1
|
Synthesis, In Vitro Biological Evaluation of Antiproliferative and Neuroprotective Effects and In Silico Studies of Novel 16E-Arylidene-5α,6α-epoxyepiandrosterone Derivatives. Biomedicines 2023; 11:biomedicines11030812. [PMID: 36979790 PMCID: PMC10045663 DOI: 10.3390/biomedicines11030812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 03/10/2023] Open
Abstract
Steroids constitute an important class of pharmacologically active molecules, playing key roles in human physiology. Within this group, 16E-arylideneandrostane derivatives have been reported as potent anti-cancer agents for the treatment of leukemia, breast and prostate cancers, and brain tumors. Additionally, 5α,6α-epoxycholesterol is an oxysterol with several biological activities, including regulation of cell proliferation and cholesterol homeostasis. Interestingly, pregnenolone derivatives combining these two modifications were described as potential neuroprotective agents. In this research, novel 16E-arylidene-5α,6α-epoxyepiandrosterone derivatives were synthesized from dehydroepiandrosterone by aldol condensation with different aldehydes followed by a diastereoselective 5α,6α-epoxidation. Their cytotoxicity was evaluated on tumoral and non-tumoral cell lines by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Furthermore, the assessment of the neuroprotective activity of these derivatives was performed in a dopaminergic neuronal cell line (N27), at basal conditions, and in the presence of the neurotoxin 6-hydroxydopamine (6-OHDA). Interestingly, some of these steroids had selective cytotoxic effects in tumoral cell lines, with an IC50 of 3.47 µM for the 2,3-dichlorophenyl derivative in the breast cancer cell line (MCF-7). The effects of this functionalized epoxide on cell proliferation (Ki67 staining), cell necrosis (propidium iodide staining), as well as the analysis of the nuclear area and near neighbor distance in MCF-7 cells, were analyzed. From this set of biological studies, strong evidence of the activation of apoptosis was found. In contrast, no significant neuroprotection against 6-OHDA-induced neurotoxicity was observed for the less cytotoxic steroids in N27 cells. Lastly, molecular docking simulations were achieved to verify the potential affinity of these compounds against important targets of steroidal drugs (androgen receptor, estrogen receptor α, and 5α-reductase type 2, 17α-hydroxylase-17,20-lyase and aromatase enzymes). This in silico study predicted a strong affinity between most novel steroidal derivatives and 5α-reductase and 17α-hydroxylase-17,20-lyase enzymes.
Collapse
|
2
|
Highlights on Steroidal Arylidene Derivatives as a Source of Pharmacologically Active Compounds: A Review. Molecules 2021; 26:molecules26072032. [PMID: 33918373 PMCID: PMC8038301 DOI: 10.3390/molecules26072032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Steroids constitute a unique class of chemical compounds, playing an important role in physiopathological processes, and have high pharmacological interest. Additionally, steroids have been associated with a relatively low toxicity and high bioavailability. Nowadays, multiple steroidal derivatives are clinically available for the treatment of numerous diseases. Moreover, different structural modifications on their skeleton have been explored, aiming to develop compounds with new and improved pharmacological properties. Thus, steroidal arylidene derivatives emerged as a relevant example of these modifications. This family of compounds has been mainly described as 17β-hydroxysteroid dehydrogenase type 1 and aromatase inhibitors, as well as neuroprotective and anticancer agents. Besides, due to their straightforward preparation and intrinsic chemical reactivity, steroidal arylidene derivatives are important synthetic intermediates for the preparation of other compounds, particularly bearing heterocyclic systems. In fact, starting from arylidenesteroids, it was possible to develop bioactive steroidal pyrazolines, pyrazoles, pyrimidines, pyridines, spiro-pyrrolidines, amongst others. Most of these products have also been studied as anti-inflammatory and anticancer agents, as well as 5α-reductase and aromatase inhibitors. This work aims to provide a comprehensive overview of steroidal arylidene derivatives described in the literature, highlighting their bioactivities and importance as synthetic intermediates for other pharmacologically active compounds.
Collapse
|
3
|
El-Naggar M, Amr AEGE, Fayed AA, Elsayed EA, Al-Omar MA, Abdalla MM. Potent Anti-Ovarian Cancer with Inhibitor Activities on both Topoisomerase II and V600EBRAF of Synthesized Substituted Estrone Candidates. Molecules 2019; 24:E2054. [PMID: 31146483 PMCID: PMC6600292 DOI: 10.3390/molecules24112054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 01/05/2023] Open
Abstract
A series of 16-(α-alkoxyalkane)-17-hydrazino-estra-1(10),2,4-trien[17,16-c]-3-ol (3a-l) and estra-1(10),2,4-trien-[17,16-c]pyrazoline-3-ol derivatives (4a-d) were synthesized from corresponding arylidines 2a,b which was prepared from estrone 1 as starting material. Condensation of 1 with aldehydes gave the corresponding arylidine derivatives 2a,b which were treated with hydrazine derivatives in alcohols to give the corresponding derivatives 3a-l, respectively. Additionally, treatment of 2a,b with methyl- or phenylhydrazine in ethanolic potassium hydroxide afforded the corresponding N-substituted pyrazoline derivatives 4a-d, respectively. All these derivatives showed potent anti-ovarian cancer both in vitro and in vivo. The mechanism of anti-ovarian cancer was suggested to process via topoisomerase II and V600EBRAF inhibition.
Collapse
Affiliation(s)
- Mohamed El-Naggar
- Chemistry Department, Faculty of Sciences, University of Sharjah, Sharjah 27272, UAE.
| | - Abd El-Galil E Amr
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
| | - Ahmed A Fayed
- Applied Organic Chemistry Department, National Research Center, Cairo 12622, Egypt.
- Respiratory Therapy Department, College of Medical Rehabilitation Sciences, Taibah University, Madinah Munawara 22624, Saudi Arabia.
| | - Elsayed A Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt.
| | - Mohamed A Al-Omar
- Drug Exploration & Development Chair (DEDC), Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | | |
Collapse
|
4
|
Fan NJ, Han YY, Li YF, Gao JM, Tang JJ. Synthesis of novel 4'-acylamino modified 21E-benzylidene steroidal derivatives and their cytotoxic activities. Steroids 2017; 123:20-26. [PMID: 28483508 DOI: 10.1016/j.steroids.2017.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 11/29/2022]
Abstract
A series of 4'-acylamino modified Δ1,4-pregnadien-21E-benzylidene-3,20-dione derivatives (6a-v) was synthesized from the commercially available progesterone (1). These title compounds were evaluated for their toxicity against brine shrimp (Artemia salina) and cytotoxic activities against two human cancer cell lines (HeLa and MCF-7). The results revealed that compound 6f exhibited promising in vitro cytotoxic activity to the two cancer cell lines and the nature of acylamino functional group in the benzylidene moiety had a significant influence on cytotoxicity.
Collapse
Affiliation(s)
- Ning-Juan Fan
- Biochemistry and Molecular Biology Research Platform, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Yang-Yang Han
- Biochemistry and Molecular Biology Research Platform, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuan-Feng Li
- Biochemistry and Molecular Biology Research Platform, College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
5
|
Zhang CY, Wang WQ, Chen J, Lin SX. Reductive 17beta-hydroxysteroid dehydrogenases which synthesize estradiol and inactivate dihydrotestosterone constitute major and concerted players in ER+ breast cancer cells. J Steroid Biochem Mol Biol 2015; 150:24-34. [PMID: 25257817 DOI: 10.1016/j.jsbmb.2014.09.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/02/2014] [Accepted: 09/21/2014] [Indexed: 11/26/2022]
Abstract
The reductive 17β-hydroxysteroid dehydrogenases which catalyze the last step in estrogen activation for estrogen dependent breast cancer cells were studied. Their biological function and the effects of their knockdown for cancer cell proliferation were demonstrated. The multidisciplinary study involves enzyme catalysis, sex-hormone and cell cycle regulation, as well as cell proliferation in breast cancer cells. Reductive 17β-HSD1, -7 and -12 were studied in the main breast cancer epithelial cells MCF-7 and T47D. Modification of estradiol and 5α-dihydrotestosterone concentrations was monitored by ELISA assay while corresponding cell viability measured by MTT assay. Cell cycle was determined by flow cytometry. Dual activity of estradiol activation and 5α-dihydrotestosterone reduction by 17β-HSD1 and -7 was critical for breast cancer cell (T47D and MCF-7) viability. Cell viability was decreased by 35.8% ± 1.6% in T47D cells after simultaneously knocking down 17β-HSD1 and -7. MCF-7 cell viability was decreased by 29.3% ± 4.2% using a combination of siRNAs and inhibitors. By knocking down 17β-HSD7, we have provided the first demonstration of the significant role of this enzyme in the stimulation of breast cancer cell viability as a result of its high activity on androgen reduction with positive feedback on estradiol production. A further decrease in cell viability was not observed with additional knockdown of 17β-HSD12 after 17β-HSD1 and 7. Breast cancer cell cycle progression was impeded to enter the S phase from G0-G1 after knocking down 17β-HSD1 and -7. In summary, this is the first demonstration that the dual activity in estrone activation and 5α-dihydrotestosterone reduction are the functional basis of reductive 17β-HSDs in breast cancer cells. 17β-HSD1 and -7 are principal reductive 17β-HSDs and major players in the viability of estrogen-dependent breast cancer cells. Combined targeting of these enzymes may be potential for molecular therapy of such cancer.
Collapse
Affiliation(s)
- Chen-Yan Zhang
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; Key Laboratory for Space Bioscience and Biotechnology, Faculty of Life Sciences, Northwestern Polytechnic University, Xi'an, Shaanxi, China
| | - Wei-Qi Wang
- Shanghai Engineer and technology Research Center of Reproductive Health Drug and Devices, Shanghai, China
| | - Jiong Chen
- Shanghai Engineer and technology Research Center of Reproductive Health Drug and Devices, Shanghai, China
| | - Sheng-Xiang Lin
- Laboratory of Molecular Endocrinology and Oncology, CHU de Quebec-Research Center (CHUL) and Laval University, Québec City, Québec G1V4G2, Canada; Shanghai Engineer and technology Research Center of Reproductive Health Drug and Devices, Shanghai, China.
| |
Collapse
|
6
|
Mernyák E, Kovács I, Minorics R, Sere P, Czégány D, Sinka I, Wölfling J, Schneider G, Újfaludi Z, Boros I, Ocsovszki I, Varga M, Zupkó I. Synthesis of trans-16-triazolyl-13α-methyl-17-estradiol diastereomers and the effects of structural modifications on their in vitro antiproliferative activities. J Steroid Biochem Mol Biol 2015; 150:123-34. [PMID: 25845933 DOI: 10.1016/j.jsbmb.2015.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/27/2015] [Accepted: 04/01/2015] [Indexed: 01/06/2023]
Abstract
Novel 16-triazoles in the 13α-estrone series were synthesized via Cu(I)-catalyzed azide-alkyne cycloaddition of the two diastereomeric (on C-16 and on C-17) 16-azido-13α-estra-1,3,5(10)-trien-17-ol 3-benzyl ethers with substituted phenylacetylenes. The new heterocyclic derivatives were evaluated in vitro by means of MTT assays for antiproliferative activity against a panel of human adherent cancer cell lines (HeLa, MCF-7, A431, A2780, T47D, MDA-MB-231 and MDA-MB-361). The inversion of the configurations at C-16 and C-17 selectively affected the growth-inhibitory properties of the tested compounds. The 16β,17α isomers generally proved to be potent on all cell lines, with IC50 values comparable to those of the reference agent cisplatin. Change of the substitution pattern of the phenyl group of the acetylene led to great differences in antiproliferative properties. Exclusively the p-phenyl-substituted triazoles exerted high cytostatic effects. One of the most potent compounds activated caspase-3 and caspase-9 without influencing caspase-8, confirming the induction of apoptosis via the intrinsic pathway.
Collapse
Affiliation(s)
- Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary.
| | - Ida Kovács
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Renáta Minorics
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - Péter Sere
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Dóra Czégány
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Izabella Sinka
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary
| | - János Wölfling
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gyula Schneider
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zsuzsanna Újfaludi
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Imre Boros
- Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - Mónika Varga
- Cereal Research Non-Profit Ltd., P.O. Box 391, H-6701 Szeged, Hungary
| | - István Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary.
| |
Collapse
|
7
|
Maltais R, Ayan D, Trottier A, Barbeau X, Lagüe P, Bouchard JE, Poirier D. Discovery of a Non-Estrogenic Irreversible Inhibitor of 17β-Hydroxysteroid Dehydrogenase Type 1 from 3-Substituted-16β-(m-carbamoylbenzyl)-estradiol Derivatives. J Med Chem 2013; 57:204-22. [DOI: 10.1021/jm401639v] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- René Maltais
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Diana Ayan
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Alexandre Trottier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Xavier Barbeau
- Département
de Chimie, Institut de Biologie Intégrative et Des Systèmes
(IBIS), and Centre de Recherche sur la Fonction, la Structure et l’Ingénierie
des Protéines (PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Patrick Lagüe
- Département
de Biochimie Microbiologie et Bio-informatique, Institut de Biologie
Intégrative et des Systèmes (IBIS), and Centre de Recherche
sur la Fonction, la Structure et l’Ingénierie des Protéines
(PROTEO), Université Laval, Québec City, Québec G1V 4G2, Canada
| | - Jean-Emmanuel Bouchard
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| | - Donald Poirier
- Laboratory
of Medicinal Chemistry, Oncology and Nephrology Unit, CHU de Québec—Research
Center (CHUL, T4-42) and Faculty of Medicine, Laval University, Québec
City, Québec G1V
4G2, Canada
| |
Collapse
|
8
|
Fan NJ, Bai YB, Zhang FY, Luo B, Tang JJ, Zhang QZ, Gao JM. Synthesis and cytotoxicity of some novel 21E-benzylidene steroidal derivatives. Steroids 2013; 78:874-9. [PMID: 23665407 DOI: 10.1016/j.steroids.2013.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 04/23/2013] [Accepted: 04/27/2013] [Indexed: 10/26/2022]
Abstract
A series of novel derivatives of 21E-benzylidene-pregn-1,4-diene-3,20-dione 7a-g and 21E-benzylidene-4-chloro-pregn-1,4-diene-3,20-dione 8a-g was synthesized from the commercially available progesterone. These title compounds were evaluated for their cytotoxic activity against brine shrimp (Artemia salina) and murine Lewis lung carcinoma cells (LLC). It was found that compounds 7a-g exhibited stronger activities than 8a-g against the brine shrimps, and some of the tested compounds possessed weak inhibition of LLC cells.
Collapse
Affiliation(s)
- Ning-Juan Fan
- Shaanxi Engineering Center of Bio-Resource Chemistry & Sustainable Utilization, College of Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Gupta A, Kumar BS, Negi AS. Current status on development of steroids as anticancer agents. J Steroid Biochem Mol Biol 2013; 137:242-70. [PMID: 23727548 DOI: 10.1016/j.jsbmb.2013.05.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/25/2013] [Accepted: 05/19/2013] [Indexed: 01/13/2023]
Abstract
Steroids are important biodynamic agents. Their affinities for various nuclear receptors have been an interesting feature to utilize them for drug development particularly for receptor mediated diseases. Steroid biochemistry and its crucial role in human physiology, has attained importance among the researchers. Recent years have seen an extensive focus on modification of steroids. The rational modifications of perhydrocyclopentanophenanthrene nucleus of steroids have yielded several important anticancer lead molecules. Exemestane, SR16157, fulvestrant and 2-methoxyestradiol are some of the successful leads emerged on steroidal pharmacophores. The present review is an update on some of the steroidal leads obtained during past 25 years. Various steroid based enzyme inhibitors, antiestrogens, cytotoxic conjugates and steroidal cytotoxic molecules of natural as well as synthetic origin have been highlighted. This article is part of a Special Issue entitled "Synthesis and biological testing of steroid derivatives as inhibitors".
Collapse
Affiliation(s)
- Atul Gupta
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, Lucknow 226015, U.P., India
| | | | | |
Collapse
|
10
|
Maltais R, Ayan D, Poirier D. Crucial Role of 3-Bromoethyl in Removing the Estrogenic Activity of 17β-HSD1 Inhibitor 16β-(m-Carbamoylbenzyl)estradiol. ACS Med Chem Lett 2011; 2:678-681. [PMID: 21927646 PMCID: PMC3174009 DOI: 10.1021/ml200093v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 07/17/2011] [Indexed: 01/11/2023] Open
Abstract
![]()
17β-Hydroxysteroid dehydrogenase type 1 (17β-HSD1) represents a promising therapeutic target for breast cancer treatment. To reduce the undesirable estrogenic activity of potent 17β-HSD1 inhibitor 16β-(m-carbamoylbenzyl)estradiol (1) (IC50 = 27 nM), a series of analogues with a small functionalized side chain at position 3 were synthesized and tested. The 3-(2-bromoethyl)-16β-(m-carbamoylbenzyl)-estra-1,3,5(10)-trien-17β-ol (5) was found to be a potent inhibitor (IC50 = 68 nM) for the transformation of estrone (E1) into estradiol (E2) and, most importantly, did not stimulate the proliferation of estrogen-sensitive MCF-7 cells, suggesting no estrogenic activity. From these results, the crucial role of a bromoalkyl side chain at carbon 3 was identified for the first time. Thus, this new inhibitor represents a good candidate with an interesting profile suitable for further studies including pharmacokinetic and in vivo studies.
Collapse
Affiliation(s)
- René Maltais
- Laboratory of Medicinal Chemistry, Endocrinology and Genomic Unit, CHUQ (CHUL) − Research Center and Laval University, Quebec (Quebec) G1V 4G2, Canada
| | - Diana Ayan
- Laboratory of Medicinal Chemistry, Endocrinology and Genomic Unit, CHUQ (CHUL) − Research Center and Laval University, Quebec (Quebec) G1V 4G2, Canada
| | - Donald Poirier
- Laboratory of Medicinal Chemistry, Endocrinology and Genomic Unit, CHUQ (CHUL) − Research Center and Laval University, Quebec (Quebec) G1V 4G2, Canada
| |
Collapse
|
11
|
Poirier D. Contribution to the development of inhibitors of 17β-hydroxysteroid dehydrogenase types 1 and 7: key tools for studying and treating estrogen-dependent diseases. J Steroid Biochem Mol Biol 2011; 125:83-94. [PMID: 21182944 DOI: 10.1016/j.jsbmb.2010.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 11/17/2010] [Accepted: 12/13/2010] [Indexed: 02/06/2023]
Abstract
17β-Hydroxysteroid dehydrogenases (17β-HSDs) belong to a group of key enzymes involved in the biosynthesis of steroidal hormones by catalyzing the reduction of 17-ketosteroids or the oxidation of 17β-hydroxysteroids. From three members known in the early nineties, the 17β-HSD functional family has grown to 15 members over the last 20 years. This growing number of 17β-HSD isoforms questioned the importance of each member, especially in their implication in estrogen- and androgen-dependent diseases, such as breast and prostate cancers. One of the strategies used to address the physiological importance of 17β-HSDs is to use potent and selective inhibitors. Furthermore, enzyme inhibitors could also be of therapeutic interest by reducing the level of estradiol (E2). Focusing on estrogens, we targeted 17β-HSD types 1 and 7, two enzymes able to transform the weak estrogen estrone (E1) into the potent estrogen E2. The present review article gives a description of different classes of inhibitors of 17β-HSD1 (C6-derivatives of E2, C16-derivatives of E2 as alkylating and dual action compounds, E2-adenosine hybrids, E2-simplified adenosine hybrids, and C16-derivatives of E1 or E2) and of inhibitors of 17β-HSD7, all these inhibitors developed in our laboratory. The chemical structures and inhibitory activity of these steroidal inhibitors, their potential as therapeutic agents, and their use as tools to elucidate the role of these enzymes in particular biological systems will be discussed. Article from the Special issue on Targeted Inhibitors.
Collapse
Affiliation(s)
- Donald Poirier
- Laval University (Faculty of Medicine) and CHUQ (CHUL)-Research Center (Laboratory of Medicinal Chemistry, Endocrinology and Genomic Unit), 2705 Laurier Boulevard, Quebec (Quebec) G1V 4G2, Canada.
| |
Collapse
|
12
|
Möller G, Husen B, Kowalik D, Hirvelä L, Plewczynski D, Rychlewski L, Messinger J, Thole H, Adamski J. Species used for drug testing reveal different inhibition susceptibility for 17beta-hydroxysteroid dehydrogenase type 1. PLoS One 2010; 5:e10969. [PMID: 20544026 PMCID: PMC2882332 DOI: 10.1371/journal.pone.0010969] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 05/10/2010] [Indexed: 01/27/2023] Open
Abstract
Steroid-related cancers can be treated by inhibitors of steroid metabolism. In searching for new inhibitors of human 17beta-hydroxysteroid dehydrogenase type 1 (17β-HSD 1) for the treatment of breast cancer or endometriosis, novel substances based on 15-substituted estrone were validated. We checked the specificity for different 17β-HSD types and species. Compounds were tested for specificity in vitro not only towards recombinant human 17β-HSD types 1, 2, 4, 5 and 7 but also against 17β-HSD 1 of several other species including marmoset, pig, mouse, and rat. The latter are used in the processes of pharmacophore screening. We present the quantification of inhibitor preferences between human and animal models. Profound differences in the susceptibility to inhibition of steroid conversion among all 17β-HSDs analyzed were observed. Especially, the rodent 17β-HSDs 1 were significantly less sensitive to inhibition compared to the human ortholog, while the most similar inhibition pattern to the human 17β-HSD 1 was obtained with the marmoset enzyme. Molecular docking experiments predicted estrone as the most potent inhibitor. The best performing compound in enzymatic assays was also highly ranked by docking scoring for the human enzyme. However, species-specific prediction of inhibitor performance by molecular docking was not possible. We show that experiments with good candidate compounds would out-select them in the rodent model during preclinical optimization steps. Potentially active human-relevant drugs, therefore, would no longer be further developed. Activity and efficacy screens in heterologous species systems must be evaluated with caution.
Collapse
Affiliation(s)
- Gabriele Möller
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Bettina Husen
- Solvay Pharmaceuticals Research Laboratories, Hannover, Germany
| | - Dorota Kowalik
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | | | - Dariusz Plewczynski
- Interdisciplinary Centre for Mathematical and Computational Modelling, Warsaw University, Warsaw, Poland
| | | | - Josef Messinger
- Solvay Pharmaceuticals Research Laboratories, Hannover, Germany
| | - Hubert Thole
- Solvay Pharmaceuticals Research Laboratories, Hannover, Germany
| | - Jerzy Adamski
- Helmholtz Zentrum München, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Freising-Weihenstephan, Germany
- * E-mail:
| |
Collapse
|
13
|
Möller G, Deluca D, Gege C, Rosinus A, Kowalik D, Peters O, Droescher P, Elger W, Adamski J, Hillisch A. Structure-based design, synthesis and in vitro characterization of potent 17β-hydroxysteroid dehydrogenase type 1 inhibitors based on 2-substitutions of estrone and D-homo-estrone. Bioorg Med Chem Lett 2009; 19:6740-4. [DOI: 10.1016/j.bmcl.2009.09.113] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/27/2009] [Accepted: 09/29/2009] [Indexed: 11/25/2022]
|
14
|
Michiels PJA, Ludwig C, Stephan M, Fischer C, Möller G, Messinger J, van Dongen M, Thole H, Adamski J, Günther UL. Ligand-based NMR spectra demonstrate an additional phytoestrogen binding site for 17beta-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol 2009; 117:93-8. [PMID: 19631742 DOI: 10.1016/j.jsbmb.2009.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 01/21/2023]
Abstract
The enzyme 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) has become an important drug target for breast cancer because it catalyzes the interconversion of estrone to the biologically more potent estradiol which also plays a crucial role in the etiology of breast cancer. Patients with an increased expression of the 17beta-HSD1 gene have a significantly worse outcome than patients without. Inhibitors for 17beta-HSD1 are therefore included in therapy development. Here we have studied binding of 17beta-HSD1 to substrates and a number of inhibitors using NMR spectroscopy. Ligand observed NMR spectra show a strong pH dependence for the phytoestrogens luteolin and apigenin but not for the natural ligands estradiol and estrone. Moreover, NMR competition experiments show that the phytoestrogens do not replace the estrogens despite their similar inhibition levels in the in vitro assay. These results strongly support an additional 17beta-HSD1 binding site for phytoestrogens which is neither the substrate nor the co-factor binding site. Docking experiments suggest the dimer interface as a possible location. An additional binding site for the phytoestrogens may open new opportunities for the design of inhibitors, not only for 17beta-HSD1, but also for other family members of the short chain dehydrogenases.
Collapse
Affiliation(s)
- Paul J A Michiels
- HWB-NMR, CR UK Institute of Cancer Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aka JA, Mazumdar M, Lin SX. Reductive 17beta-hydroxysteroid dehydrogenases in the sulfatase pathway: critical in the cell proliferation of breast cancer. Mol Cell Endocrinol 2009; 301:183-90. [PMID: 19038308 DOI: 10.1016/j.mce.2008.10.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/10/2008] [Accepted: 10/10/2008] [Indexed: 01/30/2023]
Abstract
Estradiol, the most potent estrogen, plays critical roles in tumor cell proliferation and breast cancer development. It can be synthesized via the aromatase pathway or the sulfatase pathway, and the later has been demonstrated to be more significant. Reductive 17beta-hydroxysteroid dehydrogenases (17beta-HSDs) catalyze the last step in estrogen activation and are thus critical in breast cancer development. 17beta-HSD Type 1 (17beta-HSD1) is of great importance since it efficiently synthesizes the most potent estrogen estradiol, as well as other estrogens as 5-androstene-3beta,17beta-diol and 5alpha-androstane-3beta,17beta-diol, and inactivates the most active androgen dihydrotestosterone (DHT), all contributing to the stimulation and development of breast cancers. Rational inhibitor design based on the new structure information has been developed, yielding interesting compounds and lead chemicals. This was demonstrated by a hybrid inhibitor that interacts with both the substrate and cofactor binding sites and a recently designed inhibitor 3-(3',17'beta-dihydroxyestra-1',3',5'(10')-trien-16'beta-methyl) benzamide which has been crystallized in complex with 17beta-HSD1. Both inhibitors demonstrate nM level K(i)in vitro. New non-steroidal inhibitors have been designed and reported very recently. The Type 7 17beta-HSD, expressed in several tissues including breast and ovary, can also contribute to estrogen synthesis and DHT inactivation in breast cancer cells. The enzyme role in steroid metabolism and cancer cell proliferation needs to be compared to that in cholesterogenesis. Breast cancer cell lines provide an excellent platform for such study. T47D, MCF-7 and MDA-MB-231-luc cells have been used to create xenografts in nude mice as animal models, now with the possibility of bioluminescent imaging to provide rapid, non-invasive, and quantitative analysis of tumor biomass and metastasis. Here we review the roles of the sulfatase and aromatase pathways and the contribution of the reductive 17beta-HSDs for hormone metabolism in breast cancer.
Collapse
Affiliation(s)
- Juliette A Aka
- Laboratory of Molecular Endocrinology and Oncology, CHUL Research Center (CHUQ) and Laval University, Quebec, Canada G1V 4G2
| | | | | |
Collapse
|
16
|
Meier M, Möller G, Adamski J. Perspectives in Understanding the Role of Human 17β-Hydroxysteroid Dehydrogenases in Health and Disease. Ann N Y Acad Sci 2009; 1155:15-24. [DOI: 10.1111/j.1749-6632.2009.03702.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Schuster D, Nashev LG, Kirchmair J, Laggner C, Wolber G, Langer T, Odermatt A. Discovery of Nonsteroidal 17β-Hydroxysteroid Dehydrogenase 1 Inhibitors by Pharmacophore-Based Screening of Virtual Compound Libraries. J Med Chem 2008; 51:4188-99. [DOI: 10.1021/jm800054h] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniela Schuster
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Lyubomir G. Nashev
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Johannes Kirchmair
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Christian Laggner
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Gerhard Wolber
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Thierry Langer
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| | - Alex Odermatt
- Computer-Aided Molecular Design Group, Department of Pharmaceutical Chemistry, University of Innsbruck, Innrain 52c, A-6020 Innsbruck, Austria, and Center of Molecular Biosciences Innsbruck—CMBI, Peter-Mayr-Strasse 1a, A-6020 Innsbruck, Austria, Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland, Inte:Ligand Software-Entwicklungs and Consulting GmbH, Marihilferstrasse 74B/11, A-1070 Wien, Austria
| |
Collapse
|
18
|
Bey E, Marchais-Oberwinkler S, Kruchten P, Frotscher M, Werth R, Oster A, Algül O, Neugebauer A, Hartmann RW. Design, synthesis and biological evaluation of bis(hydroxyphenyl) azoles as potent and selective non-steroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. Bioorg Med Chem 2008; 16:6423-35. [DOI: 10.1016/j.bmc.2008.04.073] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 04/24/2008] [Accepted: 04/30/2008] [Indexed: 11/15/2022]
|
19
|
Frotscher M, Ziegler E, Marchais-Oberwinkler S, Kruchten P, Neugebauer A, Fetzer L, Scherer C, Müller-Vieira U, Messinger J, Thole H, Hartmann RW. Design, Synthesis, and Biological Evaluation of (Hydroxyphenyl)naphthalene and -quinoline Derivatives: Potent and Selective Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1) for the Treatment of Estrogen-Dependent Diseases. J Med Chem 2008; 51:2158-69. [DOI: 10.1021/jm701447v] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martin Frotscher
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Erika Ziegler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Sandrine Marchais-Oberwinkler
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Patricia Kruchten
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Alexander Neugebauer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ludivine Fetzer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Christiane Scherer
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Ursula Müller-Vieira
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Josef Messinger
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Hubert Thole
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| | - Rolf W. Hartmann
- 8.2 Pharmaceutical and Medicinal Chemistry, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany, Pharmacelsus CRO, Science Park 2, D-66123 Saarbrücken, Germany, and Solvay Pharmaceuticals, Hans-Böckler-Allee 20, D-30173 Hannover, Germany
| |
Collapse
|
20
|
Ngatcha BT, Laplante Y, Labrie F, Luu-The V, Poirier D. 3Beta-alkyl-androsterones as inhibitors of type 3 17beta-hydroxysteroid dehydrogenase: inhibitory potency in intact cells, selectivity towards isoforms 1, 2, 5 and 7, binding affinity for steroid receptors, and proliferative/antiproliferative activities on AR+ and ER+ cell lines. Mol Cell Endocrinol 2006; 248:225-32. [PMID: 16359782 DOI: 10.1016/j.mce.2005.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Type 3 17beta-hydroxysteroid dehydrogenase (17beta-HSD) is involved in the biosynthesis of the potent androgen testosterone (T), which plays an important role in androgen-sensitive diseases. In an attempt to design compounds to lower the level of T, we designed androsterone (ADT) derivatives substituted at the position 3beta as inhibitors of type 3 17beta-HSD, and then selected the eight most potent ones (compounds 1-8) for additional studies. In an intact cell assay, they inhibited efficiently the conversion of natural substrate 4-androstene-3,17-dione into T, although they were less active in intact cells (IC50 approximately 1 microM) than in homogenated cells (IC50=57-100 nM). A study of the inhibitory potency with four other 17beta-HSDs revealed they were selective, since they do not inhibit reductive types 1, 5 and 7, nor oxidative type 2. Interestingly, they did not show any binding affinity for steroid receptors (androgen, estrogen, glucocorticoid and progestin). Only two inhibitors, 3beta-phenyl-ADT (5) and 3beta-phenylmethyl-ADT (6) showed some proliferative activities on an AR+ cell line and on an ER+ cell line, but their effects were not mediated through the androgen or estrogen receptors. This study identified selective inhibitors of type 3 17beta-HSD acting through a mixed-type inhibition, and devoid of non-suitable androgenic and estrogenic proliferative activities. The more potent inhibitors were 3beta-hexyl-ADT (2), 3beta-cyclohexylethyl-ADT (4) and 3beta-phenylethyl-ADT (7).
Collapse
Affiliation(s)
- Béatrice Tchédam Ngatcha
- Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Université Laval, CHUQ-Pavillon CHUL, 2705 Boulevard Laurier, Qué, Canada G1V 4G2
| | | | | | | | | |
Collapse
|