induces, in a cell-specific manner, transcriptional changes in key mediators of follicular development associated with relevant changes in epigenetic machinery. Expression levels of key mediators of follicular development, DNA methyltransferases (DNMTs), and histone de-/methylases and de-/acetylases were determined in laser-capture microdissection-isolated antral follicular granulosa and theca and ovarian stromal cells from 21 months of age control and prenatal T-treated sheep (100 mg IM twice weekly from gestational day 30 to 90; term: 147 days). Changes in histone methylation were determined by immunofluorescence. Prenatal T treatment induced the following: (i) cell-specific changes in gene expression of key mediators of follicular development and steroidogenesis; (ii) granulosa, theca, and stromal cell-specific changes in DNMTs and histone de-/methylases and deacetylases, and (iii) increases in histone 3 trimethylation at lysine 9 in granulosa and histone 3 dimethylation at lysine 4 in theca cells. The pattern of histone methylation was consistent with the expression profile of histone de-/methylases in the respective cells. These findings suggest that changes in expression of key genes involved in the development of the polyfollicular phenotype in prenatal T-treated sheep are mediated, at least in part, by cell-specific changes in epigenetic-modifying enzymes.
Collapse
Affiliation(s)
- Xingzi Guo
- Department of Obstetrics and Gynecology, Xiangya Third Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Robert C Thompson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
- Correspondence: Vasantha Padmanabhan, PhD, Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 West Medical Center Drive, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
6
|
Matvere A, Teino I, Varik I, Kuuse S, Tiido T, Kristjuhan A, Maimets T. FSH/LH-Dependent Upregulation of Ahr in Murine Granulosa Cells Is Controlled by PKA Signaling and Involves Epigenetic Regulation. Int J Mol Sci 2019; 20:ijms20123068. [PMID: 31234584 PMCID: PMC6627912 DOI: 10.3390/ijms20123068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor primarily known for its toxicological functions. Recent studies have established its importance in many physiological processes including female reproduction, although there is limited data about the precise mechanisms how Ahr itself is regulated during ovarian follicle maturation. This study describes the expression of Ahr in ovarian granulosa cells (GCs) of immature mice in a gonadotropin-dependent manner. We show that Ahr upregulation in vivo requires both follicle stimulating hormone (FSH) and luteinizing hormone (LH) activities. FSH alone increased Ahr mRNA, but had no effect on Ahr protein level, implicating a possible LH-dependent post-transcriptional regulation. Also, the increase in Ahr protein is specific to large antral follicles in induced follicle maturation. We show that Ahr expression in GCs of mid-phase follicular maturation is downregulated by protein kinase A (PKA) signaling and activation of Ahr promoter is regulated by chromatin remodeling.
Collapse
Affiliation(s)
- Antti Matvere
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Inge Varik
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Sulev Kuuse
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Tarmo Tiido
- Clinical Research Centre, National Centre of Translational and Clinical Research, University of Tartu, Ravila 19, 50411 Tartu, Estonia.
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
7
|
Zhou R, Shang R, Gong D, Xu X, Liu S. Characterization of H3 methylation in regulating oocyte development in cyprinid fish. SCIENCE CHINA-LIFE SCIENCES 2018; 62:829-837. [PMID: 30443860 DOI: 10.1007/s11427-018-9346-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/22/2018] [Indexed: 12/13/2022]
Abstract
Histone post-modifications are important epigenetic markers involved in multiple cellular processes via regulation of gene transcription or remodeling of chromatin structure. Oocyte development is a critical process under rigorous control to prevent the generation of aberrant gametes. However, the regulatory mechanism of oocyte early development is not well-understood due to the tiny size and poor distinguishability of the gonad in juvenile stages. Here, two cyprinid hybrid fishes, a sterile allotriploid fish and a gynogenetic hybrid fish with delayed oocyte development, provided research models to investigate the mechanisms involved. We used cytogenetic and molecular methods to confirm the pachytene arrest of oocytes in allotriploid fish and gynogenetic hybrid fish. On the basis of these developmental differences, we screened 21 different histone H3 modifications by ELISA and found that four modifications (H3K4me3, H3K9me3, H3K79me, and H3K79me3) differed significantly in the two cyprinid hybrid fishes. Changes in histone methylation at the three residues (H3K4, K9, K79) were caused by specific methyltransferases and demethylases. Our results provide new insights into the epigenetic regulation of oocyte early development in fish, a process critical for understanding of reproductive biology and with practical applications in the aquacultural breeding industry.
Collapse
Affiliation(s)
- Rong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410008, China
| | - Rujie Shang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410008, China
| | - Dingbin Gong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410008, China
| | - Xiujuan Xu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410008, China
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410008, China.
| |
Collapse
|
8
|
Yu C, Fan X, Sha QQ, Wang HH, Li BT, Dai XX, Shen L, Liu J, Wang L, Liu K, Tang F, Fan HY. CFP1 Regulates Histone H3K4 Trimethylation and Developmental Potential in Mouse Oocytes. Cell Rep 2018; 20:1161-1172. [PMID: 28768200 DOI: 10.1016/j.celrep.2017.07.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/22/2017] [Accepted: 07/06/2017] [Indexed: 12/18/2022] Open
Abstract
Trimethylation of histone H3 at lysine-4 (H3K4me3) is associated with eukaryotic gene promoters and poises their transcriptional activation during development. To examine the in vivo function of H3K4me3 in the absence of DNA replication, we deleted CXXC finger protein 1 (CFP1), the DNA-binding subunit of the SETD1 histone H3K4 methyltransferase, in developing oocytes. We find that CFP1 is required for H3K4me3 accumulation and the deposition of histone variants onto chromatin during oocyte maturation. Decreased H3K4me3 in oocytes caused global downregulation of transcription activity. Oocytes lacking CFP1 failed to complete maturation and were unable to gain developmental competence after fertilization, due to defects in cytoplasmic lattice formation, meiotic division, and maternal-zygotic transition. Our study highlights the importance of H3K4me3 in continuous histone replacement for transcriptional regulation, chromatin remodeling, and normal developmental progression in a non-replicative system.
Collapse
Affiliation(s)
- Chao Yu
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Department of Chemistry and Molecular Biology, Goteborg University, Goteborg SE405 30, Sweden
| | - Xiaoying Fan
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Qian-Qian Sha
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Hui-Han Wang
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Bo-Tai Li
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Xing-Xing Dai
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Li Shen
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China
| | - Lie Wang
- Institute of Immunology, Zhejiang University Medical School, Hangzhou 310058, China
| | - Kui Liu
- Department of Chemistry and Molecular Biology, Goteborg University, Goteborg SE405 30, Sweden
| | - Fuchou Tang
- Biomedical Institute for Pioneering Investigation via Convergence, Peking University, Beijing 100871, China
| | - Heng-Yu Fan
- Life Sciences Institute, Zhejiang University, Hangzhou 310058, China; Institute of Aging Research, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
9
|
Endometriosis Malignant Transformation: Epigenetics as a Probable Mechanism in Ovarian Tumorigenesis. Int J Genomics 2018; 2018:1465348. [PMID: 29780815 PMCID: PMC5892233 DOI: 10.1155/2018/1465348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, defined as the presence of ectopic endometrial glands and stroma outside the uterine cavity, is a chronic, hormone-dependent gynecologic disease affecting millions of women across the world, with symptoms including chronic pelvic pain, dysmenorrhea, dyspareunia, dysuria, and subfertility. In addition, there is well-established evidence that, although endometriosis is considered benign, it is associated with an increased risk of malignant transformation, with the involvement of various mechanisms of development. More and more evidence reveals an important contribution of epigenetic modification not only in endometriosis but also in mechanisms of endometriosis malignant transformation, including DNA methylation and demethylation, histone modifications, and miRNA aberrant expressions. In this present review, we mainly summarize the research progress about the current knowledge regarding the epigenetic modifications of the relations between endometriosis malignant transformation and ovarian cancer in an effort to identify some risk factors probably associated with ectopic endometrium transformation.
Collapse
|
10
|
Hodjat M, Rahmani S, Khan F, Niaz K, Navaei–Nigjeh M, Mohammadi Nejad S, Abdollahi M. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view. Arch Toxicol 2017; 91:2577-2597. [DOI: 10.1007/s00204-017-1979-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 05/04/2017] [Indexed: 01/12/2023]
|
11
|
LaVoie HA. Transcriptional control of genes mediating ovarian follicular growth, differentiation, and steroidogenesis in pigs. Mol Reprod Dev 2017; 84:788-801. [DOI: 10.1002/mrd.22827] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Holly A. LaVoie
- Deptartment of Cell Biology and AnatomyUniversity of South Carolina School of MedicineColumbiaSouth Carolina
| |
Collapse
|
12
|
Liu L, Wang JF, Fan J, Rao YS, Liu F, Yan YE, Wang H. Nicotine Suppressed Fetal Adrenal StAR Expression via YY1 Mediated-Histone Deacetylation Modification Mechanism. Int J Mol Sci 2016; 17:ijms17091477. [PMID: 27598153 PMCID: PMC5037755 DOI: 10.3390/ijms17091477] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 11/16/2022] Open
Abstract
Steroidogenic acute regulatory (StAR) protein plays a pivotal role in steroidogenesis. Previously, we have demonstrated that prenatal nicotine exposure suppressed fetal adrenal steroidogenesis via steroidogenic factor 1 deacetylation. This study further explored the potential role of the transcriptional repressor Yin Yang 1 (YY1) in nicotine-mediated StAR inhibition. Nicotine was subcutaneously administered (1.0 mg/kg) to pregnant rats twice per day and NCI-H295A cells were treated with nicotine. StAR and YY1 expression were analyzed by real-time PCR, immunohistochemistry, and Western blotting. Histone modifications and the interactions between the YY1 and StAR promoter were assessed using chromatin immunoprecipitation (ChIP). Prenatal nicotine exposure increased YY1 expression and suppressed StAR expression. ChIP assay showed that there was a decreasing trend for histone acetylation at the StAR promoter in fetal adrenal glands, whereas H3 acetyl-K14 at the YY1 promoter presented an increasing trend following nicotine exposure. Furthermore, in nicotine-treated NCI-H295A cells, nicotine enhanced YY1 expression and inhibited StAR expression. ChIP assay showed that histone acetylation decreased at the StAR promoter in NCI-H295A cells and that the interaction between the YY1 and StAR promoter increased. These data indicated that YY1-medicated histone deacetylation modification in StAR promoters might play an important role in the inhibitory effect of nicotine on StAR expression.
Collapse
Affiliation(s)
- Lian Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
- Department of Pharmacology, Medical School of Yangtze University, Jingzhou 434000, China.
| | - Jian-Fei Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Jie Fan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Yi-Song Rao
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Fang Liu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - You-E Yan
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Hong J, Chen F, Wang X, Bai Y, Zhou R, Li Y, Chen L. Exposure of preimplantation embryos to low-dose bisphenol A impairs testes development and suppresses histone acetylation of StAR promoter to reduce production of testosterone in mice. Mol Cell Endocrinol 2016; 427:101-11. [PMID: 26975478 DOI: 10.1016/j.mce.2016.03.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 10/22/2022]
Abstract
Previous studies have shown that bisphenol A (BPA) is a potential endocrine disruptor and testicular toxicant. The present study focused on exploring the impact of exposure to low dose of BPA on male reproductive development during the early embryo stage and the underlying mechanisms. BPA (20 μg/kg/day) was orally administered to female mice on days 1-5 of gestation. The male offspring were euthanized at PND10, 20, 24, 35 or PND50. We found that the mice exposed to BPA before implantation (BPA-mice) displayed retardation of testicular development with reduction of testosterone level. The diameter and epithelium height of seminiferous tubules were reduced in BPA-mice at PND35. The numbers of spermatogenic cells at different stages were significantly reduced in BPA-mice at PND50. BPA-mice showed a persistent reduction in serum and testicular testosterone levels starting from PND24, whereas GnRH mRNA was significantly increased at PND35 and PND50. The expressions of testicular StAR and P450scc in BPA-mice also decreased relative to those of the controls at PND35 and PND50. Further analysis found that the levels of histone H3 and H3K14 acetylation (Ac-H3 and H3K14ac) in the promoter of StAR were decreased relative to those of control mice, whereas the level of Ac-H3 in the promoter of P450scc was not significantly different between the groups. These results provide evidence that exposure to BPA in preimplantation embryo retards the development of testes by reducing histone acetylation of the StAR promoter to disrupt the testicular testosterone synthesis.
Collapse
Affiliation(s)
- Juan Hong
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Fang Chen
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiaoli Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yinyang Bai
- Centre for Reproductive Medicine, Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, 214002, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- State Key Lab of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
14
|
Maekawa R, Lee L, Okada M, Asada H, Shinagawa M, Tamura I, Sato S, Tamura H, Sugino N. Changes in gene expression of histone modification enzymes in rat granulosa cells undergoing luteinization during ovulation. J Ovarian Res 2016; 9:15. [PMID: 26979106 PMCID: PMC4793631 DOI: 10.1186/s13048-016-0225-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/09/2016] [Indexed: 12/20/2022] Open
Abstract
Background The ovulatory LH surge rapidly alters the expression of steroidogenesis-related genes such as steroidogenic acute regulatory protein (StAR) in granulosa cells (GCs) undergoing luteinization. We recently reported that histone modifications contribute to these changes. Histone modifications are regulated by a variety of histone modification enzymes. This study investigated the changes in gene expression of histone modification enzymes in rat GCs undergoing luteinization after the induction of ovulation. The extracellular regulated kinase (ERK)-1/2 is a mediator in the intracellular signaling pathway stimulated by the ovulatory LH surge and regulates the expression of a number of genes in GCs. We further investigated whether ERK-1/2 is involved in the regulation of the histone modification at the StAR promoter region in GCs undergoing luteinization. Results GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h) CG injection. The expressions of 84 genes regulating histone modifications or DNA methylation were measured using a PCR array. Five genes (HDAC4, HDAC10, EZH2, SETDB2, and CIITA) were identified as histone acetylation- or histone methylation-related genes, and were significantly altered after hCG injection. None of the genes were related to DNA methylation. mRNA levels of EZH2, SETDB2, HDAC4, and HDAC10 decreased and CIITA mRNA levels increased 4 or 12 h after hCG injection. GCs isolated after eCG injection were incubated with hCG for 4 h to induce luteinization. StAR mRNA levels were significantly increased by hCG accompanied by the increase in H3K4me3 of the StAR promoter region. StAR mRNA expression was inhibited by the ERK inhibitor with the significant decrease of H3K4me3. These results suggest that hCG increases StAR gene expression through the ERK-1/2-mediated signaling which is also associated with histone modification of the promoter region. Conclusions Gene expressions of histone modification enzymes change in GCs undergoing luteinization after ovulation induction. This change may play important roles in regulating the expression of various genes during the early stage of luteinization, which may be critical for the subsequent corpus luteum formation.
Collapse
Affiliation(s)
- Ryo Maekawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Maki Okada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiromi Asada
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Masahiro Shinagawa
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Isao Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Shun Sato
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Hiroshi Tamura
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube, 755-8505, Japan.
| |
Collapse
|
15
|
|
16
|
Cruz G, Foster W, Paredes A, Yi KD, Uzumcu M. Long-term effects of early-life exposure to environmental oestrogens on ovarian function: role of epigenetics. J Neuroendocrinol 2014; 26:613-24. [PMID: 25040227 PMCID: PMC4297924 DOI: 10.1111/jne.12181] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 06/22/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022]
Abstract
Oestrogens play an important role in development and function of the brain and reproductive tract. Accordingly, it is considered that developmental exposure to environmental oestrogens can disrupt neural and reproductive tract development, potentially resulting in long-term alterations in neurobehaviour and reproductive function. Many chemicals have been shown to have oestrogenic activity, whereas others affect oestrogen production and turnover, resulting in the disruption of oestrogen signalling pathways. However, these mechanisms and the concentrations required to induce these effects cannot account for the myriad adverse effects of environmental toxicants on oestrogen-sensitive target tissues. Hence, alternative mechanisms are assumed to underlie the adverse effects documented in experimental animal models and thus could be important to human health. In this review, the epigenetic regulation of gene expression is explored as a potential target of environmental toxicants including oestrogenic chemicals. We suggest that toxicant-induced changes in epigenetic signatures are important mechanisms underlying the disruption of ovarian follicular development. In addition, we discuss how exposure to environmental oestrogens during early life can alter gene expression through effects on epigenetic control potentially leading to permanent changes in ovarian physiology.
Collapse
Affiliation(s)
- Gonzalo Cruz
- Centro de Neurobiología y Plasticidad Cerebral, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Correspondence to: Gonzalo Cruz, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile. 2360102, Tel. 56 32 2508015,
| | - Warren Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Alfonso Paredes
- Laboratorio de Neurobioquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - Kun Don Yi
- Syngenta Crop Protection, LLC. Greensboro, NC
| | - Mehmet Uzumcu
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
17
|
Khatkar M, Randhawa I, Raadsma H. Meta-assembly of genomic regions and variants associated with female reproductive efficiency in cattle. Livest Sci 2014. [DOI: 10.1016/j.livsci.2014.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Cabej NR. On the origin of information in epigenetic structures in metazoans. Med Hypotheses 2014; 83:378-86. [PMID: 25037317 DOI: 10.1016/j.mehy.2014.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 06/14/2014] [Accepted: 06/18/2014] [Indexed: 11/27/2022]
Abstract
Epigenetic inheritance implies the existence of epigenetic information. Great progress has been made in recent years in understanding the role of the changes in epigenetic structures (methylated DNA, histone acetylation/deacetylation and chromatin remodelling) as well as the role of miRNA (MIR) expression patterns in epigenetic processes. However, as of yet, we do not have a satisfactory understanding of the origin of epigenetic information stored in, and conveyed by, these structures. We do not know whether these structures are the ultimate source of the information or whether they are simply media for storing and transmitting epigenetic information for gene expression from upstream sources to the phenotype. Herein an attempt is made to ascertain the ultimate sources of the epigenetic information they contain and transmit by tracing back the causal chain leading to the changes in epigenetic structures.
Collapse
Affiliation(s)
- Nelson R Cabej
- Department of Biology, University of Tirana, Tirana, Albania.
| |
Collapse
|
19
|
Cecconi S, Rossi G, Castellucci A, D’Andrea G, Maccarrone M. Endocannabinoid signaling in mammalian ovary. Eur J Obstet Gynecol Reprod Biol 2014; 178:6-11. [DOI: 10.1016/j.ejogrb.2014.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 04/08/2014] [Indexed: 12/11/2022]
|
20
|
Zhang YL, Xia Y, Yu C, Richards JS, Liu J, Fan HY. CBP-CITED4 is required for luteinizing hormone-triggered target gene expression during ovulation. Mol Hum Reprod 2014; 20:850-60. [PMID: 24878634 DOI: 10.1093/molehr/gau040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pituitary-secreted luteinizing hormone (LH) induces ovulation by activating an extracellular regulated kinase 1/2 (ERK1/2) cascade. However, little is known regarding the ERK1/2 downstream effectors that are involved in regulating rapid, transient expression of LH-target gene in ovulatory follicles. By comparing the gene expression profiles of LH-stimulated wild type with ERK1/2-deleted ovarian granulosa cells (GCs), we identified Cited4 as a previously unknown LH target gene during ovulation. LH induced Cited4 expression in pre-ovulatory follicles in an ERK1/2-dependent manner. CITED4 formed an endogenous protein complex and docked on the promoters of LH and ERK1/2 target genes. Both CITED4 expression and CBP acetyltransferase activity leading to histone acetylation were indispensable for LH-induced ovulation-related events. LH induced dynamic histone acetylation changes in pre-ovulatory GCs, including the acetylation of histone H2B (Lys5) and H3 (Lys9). This was essential for the rapid responses and dramatic increases of LH target gene expressions by the ordered activation of ERK1/2 and CITED4-CBP. In addition, histone deacetylases (HDACs) antagonized CITED4-CBP to turn off expression of these genes after exposure to LH. Thus, we determined that CITED4 was a novel LH and ERK1/2 target for triggering ovulation. These results support the proposition that LH induces rapid, significant gene expression in pre-ovulatory follicles by modulating histone acetylation status.
Collapse
Affiliation(s)
- Yin-Li Zhang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Yan Xia
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - Chao Yu
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| | - JoAnne S Richards
- Department of Cellular and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junping Liu
- Institute of Aging Research, Hangzhou Normal University, Hangzhou, China
| | - Heng-Yu Fan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnell C, van den Driesche S, Jobling MS, Chambers TJG, De Gendt K, Verhoeven G, O’Hara L, Platts S, Renato de Franca L, Lara NLM, Anderson RA, Sharpe RM. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 2014; 111:E1924-32. [PMID: 24753613 PMCID: PMC4020050 DOI: 10.1073/pnas.1320735111] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.
Collapse
Affiliation(s)
- Karen R. Kilcoyne
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Lee B. Smith
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Sheila Macpherson
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Chris McKinnell
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sander van den Driesche
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matthew S. Jobling
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Thomas J. G. Chambers
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Karel De Gendt
- Department of Clinical and Experimental Medicine, Catholic University of Leuven, B-300 Leuven, Belgium; and
| | - Guido Verhoeven
- Department of Clinical and Experimental Medicine, Catholic University of Leuven, B-300 Leuven, Belgium; and
| | - Laura O’Hara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sophie Platts
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Luiz Renato de Franca
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG 31270-901, Belo Horizonte, Brazil
| | - Nathália L. M. Lara
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG 31270-901, Belo Horizonte, Brazil
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Richard M. Sharpe
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
22
|
Teino I, Matvere A, Kuuse S, Ingerpuu S, Maimets T, Kristjuhan A, Tiido T. Transcriptional repression of the Ahr gene by LHCGR signaling in preovulatory granulosa cells is controlled by chromatin accessibility. Mol Cell Endocrinol 2014; 382:292-301. [PMID: 24145128 DOI: 10.1016/j.mce.2013.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 09/08/2013] [Accepted: 10/11/2013] [Indexed: 01/22/2023]
Abstract
Recent advances in establishing the role of the aryl hydrocarbon receptor (Ahr) in normophysiology have discovered its fundamental role, amongst others, in female reproduction. Considering previous studies suggesting the hormonal modulation of Ahr, we aimed to investigate whether in murine granulosa cells (GCs) the gonadotropins regulate Ahr expression and how this is mechanistically implemented. We found that the FSH-like substance--pregnant mare serum gonadotropin--led to stimulation of Ahr expression. More importantly hCG produced relatively rapid reduction of Ahr mRNA in GCs of preovulatory follicles. We show for the first time that LHCGR signaling in regulating the Ahr message involves protein kinase A pathway and is attributable to decreased transcription rate. Finally, we found that Ahr promoter accessibility was decreased by hCG, implicating chromatin remodeling in Ahr gene regulation by LH.
Collapse
Affiliation(s)
- Indrek Teino
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Antti Matvere
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Sulev Kuuse
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Sulev Ingerpuu
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Toivo Maimets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Tarmo Tiido
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia.
| |
Collapse
|
23
|
Uzumcu M, Zama AM, Oruc E. Epigenetic mechanisms in the actions of endocrine-disrupting chemicals: gonadal effects and role in female reproduction. Reprod Domest Anim 2013; 47 Suppl 4:338-47. [PMID: 22827390 DOI: 10.1111/j.1439-0531.2012.02096.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
There is a heightened interest and concern among scientists, clinicians and regulatory agencies as well as the general public, regarding the effects of environmental endocrine-disrupting chemicals (EDCs). In this review, we identify the main epigenetic mechanisms and describe key ovarian processes that are vulnerable to the epigenetic actions of EDCs. We also provide an overview of the human epidemiological evidence documenting the detrimental effects of several common environmental EDCs on female reproduction. We then focus on experimental evidence demonstrating the epigenetic effects of these EDCs in the ovary and female reproductive system, with an emphasis on methoxychlor, an organochlorine pesticide. We conclude the review by describing several critical issues in studying epigenetic effects of EDCs in the ovary, including transgenerational epigenetic effects.
Collapse
Affiliation(s)
- M Uzumcu
- Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8525, USA.
| | | | | |
Collapse
|
24
|
Lee L, Asada H, Kizuka F, Tamura I, Maekawa R, Taketani T, Sato S, Yamagata Y, Tamura H, Sugino N. Changes in histone modification and DNA methylation of the StAR and Cyp19a1 promoter regions in granulosa cells undergoing luteinization during ovulation in rats. Endocrinology 2013. [PMID: 23183184 DOI: 10.1210/en.2012-1610] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ovulatory LH surge induces rapid up-regulation of steroidogenic acute regulatory (StAR) protein and rapid down-regulation of aromatase (Cyp19a1) in granulosa cells (GCs) undergoing luteinization during ovulation. This study investigated in vivo whether epigenetic mechanisms including histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression. GCs were obtained from rats treated with equine chorionic gonadotropin (CG) before (0 h) and after human (h)CG injection. StAR mRNA levels rapidly increased after hCG injection, reached a peak at 4 h, and then remained higher compared with 0 h until 12 h. Cyp19a1 mRNA levels gradually decreased after hCG injection and reached their lowest level at 12 h. A chromatin immunoprecipitation assay revealed that levels of histone-H4 acetylation (Ac-H4) and trimethylation of histone-H3 lysine-4 (H3K4me3) increased whereas H3K9me3 and H3K27me3 decreased in the StAR promoter after hCG injection. On the other hand, the levels of Ac-H3 and -H4 and H3K4me3 decreased, and H3K27me3 increased in the Cyp19a1 promoter after hCG injection. Chromatin condensation, which was analyzed using deoxyribonuclease I, decreased in the StAR promoter and increased in the Cyp19a1 promoter after hCG injection. A chromatin immunoprecipitation assay also showed that binding activities of CAATT/enhancer-binding protein β to the StAR promoter increased and binding activities of phosphorylated-cAMP response element binding protein to the Cyp19a1 promoter decreased after hCG injection. These results provide in vivo evidence that histone modifications are involved in the rapid changes of StAR and Cyp19a1 gene expression by altering chromatin structure of the promoters in GCs undergoing luteinization during ovulation.
Collapse
Affiliation(s)
- Lifa Lee
- Department of Obstetrics and Gynecology, Yamaguchi University Graduate School of Medicine, Minamikogushi 1-1-1, Ube 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bapat SA. Modulation of gene expression in ovarian cancer by active and repressive histone marks. Epigenomics 2012; 2:39-51. [PMID: 22122747 DOI: 10.2217/epi.09.38] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
DNA methylation and histone modifications often function concomitantly to drive an aberrant program of gene expression in most cancers. Consequently, they have also been identified as being associated with ovarian cancer. However, several basic issues remain unclear - are these marks established early during normal ovarian functioning, or at a preneoplastic stage, or through a gradual accumulation, or do they arise de novo during transformation? Such issues have been difficult to address in ovarian cancer wherein preneoplastic lesions and progression models have not yet been established and drug-refractive disease progression is rapid and aggressive. The review presents an overview of the known involvement of histone modifications in various cellular states that might contribute to our understanding of epithelial ovarian cancer.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS complex, Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
26
|
Kwintkiewicz J, Padilla-Banks E, Jefferson WN, Jacobs IM, Wade PA, Williams CJ. Metastasis-associated protein 3 (MTA3) regulates G2/M progression in proliferating mouse granulosa cells. Biol Reprod 2012; 86:1-8. [PMID: 22075476 PMCID: PMC3316264 DOI: 10.1095/biolreprod.111.096032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 09/18/2011] [Accepted: 10/25/2011] [Indexed: 01/10/2023] Open
Abstract
Metastasis-associated protein 3 (MTA3) is a constituent of the Mi-2/nucleosome remodeling and deacetylase (NuRD) protein complex that regulates gene expression by altering chromatin structure and can facilitate cohesin loading onto DNA. The biological function of MTA3 within the NuRD complex is unknown. Herein, we show that MTA3 was expressed highly in granulosa cell nuclei of all ovarian follicle stages and at lower levels in corpora lutea. We tested the hypothesis that MTA3-NuRD complex function is required for granulosa cell proliferation. In the ovary, MTA3 interacted with NuRD proteins CHD4 and HDAC1 and the core cohesin complex protein RAD21. In cultured mouse primary granulosa cells, depletion of endogenous MTA3 using RNA interference slowed cell proliferation; this effect was rescued by coexpression of exogenous MTA3. Slowing of cell proliferation correlated with a significant decrease in cyclin B1 and cyclin B2 expression. Granulosa cell populations lacking MTA3 contained a significantly higher percentage of cells in G2/M phase and a lower percentage in S phase compared with control cells. Furthermore, MTA3 depletion slowed entry into M phase as indicated by reduced phosphorylation of histone H3 at serine 10. These findings provide the first evidence to date that MTA3 interacts with NuRD and cohesin complex proteins in the ovary in vivo and regulates G2/M progression in proliferating granulosa cells.
Collapse
Affiliation(s)
- Jakub Kwintkiewicz
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Elizabeth Padilla-Banks
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Ilana M. Jacobs
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Paul A. Wade
- Eukaryotic Transcriptional Regulation Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Carmen J. Williams
- Eukaryotic Transcriptional Regulation Group, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
27
|
Current advances in epigenetic modification and alteration during mammalian ovarian folliculogenesis. J Genet Genomics 2012; 39:111-23. [PMID: 22464470 DOI: 10.1016/j.jgg.2012.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 01/07/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
During the growth and development of mammalian ovarian follicles, the activation and deactivation of mass genes are under the synergistic control of diverse modifiers through genetic and epigenetic events. Many factors regulate gene activity and functions through epigenetic modification without altering the DNA sequence, and the common mechanisms may include but are not limited to: DNA methylation, histone modifications (e.g., acetylation, deacetylation, phosphorylation, methylation, and ubiquitination), and RNA-associated silencing of gene expression by noncoding RNA. Over the past decade, substantial progress has been achieved in studies involving the epigenetic alterations during mammalian germ cell development. A number of candidate regulatory factors have been identified. This review focuses on the current available information of epigenetic alterations (e.g., DNA methylation, histone modification, noncoding-RNA-mediated regulation) during mammalian folliculogenesis and recounts when and how epigenetic patterns are differentially established, maintained, or altered in this process. Based on different types of epigenetic regulation, our review follows the temporal progression of events during ovarian folliculogenesis and describes the epigenetic changes and their contributions to germ cell-specific functions at each stage (i.e., primordial folliculogenesis (follicle formation), follicle maturation, and follicular atresia).
Collapse
|
28
|
Abstract
Ovarian cancer is the most lethal gynecological cancer. Due to few early symptoms and a lack of early detection strategies, most patients are diagnosed with advanced-stage disease. Most of these patients, although initially responsive, eventually develop drug resistance. In this chapter, epigenetic changes in ovarian cancer are described. Various epigenetic changes including CpG island methylation and histone modification have been identified in ovarian cancer. These aberrations are associated with distinct disease subtypes and present in circulating serum of ovarian cancer patients. Several epigenetic changes have shown promise for their diagnostic, prognostic, and predictive capacity but still need further validation.In contrast to DNA mutations and deletions, epigenetic modifications are potentially reversible by epigenetic therapies. Promising preclinical studies show epigenetic drugs to enhance gene re-expression and drug sensitivity in ovarian cancer cell lines and animal models.
Collapse
|
29
|
Venkatachalam R, Ligtenberg MJL, Hoogerbrugge N, de Bruijn DRH, Kuiper RP, Geurts van Kessel A. The epigenetics of (hereditary) colorectal cancer. ACTA ACUST UNITED AC 2010; 203:1-6. [PMID: 20951312 DOI: 10.1016/j.cancergencyto.2010.08.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 08/08/2010] [Indexed: 01/05/2023]
Abstract
In the last decade, it has become apparent that not only DNA sequence variations but also epigenetic modifications may contribute to disease, including cancer. These epigenetic modifications involve histone modification including acetylation and methylation, DNA methylation, and chromatin remodeling. One of the best-characterized epigenetic changes is aberrant methylation of cytosines that occur in so-called CpG islands. DNA hypomethylation, prevalent as a genome-wide event, usually occurs in more advanced stages of tumor development. In contrast, DNA hypermethylation is often observed as a discrete, targeted event within tumor cells, resulting in specific loss of gene expression. Interestingly, it was found that sporadic and inherited cancers may exhibit similar DNA methylation patterns, and many genes that are mutated in familial cancers have also been found to be hypermethylated, mutated, or deleted in sporadic cancers. In this review, we will focus on DNA methylation events as heritable epimutations predisposing to colorectal cancer development.
Collapse
Affiliation(s)
- Ramprasath Venkatachalam
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Centre for Oncology, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Shinojima Y, Terui T, Hara H, Kimura M, Igarashi J, Wang X, Kawashima H, Kobayashi Y, Muroi S, Hayakawa S, Esumi M, Fujiwara K, Ghosh S, Yamamoto T, Held W, Nagase H. Identification and analysis of an early diagnostic marker for malignant melanoma: ZAR1 intra-genic differential methylation. J Dermatol Sci 2010; 59:98-106. [PMID: 20654783 PMCID: PMC2911436 DOI: 10.1016/j.jdermsci.2010.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 04/03/2010] [Accepted: 04/29/2010] [Indexed: 01/20/2023]
Abstract
BACKGROUND Epigenetic changes such as aberrant DNA methylation and histone modification have been shown to play an important role in the tumorigenesis of malignant melanoma. OBJECTIVE To identify novel tumor-specific differentially methylated regions (DMRs) in human malignant melanoma. METHODS The aberrant methylation at 14 candidate human genomic regions identified through a mouse model study with quantitative DNA methylation analysis using the Sequenom MassARRAY system was performed. RESULTS The CpG island Exon 1 region of the Zygote arrest 1 (ZAR1) gene, which is responsible for oocyte-to-embryo transition, showed frequent aberrant methylation of 28 out of 30 (93%) melanoma surgical specimens, 16 of 17 (94%) melanoma cell lines, 0% of 4 normal human epidermal melanocyte (NHEM) cell lines, 0% of 10 melanocytic nevi and 100% of 51 various cancer cell lines. According to the real-time RT-PCR, the ZAR1 gene was overexpressed in part of the hypermethylated cell lines, while its low expression with bivalent histone methylation status was seen in unmethylated cell lines. CONCLUSION Our findings suggest that the ZAR1 intra-genic differentially methylated region would be a useful tumor marker for malignant melanoma and may be other type of cancers. The involvement of ZAR1 in the carcinogenesis of melanoma, still remains unclear, although we have examined tumorigenic capacities by exogenous full-length ZAR1 over-expression and siRNA knock-down experiments.
Collapse
Affiliation(s)
- Yui Shinojima
- Division of Cutaneous Science, Department of Dermatology, Nihon University Graduate School of Medicine, Tokyo, Japan
- Division of Cancer Genetics, Department of Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Tadashi Terui
- Division of Cutaneous Science, Department of Dermatology, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Hiroyuki Hara
- Division of Cutaneous Science, Department of Dermatology, Nihon University Graduate School of Medicine, Tokyo, Japan
| | - Makoto Kimura
- Life Science, Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo, Japan
| | - Jun Igarashi
- Life Science, Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo, Japan
| | - Xiaofei Wang
- Life Science, Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo, Japan
| | - Hiroyuki Kawashima
- Division of Cancer Genetics, Department of Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Yujin Kobayashi
- Division of Cancer Genetics, Department of Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Satomi Muroi
- Division of Cancer Genetics, Department of Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | - Satoshi Hayakawa
- Division of Microbiology, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo, Japan
| | - Mariko Esumi
- Department of Pathology, Nihon University School of Medicine, Tokyo, Japan
| | - Kyoko Fujiwara
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Srimoyee Ghosh
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Tatsuo Yamamoto
- Department of Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - William Held
- Department of Molecular Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Hiroki Nagase
- Division of Cancer Genetics, Department of Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
- Life Science, Advanced Research Institute for the Science and Humanities, Nihon University, Tokyo, Japan
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
31
|
Vitzthum VJ. The ecology and evolutionary endocrinology of reproduction in the human female. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2009; 140 Suppl 49:95-136. [DOI: 10.1002/ajpa.21195] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Matei DE, Nephew KP. Epigenetic therapies for chemoresensitization of epithelial ovarian cancer. Gynecol Oncol 2009; 116:195-201. [PMID: 19854495 DOI: 10.1016/j.ygyno.2009.09.043] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/27/2009] [Accepted: 09/30/2009] [Indexed: 01/03/2023]
Abstract
Epigenetic drugs have been shown to enhance gene expression and drug sensitivity in ovarian cancer cell lines and animal models. Based on promising preclinical studies, DNA methylation inhibitors in combination with existing chemotherapeutic agents have the potential for overcoming acquired drug resistance, laying the foundation for this specific class of epigenetic drug in ovarian cancer clinical trials. The recent completion of phase I trials of decitabine has yielded important information on dosing schedules and biological endpoints for evaluating patient responses. In addition, epigenetic drug effects on pharmacodyamic targets are beginning to emerge, and predictive epigenetic biomarkers and next generation epigenome therapeutics are being developed for application in clinical settings for ovarian cancer patients.
Collapse
Affiliation(s)
- Daniela E Matei
- Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
33
|
Balch C, Fang F, Matei DE, Huang THM, Nephew KP. Minireview: epigenetic changes in ovarian cancer. Endocrinology 2009; 150:4003-11. [PMID: 19574400 PMCID: PMC2736079 DOI: 10.1210/en.2009-0404] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 06/23/2009] [Indexed: 12/25/2022]
Abstract
Epigenetic aberrations, including DNA methylation, histone modifications, and micro-RNA dysregulation, are now well established in the development and progression of ovarian cancer, and their gradual accumulation is associated with advancing disease stage and grade. Epigenetic aberrations are relatively stable, associated with distinct disease subtypes, and present in circulating serum, representing promising diagnostic, prognostic, and pharmacodynamic biomarkers. In contrast to DNA mutations and deletions, aberrant gene-repressive epigenetic modifications are potentially reversible by epigenetic therapies, including inhibitors of DNA methylation or histone-modifying enzymes. Although epigenetic monotherapies have not shown activity against solid tumors, including ovarian cancer, preclinical studies suggest they will be effective when used in combination with one another or with conventional chemotherapeutics, and combinatorial epigenetic therapy regiments are being examined in cancer clinical trials. A greater understanding of the role of epigenetics in ovarian neoplasia will provide for improved interventions against this devastating malignancy.
Collapse
Affiliation(s)
- Curt Balch
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana 47405-4401, USA
| | | | | | | | | |
Collapse
|
34
|
|
35
|
Seneda MM, Godmann M, Murphy BD, Kimmins S, Bordignon V. Developmental regulation of histone H3 methylation at lysine 4 in the porcine ovary. Reproduction 2008; 135:829-38. [PMID: 18502896 DOI: 10.1530/rep-07-0448] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Follicular growth and oogenesis involve highly dynamic changes in morphogenesis, chromatin structure, and gene transcription. The tight coordination of these events leads to ovulation of a mature oocyte and formation of the luteal tissue necessary to regulate embryo implantation and development. This entire process is regulated by numerous endocrine and in situ mechanisms. The role of epigenetic mechanisms in folliculogenesis, such as the biochemical modification of the DNA packaging proteins, the histones, is not well understood. Our objective was to determine the cellular and follicular stage-specific patterns of histone H3 methylation at lysine 4 (K4) in porcine preovulatory follicles and during luteinization in pig ovaries. Ovary tissues were collected from slaughtered prepubertal and cyclic gilts at various stages of the estrous cycle, pregnancy, and from ovaries recovered from gonatropin-treated gilts at 0, 24, and 38 h post human chorionic gonadotropin (hCG) injection. Samples were fixed in 4% paraformaldehyde and processed for embedding in paraffin and sectioned using standard histological protocols. Immunofluorescent staining was performed on 3 microm thick sections. The immunostaining pattern of mono-, di-, and tri-methylated histone H3-K4 and lysine-specific demethylase 1 (LSD1, also known as KDM1 or AOF1) was assessed. Interestingly, H3-K4 mono-, di-, and tri-methylation in follicles of prepubertal gilts was specifically distributed and developmentally regulated. While granulosa cells of primary, secondary, and early antral follicles were negative for H3-K4 methylation those from large antral follicles showed a striking upregulation in the cells located in the proximity to the oocyte. Specifically, the cumulus oophorus displayed intense staining for H3-K4 methylation and signals were strongest in the granulosa cells in the inner two cell layers of the follicular wall. Although all oocytes from primary to large antral stage follicles were positive for H3-K4 mono-, di-, and tri-methylation, the patterns of distribution were altered through oocyte follicle development. H3-K4 methylation in granulosa cells was dramatically reduced as time to ovulation approached and was low to undetected at 38 h post hCG treatment. H3-K4 mono-, di-, and tri-methylation in large luteal cells increased as differentiation evolved but remained low in small luteal cells. Strikingly, LSD1 (KDM1) expression was found to be restricted to the corpus luteum. In summary, this study provides new information on histone H3-K4 methylation patterns in the oocyte and follicle during folliculogenesis, which suggests that these epigenetic markers serve an essential regulatory role during folliculogenesis.
Collapse
Affiliation(s)
- Marcelo M Seneda
- Departamento de Clínicas Veterinárias, Universidade Estadual de Londrina, Londrina, Paraná, 86051-990, Brasil
| | | | | | | | | |
Collapse
|
36
|
Li Z, Huang H. Epigenetic abnormality: A possible mechanism underlying the fetal origin of polycystic ovary syndrome. Med Hypotheses 2008; 70:638-42. [PMID: 17764855 DOI: 10.1016/j.mehy.2006.09.076] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 01/16/2023]
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common, yet heterogeneous and complex, endocrine disorders in women of reproductive age. Although the aetiology of PCOS remains uncertain, emerging evidence has indicated that exposure of the female fetus to the hyperandrogenism milieu in utero may result in PCOS phenotype after birth. Such a phenomenon has been formulated as the fetal origin of PCOS, which intends to give a possible explanation for PCOS aetiology. Given that the epigenetic modifications are usually involved in the development and inheritance of many adult diseases with fetal origin, we propose a hypothesis here referred to as "epigenetic abnormality underlying the fetal origin of PCOS". It states that in utero hyperandrogenism exposure may disturb the epigenetic reprogramming in fetal reproductive tissue, thereby resulting in postnatal POCS phenotype in women of reproductive age. Meanwhile, the incomplete erasure of such epigenetic abnormality in germ cells after fertilization may promote the transgenerational inherence of POCS. Thus, this epigenetic abnormality hypothesis has established a novel mechanism for PCOS development and inheritance. If verified, our hypothesis would open new avenues for the possible intervention at the critical period of prenatal life to prevent PCOS development and inheritance in adult women. Moreover, analysis of the epigenetic phenotypes and identification of specific epigenetic changes may help develop new tools for monitoring fetal development under an in utero hyperandrogenism environment.
Collapse
Affiliation(s)
- Zhongxiang Li
- Center for Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, China
| | | |
Collapse
|
37
|
McGraw S, Morin G, Vigneault C, Leclerc P, Sirard MA. Investigation of MYST4 histone acetyltransferase and its involvement in mammalian gametogenesis. BMC DEVELOPMENTAL BIOLOGY 2007; 7:123. [PMID: 17980037 PMCID: PMC2190771 DOI: 10.1186/1471-213x-7-123] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 11/02/2007] [Indexed: 01/15/2023]
Abstract
Background Various histone acetylases (HATs) play a critical role in the regulation of gene expression, but the precise functions of many of those HATs are still unknown. Here we provide evidence that MYST4, a known HAT, may be involved in early mammalian gametogenesis. Results Although MYST4 mRNA transcripts are ubiquitous, protein expression was restricted to select extracts (including ovary and testis). Immunohistochemistry experiments performed on ovary sections revealed that the MYST4 protein is confined to oocytes, granulosa and theca cells, as well as to cells composing the blood vessels. The transcripts for MYST4 and all-MYST4-isoforms were present in oocytes and in in vitro produced embryos. In oocytes and embryos the MYST4 protein was localized in both the cytoplasm and nucleus. Within testis sections, the MYST4 protein was specific to only one cell type, the elongating spermatids, where it was exclusively nuclear. Conclusion We established that MYST4 is localized into specialized cells of the ovary and testis. Because the majority of these cells are involved in male and female gametogenesis, MYST4 may contribute to important and specific acetylation events occurring during gametes and embryo development.
Collapse
Affiliation(s)
- Serge McGraw
- Département des Sciences Animales, Centre de Recherche en Biologie de la Reproduction, Université Laval, Québec, Canada.
| | | | | | | | | |
Collapse
|
38
|
de Bruijn DRH, Nap JP, van Kessel AG. The (epi)genetics of human synovial sarcoma. Genes Chromosomes Cancer 2007; 46:107-17. [PMID: 17117414 DOI: 10.1002/gcc.20399] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Human synovial sarcomas are aggressive soft tissue tumors with relatively high rates of recurrences and metastases. They display a variable response to common treatment protocols such as radiation and chemotherapy. For the development of novel diagnostic, prognostic, and therapeutic approaches, detailed information on the molecular mechanisms underlying the development of these tumors is of imperative importance. Fusion of the SS18 and (one of the) SSX genes is a molecular hallmark of human synovial sarcomas. The SS18 and SSX genes encode nuclear proteins that exhibit opposite transcription regulatory activities, likely through epigenetic mechanisms. The SS18 protein functions as a transcriptional coactivator and interacts directly with members of the epigenetic chromatin remodeling and modification machineries. In contrast, the SSX proteins function as transcriptional corepressors and are associated with several Polycomb group proteins. Since the domains involved in these apparently opposite transcription regulatory activities are retained in the SS18-SSX fusion proteins, we hypothesize that these fusion proteins function as "activator-repressors" of transcription. The implications of this model for human synovial sarcoma development and future treatment are discussed.
Collapse
Affiliation(s)
- Diederik R H de Bruijn
- Department of Human Genetics, Radboud University Nijmegen Medical Center, Nijmegen Center for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | |
Collapse
|
39
|
Pépin D, Vanderhyden BC, Picketts DJ, Murphy BD. ISWI chromatin remodeling in ovarian somatic and germ cells: revenge of the NURFs. Trends Endocrinol Metab 2007; 18:215-24. [PMID: 17544291 DOI: 10.1016/j.tem.2007.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 04/23/2007] [Accepted: 05/16/2007] [Indexed: 01/20/2023]
Abstract
Chromatin has emerged as an important regulator of gene expression, interposed between cell signaling pathways and transcriptional machinery. It participates in transmitting extra- and intra-cellular signals that coordinate ovarian events: ovarian follicle development, the meiotic maturation of the oocyte that precedes ovulation, and the ovulatory process and consequent luteinization. Recent evidence from model organisms and mammals suggests that chromatin signaling is achieved, in part, by imitation switch (ISWI) ATP-dependent chromatin-remodeling complexes. This review highlights a role for complexes containing the ISWI ATPase sucrose nonfermenting-2h (Snf2h) in proliferation in somatic and germ cells and also in meiosis in germ cells. Moreover, complexes containing the Snf2l ATPase dictate the differentiation of somatic cells and act in the induction of the terminal phases of meiosis in the oocyte.
Collapse
Affiliation(s)
- David Pépin
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | | | | | | |
Collapse
|
40
|
Abstract
Irreversible changes in the DNA sequence, including chromosomal deletions or amplification, activating or inactivating mutations in genes, have been implicated in the development and progression of melanoma. However, increasing attention is being turned towards the participation of 'epigenetic' events in melanoma progression that do not affect DNA sequence, but which nevertheless may lead to stable inherited changes in gene expression. Epigenetic events including histone modifications and DNA methylation play a key role in normal development and are crucial to establishing the correct program of gene expression. In contrast, mistargeting of such epigenetic modifications can lead to aberrant patterns of gene expression and loss of anti-cancer checkpoints. Thus, to date at least 50 genes have been reported to be dysregulated in melanoma by aberrant DNA methylation and accumulating evidence also suggests that mistargetting of histone modifications and altered chromatin remodeling activities will play a key role in melanoma. This review gives an overview of the many different types of epigenetic modifications and their involvement in cancer and especially in melanoma development and progression.
Collapse
Affiliation(s)
- Tanja Rothhammer
- Institute of Pathology, University of Regensburg Medical School, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | |
Collapse
|
41
|
Staub J, Chien J, Pan Y, Qian X, Narita K, Aletti G, Scheerer M, Roberts LR, Molina J, Shridhar V. Epigenetic silencing of HSulf-1 in ovarian cancer:implications in chemoresistance. Oncogene 2007; 26:4969-78. [PMID: 17310998 DOI: 10.1038/sj.onc.1210300] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To investigate the mechanism by which HSulf-1 expression is downregulated in ovarian cancer, DNA methylation and histone acetylation of HSulf-1 was analysed in ovarian cancer cell lines and primary tumors. Treatment of OV207 and SKOV3 by 5-aza-2'-deoxycytidine resulted in increased transcription of HSulf-1. Sequence analysis of bisulfite-modified genomic DNA from ovarian cell lines and primary tumors without HSulf-1 expression revealed an increase in the frequency of methylation of 12 CpG sites in exon 1A. Chromatin immunoprecipitation assays showed an increase in histone H3 methylation in cell lines without HSulf-1 expression. To assess the significance of HSulf-1 downregulation in ovarian cancer, OV167 and OV202 cells were transfected with HSulf-1 siRNA. Downregulation of HSulf-1 expression in OV167 and OV202 cells lead to an attenuation of cisplatin-induced cytotoxicity. Moreover, patients with ovarian tumors expressing higher levels of HSulf-1 showed a 90% response rate (27/30) to chemotherapy compared to a response rate of 63% (19/30) in those with weak or moderate levels (P=0.0146, chi(2) test). Collectively, these data indicate that HSulf-1 is epigenetically silenced in ovarian cancer and that epigenetic therapy targeting HSulf-1 might sensitize ovarian tumors to conventional first-line therapies.
Collapse
Affiliation(s)
- J Staub
- Department of Laboratory Medicine and Pathology, Division of Experimental Pathology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Qi J, Zhu YQ, Luo J, Tao WH. Hypermethylation and expression regulation of secreted frizzled-related protein genes in colorectal tumor. World J Gastroenterol 2006; 12:7113-7. [PMID: 17131472 PMCID: PMC4087771 DOI: 10.3748/wjg.v12.i44.7113] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the functions of promoter hyper-methylation of secreted frizzled-related proteins (sFRPs) genes in colorectal tumorigenesis and progression.
METHODS: The promoter hypermethylation and expression of sFRP genes in 72 sporadic colorectal carcinomas, 33 adenomas, 18 aberrant crypt foci (ACF) and colorectal cancer cell lines RKO, HCT116 and SW480 were detected by methylation-specific PCR and reverse transcription PCR, respectively.
RESULTS: None of the normal colorectal mucosa tissues showed methylated bands of any of four sFRP genes. sFRP1, 2, 4 and 5 were frequently methylated in colorectal carcinoma, adenoma and ACF (sFRP1 > 85%, sFRP2 >75%, sFRP5 > 50%), and the differences between three colorectal tissues were not significant (P > 0.05). Methylation in colorectal tumors was more frequent than in normal mucosa and adjacent normal mucosa. The mRNA of sFRP1-5 genes was expressed in all normal colorectal mucosa samples. Expression of sFRP1, 2, 4 and 5 and sFRP1, 2 and 5 was downregulated in carcinoma and adenoma, respectively. The downregulation of sFRP2, 4 and 5 was more frequent in carcinoma than in adenoma. Expression of sFRP3 which promoter has no CpG island was downregulated in only a few of colorectal tumor samples (7/105). The downregulation of sFRP1, 2, 4 and 5 expression was significantly associated with promoter hypermethylation in colorectal tumor. After cells were treated by DAC/TSA combination, the silenced sFRP mRNA expression could be effectively re-expressed in colorectal cancer cell lines.
CONCLUSION: Hypermethylation of sFRP genes is a common early event in the evolution of colorectal tumor, occurring frequently in ACF, which is regarded as the earliest lesion of multistage colorectal carcinogenesis. It appears to functionally silence sFRP genes expression. Methylation of sFRP1, 2 and 5 genes might serve as indicators for colorectal tumor.
Collapse
Affiliation(s)
- Jian Qi
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China
| | | | | | | |
Collapse
|