1
|
Behler-Janbeck F, Baranowsky A, Yorgan TA, Jaeckstein MY, Worthmann A, Fuh MM, Gunasekaran K, Tiegs G, Amling M, Schinke T, Heeren J. The short-chain fatty acid receptors Gpr41/43 regulate bone mass by promoting adipogenic differentiation of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 15:1392418. [PMID: 39363899 PMCID: PMC11446854 DOI: 10.3389/fendo.2024.1392418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/24/2024] [Indexed: 10/05/2024] Open
Abstract
Bone is a dynamic tissue that is constantly remodeled throughout adult life. Recently, it has been shown that bone turnover decreases shortly after food consumption. This process has been linked to the fermentation of non-digestible food ingredients such as inulin by gut microbes, which results in the production of the short-chain fatty acids (SCFAs) acetate, propionate and butyrate. SCFAs exert various metabolic functions, which in part can be explained by activation of G protein-coupled receptors (Gpr) 41 and 43. However, the potential relevance of a SCFA-Gpr41/43 signaling axis for bone metabolism has not been established. The aim of our study is to investigate the role of Gpr41/43 in bone metabolism and osteogenic differentiation of mesenchymal stem cells. For this purpose, we analyzed the skeletal phenotype of wild type controls (WT) and Gpr41/43 double knockout (Gpr41/43 dKO) mice fed either a chow or an inulin-enriched diet. In addition, we isolated bone marrow derived mesenchymal stem cells from WT and Gpr41/43 dKO mice and differentiated them into osteoblasts in the absence or presence of acetate. MicroCT scanning of femoral bones of Gpr41/43 dKO mice revealed a significant increase of trabecular bone volume and trabecular compared to WT controls. Treatment of WT bone marrow-derived osteoblasts with acetate resulted in decreased mineralization and substantial downregulation of bone formation markers such as Phex, Ptgs2 and Col1a1. Notably, this effect was strongly attenuated in differentiated osteoblasts lacking Gpr41/43. Inversely, acetate supplementation resulted in higher levels of adipocyte marker genes including Pparg, Lpl and Adipoq in bone marrow-derived cells from WT mice, an effect blunted in differentiated cells isolated from Gpr41/43 dKO mice. Overall, these data indicate that acetate regulates bone architecture via SCFA-Gpr41/43 signaling by modulating the osteogenic versus adipogenic differentiation of mesenchymal stem cells.
Collapse
Affiliation(s)
- Friederike Behler-Janbeck
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopaedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Timur A. Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michelle Y. Jaeckstein
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marceline M. Fuh
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Karthikeyan Gunasekaran
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
2
|
Freire EBL, Brasil d’Alva C, Madeira MP, Lima GEDCP, Fernandes VO, Aguiar LB, Portella LB, Galvão Ozório R, Ponte CMM, Montenegro APDR, Montenegro Junior RM. Heterogeneity and high prevalence of bone manifestations, and bone mineral density in congenital generalized lipodystrophy subtypes 1 and 2. Front Endocrinol (Lausanne) 2024; 15:1326700. [PMID: 38633760 PMCID: PMC11021684 DOI: 10.3389/fendo.2024.1326700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Congenital Generalized Lipodystrophy (CGL) is a rare autosomal recessive disease caused by mutations in genes responsible for the formation and development of adipocytes. Bone abnormalities are described. However, there is a scarcity of data. Objective To describe bone characteristics in a large CGL1 and 2 case series. Methods Cross-sectional study that assessed bone radiological features of CGL patients of a reference hospital in Fortaleza (CE), Brazil. Patients underwent clinical and bone mineral metabolism evaluation, radiographs of the axial and appendicular skeleton and bone mineral density (BMD) assessment by DEXA (dual energy X-ray absorptiometry). Results Nineteen patients were included, fourteen were CGL1 and 5, CGL2. Median age was 20 years (8-42) and 58% were women. Median BMI and percentage of body fat were, respectively, 21 Kg/m² (16-24), and 10.5% (7.6-15). The median leptin concentration was 1 ng/mL (0.1-3.3). Diabetes mellitus and dyslipidemia were present in 79% and 63% of patients, respectively. Median calcium and phosphate were normal in almost all patients (95%). Median parathyroid hormone and 25-OH-vitamin D were 23 pg/mL (7-75) and 28 ng/mL (18-43). Osteolytic lesions, osteosclerosis and pseudo-osteopoikylosis, were present in 74%, 42% and 32% of patients, respectively. Lytic lesions were found predominantly in the extremities of long bones, bilaterally and symmetrically, spine was spared. Osteosclerosis was present in axial and appendicular skeleton. Pseudo-osteopoikilosis was found symmetrically in epiphyses of femur and humerus, in addition to the pelvis. BMD Z-score greater than +2.5 SD was observed in 13 patients (68.4%). BMD was higher in CGL1 compared to CGL2 in lumbar spine and total body in adults. No associations were found between high BMD and HOMA-IR (p=0.686), DM (p=0.750), osteosclerosis (p=0.127) or pseudo-osteopoikilosis (p=0.342), and, between pain and bone lesions. Fractures were found in 3 patients. Conclusion Bone manifestations are prevalent, heterogeneous, and silent in CGL1 and CGL2. Osteolytic lesions are the most common, followed by osteosclerosis and pseudo-osteopoikilosis. Bone mass is high in most cases. There was no pain complaint related to bone lesions. Thus, systematic assessment of bone manifestations in CGL is essential. Studies are needed to better understand its pathogenesis and clinical consequences.
Collapse
Affiliation(s)
- Erika Bastos Lima Freire
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Catarina Brasil d’Alva
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Mayara Ponte Madeira
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Grayce Ellen da Cruz Paiva Lima
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- University of Fortaleza, (UNIFOR), Fortaleza, CE, Brazil
| | - Virginia Oliveira Fernandes
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lindenberg Barbosa Aguiar
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Radiology Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
| | - Leonardo Barreira Portella
- Radiology Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
| | - Renan Galvão Ozório
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
| | - Clarisse Mourão Melo Ponte
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Diagnostics of America (DASA), São Paulo, SP, Brazil
- Christus University Center, Fortaleza, CE, Brazil
| | - Ana Paula Dias Rangel Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Pediatric Endocrinology Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
| | - Renan Magalhães Montenegro Junior
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Fortaleza, Brazil
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará/EBSERH, Fortaleza, CE, Brazil
- Department of Clinical Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Community Health, Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
3
|
Kaviarasan V, Deka D, Balaji D, Pathak S, Banerjee A. Signaling Pathways in Trans-differentiation of Mesenchymal Stem Cells: Recent Advances. Methods Mol Biol 2024; 2736:207-223. [PMID: 37140811 DOI: 10.1007/7651_2023_478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mesenchymal stem cells are a group of multipotent cells that can be induced to differentiate into other cell types. The cells fate is decided by various signaling pathways, growth factors, and transcription factors in differentiation. The proper coordination of these factors will result in cell specification. MSCs are capable of being differentiated into osteogenic, chondrogenic, and adipogenic lineages. Different conditions induces the MSCs into particular phenotypes. The MSC trans-differentiation ensues as a response to environmental factors or due to circumstances that prove to favor trans-differentiation. Depending on the stage at which they are expressed, and the genetic alterations they undergo prior to their expression, transcription factors can accelerate the process of trans-differentiation. Further research has been conducted on the challenging aspect of MSCs being developed into non-mesenchymal lineage. The cells that are differentiated in this way maintain their stability even after being induced in animals. The recent advancements in the trans-differentiation capacities of MSCs on induction with chemicals, growth inducers, improved differentiation mediums, growth factors from plant extracts, and electrical stimulation are discussed in this paper. Signaling pathways have a great effect on MSCs trans-differentiation and they need to be better understood for their applications in therapeutic techniques. So, this paper tends to review the major signaling pathways that play a vital role in the trans-differentiation of MSC.
Collapse
Affiliation(s)
- Vaishak Kaviarasan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Dikshita Deka
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Darshini Balaji
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India.
| |
Collapse
|
4
|
Chen F, Zhong X, Dai Q, Li K, Zhang W, Wang J, Zhao Y, Shen J, Xiao Z, Xing H, Li J. Human Umbilical Cord MSC Delivered-Soluble TRAIL Inhibits the Proliferation and Promotes Apoptosis of B-ALL Cell In Vitro and In Vivo. Pharmaceuticals (Basel) 2022; 15:1391. [PMID: 36422522 PMCID: PMC9693801 DOI: 10.3390/ph15111391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 09/19/2023] Open
Abstract
The TNF-related apoptosis-inducing ligand (TRAIL) could induce apoptosis of leukemic cells, while showed no cytotoxic effect on normal cells. One of the limitations for application of recombinant TRAIL (rhTRAIL) in leukemia treatment is that the serum half-life of this protein is short. Gene delivery is a good strategy to prolong the half-life of TRAIL. In this study, we genetically engineered umbilical cord-MSCs to continuously express and secrete soluble TRAIL (MSC-sTRAIL), to investigate the effects of MSC-sTRAIL on B-cell acute lymphocytic leukemia (B-ALL) cells. In vitro, MSC-sTRAIL significantly inhibited the proliferation of B-ALL cells by suppressing PI3K/AKT and MEK/ERK signaling pathways, and induced apoptosis of B-ALL cells via the caspase cascade-mediated pathway and mitochondrial-mediated pathway. In vivo, MSC-sTRAIL dramatically inhibited B-ALL cell growth. Meanwhile, B-ALL-induced splenic and renal injuries were significantly alleviated after MSC-sTRAIL treatment. Moreover, the serum levels of MSC-secreted sTRAIL were still high in MSC-sTRAIL treated mice, indicating an extended half-life of sTRAIL. Our study suggests that MSC delivered-TRAIL secretion is a potential therapeutic strategy for B-ALL treatment.
Collapse
Affiliation(s)
- Fangshan Chen
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xianmei Zhong
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
- Department of Pharmacy, People’s Hospital of Nanbu County, Nanchong 637300, China
| | - Qian Dai
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Kuo Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Wei Zhang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jie Wang
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hongyun Xing
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jing Li
- Department of Oncology and Hematology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
5
|
Bedell ML, Torres AL, Hogan KJ, Wang Z, Wang B, Melchiorri AJ, Grande-Allen KJ, Mikos AG. Human gelatin-based composite hydrogels for osteochondral tissue engineering and their adaptation into bioinks for extrusion, inkjet, and digital light processing bioprinting. Biofabrication 2022; 14:10.1088/1758-5090/ac8768. [PMID: 35931060 PMCID: PMC9633045 DOI: 10.1088/1758-5090/ac8768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/04/2022] [Indexed: 11/11/2022]
Abstract
The investigation of novel hydrogel systems allows for the study of relationships between biomaterials, cells, and other factors within osteochondral tissue engineering. Three-dimensional (3D) printing is a popular research method that can allow for further interrogation of these questions via the fabrication of 3D hydrogel environments that mimic tissue-specific, complex architectures. However, the adaptation of promising hydrogel biomaterial systems into 3D-printable bioinks remains a challenge. Here, we delineated an approach to that process. First, we characterized a novel methacryloylated gelatin composite hydrogel system and assessed how calcium phosphate and glycosaminoglycan additives upregulated bone- and cartilage-like matrix deposition and certain genetic markers of differentiation within human mesenchymal stem cells (hMSCs), such as RUNX2 and SOX9. Then, new assays were developed and utilized to study the effects of xanthan gum and nanofibrillated cellulose, which allowed for cohesive fiber deposition, reliable droplet formation, and non-fracturing digital light processing (DLP)-printed constructs within extrusion, inkjet, and DLP techniques, respectively. Finally, these bioinks were used to 3D print constructs containing viable encapsulated hMSCs over a 7 d period, where DLP printed constructs facilitated the highest observed increase in cell number over 7 d (∼2.4×). The results presented here describe the promotion of osteochondral phenotypes via these novel composite hydrogel formulations, establish their ability to bioprint viable, cell-encapsulating constructs using three different 3D printing methods on multiple bioprinters, and document how a library of modular bioink additives affected those physicochemical properties important to printability.
Collapse
Affiliation(s)
| | | | - Katie J. Hogan
- Department of Bioengineering, Rice University, Houston, TX
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX
| | - Ziwen Wang
- Department of Bioengineering, Rice University, Houston, TX
| | - Bonnie Wang
- Department of Bioengineering, Rice University, Houston, TX
| | | | | | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX
- NIBIB/NIH Center for Engineering Complex Tissues, USA
| |
Collapse
|
6
|
Karacan I, Milthorpe B, Ben-Nissan B, Santos J. Stem Cells and Proteomics in Biomaterials and Biomedical Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2022:125-157. [DOI: 10.1007/978-981-16-7435-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Freire EBL, d’Alva CB, Madeira MP, Lima GEDCP, Montenegro APDR, Fernandes VO, Montenegro Junior RM, Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO). Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9724. [PMID: 34574647 PMCID: PMC8465110 DOI: 10.3390/ijerph18189724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
Congenital Generalized Lipodystrophy (CGL) is a rare syndrome characterized by the almost total absence of subcutaneous adipose tissue due to the inability of storing lipid in adipocytes. Patients present generalized lack of subcutaneous fat and normal to low weight. They evolve with severe metabolic disorders, non-alcoholic fatty liver disease, early cardiac abnormalities, and infectious complications. Although low body weight is a known risk factor for osteoporosis, it has been reported that type 1 and 2 CGL have a tendency of high bone mineral density (BMD). In this review, we discuss the role of bone marrow tissue, adipokines, and insulin resistance in the setting of the normal to high BMD of CGL patients. Data bases from Pubmed and LILACS were searched, and 113 articles published until 10 April 2021 were obtained. Of these, 76 were excluded for not covering the review topic. A manual search for additional literature was performed using the bibliographies of the studies located. The elucidation of the mechanisms responsible for the increase in BMD in this unique model of insulin resistance may contribute to the understanding of the interrelationships between bone, muscle, and adipose tissue in a pathophysiological and therapeutic perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza 60416200, CE, Brazil; (E.B.L.F.); (C.B.d.); (M.P.M.); (G.E.d.C.P.L.); (A.P.D.R.M.); (V.O.F.)
| | | |
Collapse
|
8
|
Kim CY, Cho DH, Chung DJ, Lee SH, Han Y, Lee KY. Dlx5 Represses the Transcriptional Activity of PPARγ. Biol Pharm Bull 2021; 44:1303-1308. [PMID: 34471058 DOI: 10.1248/bpb.b21-00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a master transcription factor in adipocyte differentiation, while distal-less homeobox 5 (Dlx5) is essential for initiating osteoblast differentiation by driving Runt-related transcription factor 2 expression. Considering that adipocytes and osteoblasts share common progenitors, there is a reciprocal correlation between bone and fat formation. However, the mechanism by which Dlx5 controls PPARγ remains unclear. We elucidated that Dlx5 physically binds to PPARγ during immunoprecipitation; in particular, the ligand-binding and DNA-binding domains of PPARγ were involved in the interaction. Transcriptional activity of PPARγ was significantly decreased by Dlx5 overexpression, whereas the opposite results were detected with Dlx5 knockdown. Rosiglitazone, a PPARγ agonist, further enhanced the PPARγ-induced transcriptional activity; however, Dlx5 overexpression effectively repressed the rosiglitazone-mediated increase in activity. Finally, DNA-binding affinity assay revealed that Dlx5 interrupts the interaction of PPARγ with the PPARγ response element promoter. In conclusion, our findings indicate that Dlx5 impedes PPARγ-induced activity, and it may be useful for managing diabetes drug-mediated obesity.
Collapse
Affiliation(s)
- Chae Yul Kim
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University
| | - Dong Hyeok Cho
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School
| | - Dong Jin Chung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chonnam National University Medical School
| | - Sung Ho Lee
- Department of Molecular and Cellular Biology, Baylor College of Medicine
| | - Younho Han
- Department of Oral Pharmacology, College of Dentistry, Wonkwang University
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University
| |
Collapse
|
9
|
|
10
|
Adipocyte-induced transdifferentiation of osteoblasts and its potential role in age-related bone loss. PLoS One 2021; 16:e0245014. [PMID: 33497412 PMCID: PMC7837466 DOI: 10.1371/journal.pone.0245014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 12/23/2022] Open
Abstract
Our preliminary findings have lead us to propose bone marrow adipocyte secretions as new contributors to bone loss. Indeed, using a coculture model based on human bone marrow stromal cells, we previously showed that soluble factors secreted by adipocytes induced the conversion of osteoblasts towards an adipocyte-like phenotype. In this study, microarray gene expression profiling showed profound transcriptomic changes in osteoblasts following coculture and confirmed the enrichment of the adipocyte gene signature. Double immunofluorescence microscopic analyses demonstrated the coexpression of adipogenic and osteoblastic specific markers in individual cells, providing evidence for a transdifferentiation event. At the molecular level, this conversion was associated with upregulated expression levels of reprogramming genes and a decrease in the DNA methylation level. In line with these in vitro results, preliminary immunohistochemical analysis of bone sections revealed adipogenic marker expression in osteoblasts from elderly subjects. Altogether, these data suggest that osteoblast transdifferentiation could contribute to decreased bone mass upon ageing.
Collapse
|
11
|
Lin T, Pajarinen J, Kohno Y, Nabeshima A, Lu L, Nathan K, Yao Z, Wu JY, Goodman S. Increased NF-kB activity in osteoprogenitor-lineage cells impairs the balance of bone versus fat in the marrow of skeletally mature mice. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020; 6:69-77. [PMID: 32377560 DOI: 10.1007/s40883-019-00112-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Senile osteoporosis" is defined as significant aging-associated bone loss, and is accompanied by increased fat in the bone marrow. The proportion of adipocytes in bone marrow is inversely correlated with bone formation, and is associated with increased risk of fracture. NF-κB is a transcription factor that functions as a master regulator of inflammation and bone remodeling. NF-κB activity increases during aging; furthermore, constitutive activation of NF-κB significantly impairs skeletal development in neonatal mice. However, the effects of NF-κB activation using a skeletally mature animal model have not been examined. In the current study, an osteoprogenitor (OP)-specific, doxycycline-regulated NF-κB activated transgenic mouse model (iNF-κB/OP) was generated to investigate the role of NF-κB in bone remodeling in skeletally mature mice. Reduced osteogenesis in the OP-lineage cells isolated from iNF-κB/OP mice was only observed in the absence of doxycycline in vitro. Bone mineral density in the metaphyseal regions of femurs and tibias was reduced in iNF-κB/OP mice. No significant differences in bone volume fraction and cortical bone thickness were observed. Osmium-stained bone marrow fat was increased in epiphyseal and metaphyseal areas in the tibias of iNF-κB/OP mice. These findings suggest that targeting NF-κB activity as a therapeutic strategy may improve bone healing and prevent aging-associated bone loss in aged patients.
Collapse
Affiliation(s)
- Tzuhua Lin
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Jukka Pajarinen
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Yusuke Kohno
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Akira Nabeshima
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Laura Lu
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Karthik Nathan
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Zhenyu Yao
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Joy Y Wu
- Dvision of Endocrinology, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Stuart Goodman
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Polito R, Monda V, Nigro E, Messina A, Di Maio G, Giuliano MT, Orrù S, Imperlini E, Calcagno G, Mosca L, Mollica MP, Trinchese G, Scarinci A, Sessa F, Salerno M, Marsala G, Buono P, Mancini A, Monda M, Daniele A, Messina G. The Important Role of Adiponectin and Orexin-A, Two Key Proteins Improving Healthy Status: Focus on Physical Activity. Front Physiol 2020; 11:356. [PMID: 32390865 PMCID: PMC7188914 DOI: 10.3389/fphys.2020.00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Exercise represents the most important integrative therapy in metabolic, immunologic and chronic diseases; it represents a valid strategy in the non-pharmacological intervention of lifestyle linked diseases. A large body of evidence indicates physical exercise as an effective measure against chronic non-communicable diseases. The worldwide general evidence for health benefits are both for all ages and skill levels. In a dysregulated lifestyle such as in the obesity, there is an imbalance in the production of different cytokines. In particular, we focused on Adiponectin, an adipokine producted by adipose tissue, and on Orexin-A, a neuropeptide synthesized in the lateral hypothalamus. The production of both Adiponectin and Orexin-A increases following regular and structured physical activity and both these hormones have similar actions. Indeed, they improve energy and glucose metabolism, and also modulate energy expenditure and thermogenesis. In addition, a relevant biological role of Adiponectin and Orexin A has been recently highlighted in the immune system, where they function as immune-suppressor factors. The strong connection between these two cytokines and healthy status is mediated by physical activity and candidates these hormones as potential biomarkers of the beneficial effects induced by physical activity. For these reasons, this review aims to underly the interconnections among Adiponectin, Orexin-A, physical activity and healthy status. Furthermore, it is analyzed the involvement of Adiponectin and Orexin-A in physical activity as physiological factors improving healthy status through physical exercise.
Collapse
Affiliation(s)
- Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Girolamo Di Maio
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Giuliano
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Stefania Orrù
- Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | | | - Giuseppe Calcagno
- Dipartimento di Medicina e Scienze della Salute "Vincenzo Tiberio", Università degli Studi del Molise, Campobasso, Italy
| | - Laura Mosca
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Maria Pina Mollica
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Giovanna Trinchese
- Dipartimento di Biologia, Universitá degli studi di Napoli Federico II, Naples, Italy
| | - Alessia Scarinci
- Dipartimento di Scienze della Formazione, Psicologia, Comunicazione, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Francesco Sessa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Monica Salerno
- Department of Medical, Surgery Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Catania, Italy
| | - Gabriella Marsala
- Struttura Complessa di Farmacia, Azienda Ospedaliero Universitaria - Ospedali Riuniti, Foggia, Italy
| | - Pasqualina Buono
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy.,IRCCS SDN, Naples, Italy
| | - Annamaria Mancini
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere, Università degli Studi di Napoli "Parthenope", Naples, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana e Unità di Dietetica e Medicina dello Sport, Università degli Studi della Campania "Luigi Vanvitelli", Naples, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche e Farmaceutiche, University of Campania "Luigi Vanvitelli", Caserta, Italy.,Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
13
|
Blum C, Schlegelmilch K, Schilling T, Shridhar A, Rudert M, Jakob F, Dalton PD, Blunk T, Flynn LE, Groll J. Extracellular Matrix-Modified Fiber Scaffolds as a Proadipogenic Mesenchymal Stromal Cell Delivery Platform. ACS Biomater Sci Eng 2019; 5:6655-6666. [DOI: 10.1021/acsbiomaterials.9b00894] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Carina Blum
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Katrin Schlegelmilch
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Tatjana Schilling
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Arthi Shridhar
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Maximilian Rudert
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Franz Jakob
- Department of Orthopedics, Orthopedic Center for Musculoskeletal Research, University of Würzburg, Brettreichstr. 11, 97074 Würzburg, Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| | - Torsten Blunk
- Department of Trauma, Hand, Plastic and Reconstructive Surgery, University of Würzburg, Oberdürrbacher Str. 6, 97080 Würzburg, Germany
| | - Lauren E. Flynn
- Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department of Anatomy and Cell Biology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute (BPI), University Hospital of Würzburg, Pleicherwall 2, 97070 Würzburg, Germany
| |
Collapse
|
14
|
Naskar S, Kumaran V, Markandeya YS, Mehta B, Basu B. Neurogenesis-on-Chip: Electric field modulated transdifferentiation of human mesenchymal stem cell and mouse muscle precursor cell coculture. Biomaterials 2019; 226:119522. [PMID: 31669894 DOI: 10.1016/j.biomaterials.2019.119522] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022]
Abstract
A number of bioengineering strategies, using biophysical stimulation, are being explored to guide the human mesenchymal stem cells (hMScs) into different lineages. In this context, we have limited understanding on the transdifferentiation of matured cells to another functional-cell type, when grown with stem cells, in a constrained cellular microenvironment under biophysical stimulation. While addressing such aspects, the present work reports the influence of the electric field (EF) stimulation on the phenotypic and functionality modulation of the coculture of murine myoblasts (C2C12) with hMScs [hMSc:C2C12=1:10] in a custom designed polymethylmethacrylate (PMMA) based microfluidic device with in-built metal electrodes. The quantitative and qualitative analysis of the immunofluorescence study confirms that the cocultured cells in the conditioned medium with astrocytic feed, exhibit differentiation towards neural-committed cells under biophysical stimulation in the range of the endogenous physiological electric field strength (8 ± 0.06 mV/mm). The control experiments using similar culture protocols revealed that while C2C12 monoculture exhibited myotube-like fused structures, the hMScs exhibited the neurosphere-like clusters with SOX2, nestin, βIII-tubulin expression. The electrophysiological study indicates the significant role of intercellular calcium signalling among the differentiated cells towards transdifferentiation. Furthermore, the depolarization induced calcium influx strongly supports neural-like behaviour for the electric field stimulated cells in coculture. The intriguing results are explained in terms of the paracrine signalling among the transdifferentiated cells in the electric field stimulated cellular microenvironment. In summary, the present study establishes the potential for neurogenesis on-chip for the coculture of hMSc and C2C12 cells under tailored electric field stimulation, in vitro.
Collapse
Affiliation(s)
- Sharmistha Naskar
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India
| | - Viswanathan Kumaran
- Department of Chemical Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Yogananda S Markandeya
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bhupesh Mehta
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bangalore, 560029, India
| | - Bikramjit Basu
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, 560012, India; Laboratory for Biomaterials, Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India; Centres of Excellence and Innovation in Biotechnology - Translational Centre on Biomaterials for Orthopaedic and Dental Applications, Materials Research Centre, IISc, Bangalore, India.
| |
Collapse
|
15
|
Guo L, Guo YY, Li BY, Peng WQ, Tang QQ. Histone demethylase KDM5A is transactivated by the transcription factor C/EBPβ and promotes preadipocyte differentiation by inhibiting Wnt/β-catenin signaling. J Biol Chem 2019; 294:9642-9654. [PMID: 31061100 DOI: 10.1074/jbc.ra119.008419] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
β-Catenin signaling is triggered by WNT proteins and is an important pathway that negatively regulates adipogenesis. However, the mechanisms controlling the expression of WNT proteins during adipogenesis remain incompletely understood. Lysine demethylase 5A (KDM5A) is a histone demethylase that removes trimethyl (me3) marks from lysine 4 of histone 3 (H3K4) and serves as a general transcriptional corepressor. Here, using the murine 3T3-L1 preadipocyte differentiation model and an array of biochemical approaches, including ChIP, immunoprecipitation, RT-qPCR, and immunoblotting assays, we show that Kdm5a is a target gene of CCAAT/enhancer-binding protein β (C/EBPβ), an important early transcription factor required for adipogenesis. We found that C/EBPβ binds to the Kdm5a gene promoter and transactivates its expression. We also found that siRNA-mediated KDM5A down-regulation inhibits 3T3-L1 preadipocyte differentiation. The KDM5A knockdown significantly up-regulates the negative regulator of adipogenesis Wnt6, having increased levels of the H3K4me3 mark on its promoter. We further observed that WNT6 knockdown significantly rescues adipogenesis inhibited by the KDM5A knockdown. Moreover, we noted that C/EBPβ negatively regulates Wnt6 expression by binding to the Wnt6 gene promoter and repressing Wnt6 transcription. Further experiments indicated that KDM5A interacts with C/EBPβ and that their interaction cooperatively inhibits Wnt6 transcription. Of note, C/EBPβ knockdown impaired the recruitment of KDM5A to the Wnt6 promoter, which had higher H3K4me3 levels. Our results suggest a mechanism involving C/EBPβ and KDM5A activities that down-regulates the Wnt/β-catenin pathway during 3T3-L1 preadipocyte differentiation.
Collapse
Affiliation(s)
- Liang Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying-Ying Guo
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Bai-Yu Li
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wan-Qiu Peng
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qi-Qun Tang
- From the Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Moya A, Larochette N, Bourguignon M, El-Hafci H, Potier E, Petite H, Logeart-Avramoglou D. Osteogenic potential of adipogenic predifferentiated human bone marrow-derived multipotent stromal cells for bone tissue-engineering. J Tissue Eng Regen Med 2017; 12:e1511-e1524. [PMID: 28875591 DOI: 10.1002/term.2571] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 07/13/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022]
Abstract
In the present study, we evaluated the benefits of an adipogenic predifferentiation, the pathway most closely related to osteoblastogenesis, on the pro-osteogenic potential of human adult multipotent bone marrow stromal cells (hBMSCs), both in vitro and in vivo. Adipogenic differentiation of hBMSCs for 14 days resulted in a heterogeneous cell population from which the most adipogenic-committed cells were eliminated by their lack of readhesion ability. Our results provided evidence that the select adherent adipogenic differentiated hBMSCs (sAD+ cells) express a gene profile characteristic of both adipogenic and osteogenic lineages. In vitro, when cultured in osteogenic medium, sAD+ differentiated along the osteogenic lineage faster than undifferentiated hBMSCs. In vivo, in an ectopic mouse model, sAD+ exhibited a significantly higher bone formation capability compared with undifferentiated hBMSCs. We sought, then, to investigate the underlying mechanisms responsible for such beneficial effects of adipogenic predifferentiation on bone formation and found that this outcome was not linked to a better cell survival post-implantation. The secretome of sAD+ was both proangiogenic and chemoattractant, but its potential did not supersede the one of undifferentiated hBMSCs. However, using co-culture systems, we observed that the sAD+ paracrine factors were pro-osteogenic on undifferentiated hBMSCs. In conclusion, adipogenic priming endows hBMSCs with high osteogenic potential as well as pro-osteogenic paracrine-mediated activity. This preconditioning appears as a promising strategy for bone tissue engineering technology in order to improve the hBMSC osteogenic potency in vivo.
Collapse
Affiliation(s)
- Adrien Moya
- UMR 7052 CNRS University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | | | - Hanane El-Hafci
- UMR 7052 CNRS University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Esther Potier
- UMR 7052 CNRS University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Hervé Petite
- UMR 7052 CNRS University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
17
|
Petecchia L, Viti F, Sbrana F, Vassalli M, Gavazzo P. A biophysical approach to quantify skeletal stem cells trans-differentiation as a model for the study of osteoporosis. Biophys Chem 2017; 229:84-92. [DOI: 10.1016/j.bpc.2017.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 05/09/2017] [Accepted: 05/22/2017] [Indexed: 01/21/2023]
|
18
|
Schomann T, Mezzanotte L, Lourens IALM, de Groot JCMJ, Frijns JHM, Huisman MA. Lentiviral transduction and subsequent loading with nanoparticles do not affect cell viability and proliferation in hair-follicle-bulge-derived stem cells in vitro. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:550-560. [PMID: 27976505 DOI: 10.1002/cmmi.1717] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/12/2016] [Accepted: 10/08/2016] [Indexed: 11/07/2022]
Abstract
The application of stem cells in the treatment of various degenerative diseases is highly promising. However, cell-based therapy could be limited by the problem of low viability of grafted cells and uncertainty about their fate. The combination of molecular imaging and contrast-enhanced MRI may give more insight into the survival and behavior of grafted stem cells. We explore hair-follicle-bulge-derived stem cells (HFBSCs) as a potential candidate for autologous cell-based therapy. HFBSCs are transduced with a lentiviral construct with genes coding for bioluminescent (Luc2) and fluorescent (copGFP) reporter proteins, and subsequently loaded with magnetic nanoparticles to enable MRI visualization. Thus, we investigate for the first time if lentiviral transduction and cellular loading with nanoparticles have a cytotoxic effect upon these stem cells. Transduction efficiency, proliferation rate, cell viability and reporter protein co-expression during long-term culture of transduced HFBSCs were studied using fluorescence and bioluminescence microscopy. In addition, the effect of TMSR50 nanoparticles on proliferation and viability was investigated using the MTS assay and bioluminescence microscopy. The amount of TMSR50-loaded HFBSCs needed to reach signal threshold for MRI was assessed using an agarose phantom. Transduction with the Luc2-copGFP construct did not influence senescence, proliferation, doubling time, and differentiation of the HFBSCs. CopGFP expression was visible immediately after transduction and persisted for at least 15 passages, concomitantly with Luc2 expression. Cellular loading with TMSR50 nanoparticles did not affect cell viability and proliferation. The results imply that combined MRI and bioluminescence imaging may enable in vivo localization and long-term monitoring of grafted viable HFBSCs. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timo Schomann
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Laura Mezzanotte
- Optical Molecular Imaging, Department of Radiology, Erasmus Medical Center, 3015 CE, Rotterdam, The Netherlands
| | - Ierry-Ann-Lym M Lourens
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - John C M J de Groot
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Johan H M Frijns
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Margriet A Huisman
- Auditory Neurobiology Laboratory, Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
19
|
Yu Z, Zou Y, Fan J, Li C, Ma L. Notch1 is associated with the differentiation of human bone marrow‑derived mesenchymal stem cells to cardiomyocytes. Mol Med Rep 2016; 14:5065-5071. [PMID: 27779661 PMCID: PMC5355702 DOI: 10.3892/mmr.2016.5862] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/16/2016] [Indexed: 12/04/2022] Open
Abstract
Notch signaling is involved in the early process of differentiation to determine the fate of stem cells. However, the precise role of Notch in human bone marrow-derived mesenchymal stem cells (hBMSCs) remains unclear. The present study aimed to investigate the involvement of Notch signalling during the course of hBMSC differentiation into cardiomyocytes using hBMSCs, with multilineage differentiation ability, isolated and purified from human bone marrow. Flow cytometric analysis revealed that CD29, CD44 and CD90 were highly expressed on the surface of cells in their fifth passage, whereas detection of CD34, CD45, CD54 and HLA-DR was negative. Visualization of morphological changes, western blotting, immunocytochemistry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) demonstrated that hBMSCs differentiate into cardiomyocytes through treatment with 5-azacytidine (5-aza). Transmission electron microscopy revealed ultramicroscopic details of differentiated hBMSCs. Western blotting and immunocytochemistry demonstrated increased protein expression levels of α-actin and cardiac troponin T expression, and RT-qPCR revealed increased mRNA expression of Notch1 early in the process of differentiation (days 1, 4 and 7), and increased mRNA expression levels of the transcription factors GATA binding protein-4 and NK2 homeobox 5 at day 28 day. In conclusion, differentiation of hBMSCs into cardiomyocytes was induced in vitro by 5-aza, and was associated with upregulation of Notch1, GATA binding protein-4 and Nkx2.5 expression. Overexpression of the Notch1 signaling pathway may represent a potential mechanism underlying the differentiation of hBMSCs.
Collapse
Affiliation(s)
- Zipu Yu
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yu Zou
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Jingya Fan
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Chengchen Li
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Liang Ma
- Department of Cardiac Surgery, First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| |
Collapse
|
20
|
Xu SY, Li SF, Ni GX. Strenuous Treadmill Running Induces a Chondrocyte Phenotype in Rat Achilles Tendons. Med Sci Monit 2016; 22:3705-3712. [PMID: 27742920 PMCID: PMC5070615 DOI: 10.12659/msm.897726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 02/10/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Although tendinopathy is common, its underlying pathogenesis is poorly understood. This study aimed to investigate the possible pathogenesis of tendinopathy. MATERIAL AND METHODS In this study, a total of 24 rats were randomly and evenly divided into a control (CON) group and a strenuous treadmill running (STR) group. Animals in the STR group were subjected to a 12-week treadmill running protocol. Subsequently, all Achilles tendons were harvested to perform histological observation or biochemical analyses. RESULTS Histologically, hypercellularity and round cells, as well as disorganized collagen fibrils, were presented in rat Achilles tendon sections from the STR group. Furthermore, our results showed that the expression of aggrecan, collagen type II (Col II), and Sex-Determining Region Y Box 9 (Sox 9) were markedly increased in the STR group compared with that in the CON group. Additionally, the mRNA expression of bone morphogenetic protein-2 (BMP-2) and biglycan was significantly up-regulated in the STR group in contrast to that in CON group. CONCLUSIONS These results suggest that a 12-week strenuous treadmill running regimen can induce chondrocyte phenotype in rat Achilles tendons through chondrogenic differentiation of tendon stem cells (TSCs) by BMP-2 signaling.
Collapse
Affiliation(s)
- Shao-Yong Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Shu-Fen Li
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Guo-Xin Ni
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Rehabilitation Medicine, First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
| |
Collapse
|
21
|
Wang SZ, Jin JY, Guo YD, Ma LY, Chang Q, Peng XG, Guo FF, Zhang HX, Hu XF, Wang C. Intervertebral disc regeneration using platelet‑rich plasma‑containing bone marrow‑derived mesenchymal stem cells: A preliminary investigation. Mol Med Rep 2016; 13:3475-81. [PMID: 26956080 PMCID: PMC4805096 DOI: 10.3892/mmr.2016.4983] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 12/30/2015] [Indexed: 01/16/2023] Open
Abstract
Platelet‑rich plasma (PRP) is a promising strategy for intervertebral disc degeneration (IDD). However, the short half‑life of growth factors released from PRP cannot continuously stimulate the degenerated discs. Thus, the present study hypothesized that the combined use of PRP and bone marrow‑derived mesenchymal stem cells (BMSCs) may repair the early degenerated discs in the long term for their synergistic reparative effect. In the present study, following the induction of early IDD by annular puncture in rabbits, PRP was prepared and mixed with BMSCs (PRP‑BMSC group) for injection into the early degenerated discs. As controls, phosphate‑buffered saline (PBS; PBS group) and PRP (PRP group) were similarly injected. Rabbits without any intervention served as a control group. At 8 weeks following treatment, histological changes of the injected discs were assessed. Magnetic resonance imaging (MRI) was used to detect the T2‑weighted signal intensity of the targeted discs at weeks 1, 2 and 8 following treatment. Annular puncture resulted in disc narrowing and decreased T2‑weighted signal intensity. At weeks 1 and 3, MRI examinations showed regenerative changes in the PRP‑BMSC group and PRP group, whereas the PBS group exhibited a continuous degenerative process of the discs. At 8 weeks post‑injection, the PRP‑BMSCs induced a statistically significant restoration of discs, as shown by MRI (PRP‑BMSCs, vs.PRP and PBS; P<0.05), which was also confirmed by histological evaluations. Thus, compared with PRP, the administration of PRP‑containing BMSCs resulted in a superior regenerative effect on the early degenerated discs, which may be a promising therapeutic strategy for the restoration of early degenerated discs.
Collapse
Affiliation(s)
- Shan-Zheng Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Ji-Yang Jin
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Yu-Dong Guo
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Liang-Yu Ma
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Qing Chang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin-Gui Peng
- Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Fang-Fang Guo
- Department of Plastic Surgery, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Hai-Xiang Zhang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xin-Feng Hu
- Department of Orthopaedics, Qidong People's Hospital, Qidong, Jiangsu 226200, P.R. China
| | - Chen Wang
- Department of Orthopaedics, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
22
|
Xu L, Chu B, Feng Y, Xu F, Zou YF. Modic changes in lumbar spine: prevalence and distribution patterns of end plate oedema and end plate sclerosis. Br J Radiol 2016; 89:20150650. [PMID: 26828968 DOI: 10.1259/bjr.20150650] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The purpose of this study is to evaluate the distribution of end plate oedema in different types of Modic change especially in mixed type and to analyze the presence of end plate sclerosis in various types of Modic change. MATERIALS AND METHODS 276 patients with low back pain were scanned with 1.5-T MRI. Three radiologists assessed the MR images by T1 weighted, T2 weighted and fat-saturation T2 weighted sequences and classified them according to the Modic changes. Pure oedematous end plate signal changes were classified as Modic Type I; pure fatty end plate changes were classified as Modic Type II; and pure sclerotic end plate changes as Modic Type III. A mixed feature of both Types I and II with predominant oedematous signal change is classified as Modic I-II, and a mixture of Types I and II with predominant fatty change is classified as Modic II-I. Thus, the mixed types can further be subdivided into seven subtypes: Types I-II, Types II-I, Types I-III, Types III-I, Types II-III, Types III-II and Types I-III. During the same period, 52 of 276 patients who underwent CT and MRI were retrospectively reviewed to determine end plate sclerosis. RESULTS (1) End plate oedema: of the 2760 end plates (276 patients) examined, 302 end plates showed Modic changes, of which 82 end plates showed mixed Modic changes. The mixed Modic changes contain 92.7% of oedematous changes. The mixed types especially Types I-II and Types II-I made up the majority of end plate oedematous changes. (2) End plate sclerosis: 52 of 276 patients were examined by both MRI and CT. Of the 520 end plates, 93 end plates showed Modic changes, of which 34 end plates have shown sclerotic changes in CT images. 11.8% of 34 end plates have shown Modic Type I, 20.6% of 34 end plates have shown Modic Type II, 2.9% of 34 end plates have shown Modic Type III and 64.7% of 34 end plates have shown mixed Modic type. CONCLUSION End plate oedema makes up the majority of mixed types especially Types I-II and Types II-I. The end plate sclerosis on CT images may not just mean Modic Type III but does exist in all types of Modic changes, especially in mixed Modic types, and may reflect vertebral body mineralization rather than change in the bone marrow. ADVANCES IN KNOWLEDGE End plate oedema and end plate sclerosis are present in a large proportion of mixed types.
Collapse
Affiliation(s)
- Lei Xu
- 1 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bin Chu
- 1 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Feng
- 1 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Xu
- 2 Yangcheng Institute of Health Sciences, Yancheng, China
| | - Yue-Fen Zou
- 1 Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Guneta V, Loh QL, Choong C. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties. J Biomed Mater Res A 2016; 104:1090-101. [DOI: 10.1002/jbm.a.35644] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Vipra Guneta
- School of Materials Science and Engineering, Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Qiu Li Loh
- School of Materials Science and Engineering, Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
| | - Cleo Choong
- School of Materials Science and Engineering, Nanyang Technological University; 50 Nanyang Avenue Singapore 639798 Singapore
- KK Research Centre, KK Women's and Children Hospital; 100 Bukit Timah Road Singapore 229899 Singapore
| |
Collapse
|
24
|
Zhao X, Deng P, Feng J, Wang Z, Xiang Z, Han X, Bai D, Pae EK. Cysteine Dioxygenase Type 1 Inhibits Osteogenesis by Regulating Wnt Signaling in Primary Mouse Bone Marrow Stromal Cells. Sci Rep 2016; 6:19296. [PMID: 26763277 PMCID: PMC4725904 DOI: 10.1038/srep19296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/07/2015] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells, which can give rise to variety of cell types, including adipocytes and osteoblasts. Previously, we have shown that cysteine dioxygenase type 1 (Cdo1) promoted adipogenesis of primary mouse bone marrow stromal cells (BMSCs) and 3T3-L1 pre-adipocytes via interaction with Pparγ. However, the role of Cdo1 in osteogenesis remains unclear. Here, we demonstrated that expression of Cdo1 was elevated during osteoblastic differentiation of BMSCs in vitro. Interestingly, knockdown of Cdo1 by siRNA led to an increased expression of osteogenic related genes, elevated alkaline phosphatase (ALP) activity, and enhanced mineralization. Overexpression of Cdo1 in BMSCs inversely suppressed the osteogenesis. Furthermore, we found that overexpression of Cdo1 impaired Wnt signaling and restricted the Wnt3a induced expression of osteogenic transcriptional factors, such as Runx2 and Dlx5. Collectively, our findings indicate Cdo1 suppresses osteogenic differentiation of BMSCs, through a potential mechanism which involves in Wnt signaling reduction concomitantly.
Collapse
Affiliation(s)
- Xuefeng Zhao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Peng Deng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China
| | - Jie Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Zichao Xiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, China
| | - Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, University of Maryland, School of Dentistry, Baltimore, MD, USA
| |
Collapse
|
25
|
Chung JE, Park JH, Yun JW, Kang YH, Park BW, Hwang SC, Cho YC, Sung IY, Woo DK, Byun JH. Cultured Human Periosteum-Derived Cells Can Differentiate into Osteoblasts in a Perioxisome Proliferator-Activated Receptor Gamma-Mediated Fashion via Bone Morphogenetic Protein signaling. Int J Med Sci 2016; 13:806-818. [PMID: 27877072 PMCID: PMC5118751 DOI: 10.7150/ijms.16484] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/13/2016] [Indexed: 01/02/2023] Open
Abstract
The differentiation of mesenchymal stem cells towards an osteoblastic fate depends on numerous signaling pathways, including activation of bone morphogenetic protein (BMP) signaling components. Commitment to osteogenesis is associated with activation of osteoblast-related signal transduction, whereas inactivation of this signal transduction favors adipogenesis. BMP signaling also has a critical role in the processes by which mesenchymal stem cells undergo commitment to the adipocyte lineage. In our previous study, we demonstrated that an agonist of the perioxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipocyte differentiation, stimulates osteoblastic differentiation of cultured human periosteum-derived cells. In this study, we used dorsomorphin, a selective small molecule inhibitor of BMP signaling, to investigate whether BMP signaling is involved in the positive effects of PPARγ agonists on osteogenic phenotypes of cultured human periosteum-derived cells. Both histochemical detection and bioactivity of ALP were clearly increased in the periosteum-derived cells treated with the PPARγ agonist at day 10 of culture. Treatment with the PPARγ agonist also caused an increase in alizarin red S staining and calcium content in the periosteum-derived osteoblasts at 2 and 3 weeks of culture. In contrast, dorsomorphin markedly decreased ALP activity, alizarin red S staining and calcium content in both the cells treated with PPARγ agonist and the cells cultured in osteogenic induction media without PPARγ agonist during the culture period. In addition, the PPARγ agonist clearly increased osteogenic differentiation medium-induced BMP-2 upregulation in the periosteum-derived osteoblastic cells at 2 weeks of culture as determined by quantitative reverse transcriptase polymerase chain reaction (RT-PCR), immunoblotting, and immunocytochemical analyses. Although further study will be needed to clarify the mechanisms of PPARγ-regulated osteogenesis, our results suggest that the positive effects of a PPARγ agonist on the osteogenic phenotypes of cultured human periosteum-derived cells seem to be dependent on BMP signaling.
Collapse
Affiliation(s)
- Jin-Eun Chung
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Jin-Ho Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Jeong-Won Yun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Young-Hoon Kang
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| | - Sun-Chul Hwang
- Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Yeong-Cheol Cho
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Iel-Yong Sung
- Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University Hospital, University of Ulsan, Ulsan, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University, Jinju 660-702, Republic of Korea
| |
Collapse
|
26
|
Cho YD, Bae HS, Lee DS, Yoon WJ, Woo KM, Baek JH, Lee G, Park JC, Ku Y, Ryoo HM. Epigenetic Priming Confers Direct Cell Trans-Differentiation From Adipocyte to Osteoblast in a Transgene-Free State. J Cell Physiol 2015; 231:1484-94. [PMID: 26335354 DOI: 10.1002/jcp.25183] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 12/11/2022]
Abstract
The bone marrow of healthy individuals is primarily composed of osteoblasts and hematopoietic cells, while that of osteoporosis patients has a larger portion of adipocytes. There is evidence that the epigenetic landscape can strongly influence cell differentiation. We have shown that it is possible to direct the trans-differentiation of adipocytes to osteoblasts by modifying the epigenetic landscape with a DNA methyltransferase inhibitor (DNMTi), 5'-aza-dC, followed by Wnt3a treatment to signal osteogenesis. Treating 3T3-L1 adipocytes with 5'-aza-dC induced demethylation in the hypermethylated CpG regions of bone marker genes; subsequent Wnt3a treatment drove the cells to osteogenic differentiation. When old mice with predominantly adipose marrow were treated with both 5'-aza-dC and Wnt3a, decreased fatty tissue and increased bone volume were observed. Together, our results indicate that epigenetic modification permits direct programming of adipocytes into osteoblasts in a mouse model of osteoporosis, suggesting that this approach could be useful in bone tissue-engineering applications.
Collapse
Affiliation(s)
- Young-Dan Cho
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea.,Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Han-Sol Bae
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Dong-Seol Lee
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Won-Joon Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Kyung-Mi Woo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Jeong-Hwa Baek
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Gene Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Young Ku
- Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Korea
| |
Collapse
|
27
|
Simann M, Schneider V, Le Blanc S, Dotterweich J, Zehe V, Krug M, Jakob F, Schilling T, Schütze N. Heparin affects human bone marrow stromal cell fate: Promoting osteogenic and reducing adipogenic differentiation and conversion. Bone 2015; 78:102-13. [PMID: 25959412 DOI: 10.1016/j.bone.2015.04.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 02/26/2015] [Accepted: 04/25/2015] [Indexed: 01/22/2023]
Abstract
Heparins are broadly used for the prevention and treatment of thrombosis and embolism. Yet, osteoporosis is considered to be a severe side effect in up to one third of all patients on long-term treatment. However, the mechanisms underlying this clinical problem are only partially understood. To investigate if heparin affects differentiation of skeletal precursors, we examined the effects of heparin on the osteogenic and adipogenic lineage commitment and differentiation of primary human bone marrow stromal cells (hBMSCs). Due to the known inverse relationship between adipogenesis and osteogenesis and the capacity of pre-differentiated cells to convert into the respective other lineage, we also determined heparin effects on osteogenic conversion and adipogenic differentiation/conversion. Interestingly, heparin did not only significantly increase mRNA expression and enzyme activity of the osteogenic marker alkaline phosphatase (ALP), but it also promoted mineralization during osteogenic differentiation and conversion. Furthermore, the mRNA expression of the osteogenic marker bone morphogenic protein 4 (BMP4) was enhanced. In addition, heparin administration partly prevented adipogenic differentiation and conversion demonstrated by reduced lipid droplet formation along with a decreased expression of adipogenic markers. Moreover, luciferase reporter assays, inhibitor experiments and gene expression analyses revealed that heparin had putative permissive effects on osteogenic signaling via the BMP pathway and reduced the mRNA expression of the Wnt pathway inhibitors dickkopf 1 (DKK1) and sclerostin (SOST). Taken together, our data show a rather supportive than inhibitory effect of heparin on osteogenic hBMSC differentiation and conversion in vitro. Further studies will have to investigate the net effects of heparin administration on bone formation versus bone resorption in vivo to unravel the molecular mechanisms of heparin-associated osteoporosis and reconcile conflicting experimental data with clinical observations.
Collapse
Affiliation(s)
- Meike Simann
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany.
| | - Verena Schneider
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Solange Le Blanc
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Julia Dotterweich
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Viola Zehe
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Melanie Krug
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Franz Jakob
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Tatjana Schilling
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| | - Norbert Schütze
- Orthopedic Center for Musculoskeletal Research, Department of Orthopedics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
28
|
Clabaut A, Grare C, Léger T, Hardouin P, Broux O. Variations of secretome profiles according to conditioned medium preparation: The example of human mesenchymal stem cell-derived adipocytes. Electrophoresis 2015; 36:2587-93. [DOI: 10.1002/elps.201500086] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Aline Clabaut
- ULCO, PMOI; Boulogne-sur-mer France
- University of Lille; PMOI Lille France
| | - Céline Grare
- ULCO, PMOI; Boulogne-sur-mer France
- University of Lille; PMOI Lille France
| | - Thibaut Léger
- Mass spectrometry Laboratory; Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS; Paris France
| | - Pierre Hardouin
- ULCO, PMOI; Boulogne-sur-mer France
- University of Lille; PMOI Lille France
| | - Odile Broux
- ULCO, PMOI; Boulogne-sur-mer France
- University of Lille; PMOI Lille France
| |
Collapse
|
29
|
De Francesco F, Ricci G, D'Andrea F, Nicoletti GF, Ferraro GA. Human Adipose Stem Cells: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:572-84. [PMID: 25953464 DOI: 10.1089/ten.teb.2014.0608] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stem cell-based therapies for repair and regeneration of different tissues are becoming more important in the treatment of several diseases. Adult stem cells currently symbolize the most available source of cell progenitors for tissue engineering and repair and can be harvested using minimally invasive procedures. Moreover, mesenchymal stem cells (MSCs), the most widely used stem cells in stem cell-based therapies, are multipotent progenitors, with capability to differentiate into cartilage, bone, connective, muscle, and adipose tissue. So far, bone marrow has been regarded as the main source of MSCs. To date, human adult adipose tissue may be the best suitable alternative source of MSCs. Adipose stem cells (ASCs) can be largely extracted from subcutaneous human adult adipose tissue. A large number of studies show that adipose tissue contains a biologically and clinically interesting heterogeneous cell population called stromal vascular fraction (SVF). The SVF may be employed directly or cultured for selection and expansion of an adherent population, so called adipose-derived stem cells (ASCs). In recent years, literature based on data related to SVF cells and ASCs has augmented considerably: These studies have demonstrated the efficacy and safety of SVF cells and ASCs in vivo in animal models. On the basis of these observations, in several countries, various clinical trials involving SVF cells and ASCs have been permitted. This review aims at summarizing data regarding either ASCs cellular biology or ASCs-based clinical trials and at discussing the possible future clinical translation of ASCs and their potentiality in cell-based tissue engineering.
Collapse
Affiliation(s)
- Francesco De Francesco
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giulia Ricci
- 2 Department of Experimental Medicine, Second University of Naples , Naples, Italy
| | - Francesco D'Andrea
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giovanni Francesco Nicoletti
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| | - Giuseppe Andrea Ferraro
- 1 Multidisciplinary Department of Medical-Surgical and Dental Specialties, Second University of Naples , Naples, Italy
| |
Collapse
|
30
|
Tang J, Cui W, Song F, Zhai C, Hu H, Zuo Q, Fan W. Effects of mesenchymal stem cells on interleukin-1β-treated chondrocytes and cartilage in a rat osteoarthritic model. Mol Med Rep 2015; 12:1753-60. [PMID: 25892273 PMCID: PMC4464342 DOI: 10.3892/mmr.2015.3645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023] Open
Abstract
In the present study, the effects and mechanisms of mesenchymal stem cells (MSCs) on interleukin (IL)-1β-stimulated rat chondrocytes, as well as cartilage from a rat model of osteoarthritis (OA) induced by anterior cruciate ligament transection and medial meniscectomy were investigated. Confluent rat chondrocytes were treated with IL-1β (10 ng/ml), then cultured indirectly with or without MSCs at a ratio of 2:1. Total RNA and protein were collected at various time-points, and western blot and reverse transcription-quantitative polymerase chain reaction analyses were used to investigate the expression of type II collagen (Col2), aggrecan, matrix metalloproteinase-13 (MMP-13) and cyclooxygenase-2 (COX-2). The activation of extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB) p65 and inhibitory-κ-B-α (IκBα) were also assessed by western blotting. In addition, the in vivo effects of MSCs in a rat OA model were assessed by histology and western blot analysis. The results indicated that in vitro, IL-1β markedly upregulated the expression of MMP-13, COX-2, phosphorylated ERK1/2, JNK, p38 MAPK and NF-κB p65, and inhibited the expression of Col2, aggrecan and IκBα. Conversely, MSCs enhanced the expression of Col2, aggrecan and IκBα, and inhibited the expression of MMP-13 and NF-κB p65 in IL-1β-stimulated rat chondrocytes. In vivo histological and western blot analyses revealed analogous results to the in vitro findings. The results of the present study demonstrated that MSCs suppressed the inflammatory response and extracellular matrix degradation in IL-1β-induced rat chondrocytes, as well as cartilage in a osteoarthritic rat model, in part via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jilei Tang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weiding Cui
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Fanglong Song
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chenjun Zhai
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hansheng Hu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
31
|
The Chondrogenic Induction Potential for Bone Marrow-Derived Stem Cells between Autologous Platelet-Rich Plasma and Common Chondrogenic Induction Agents: A Preliminary Comparative Study. Stem Cells Int 2015; 2015:589124. [PMID: 25861279 PMCID: PMC4378611 DOI: 10.1155/2015/589124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/28/2014] [Accepted: 01/05/2015] [Indexed: 01/27/2023] Open
Abstract
The interests in platelet-rich plasma (PRP) and their application in stem cell therapy have contributed to a better understanding of the basic biology of the prochondrogenesis effect on bone marrow-derived stem cells (BMSCs). We aimed at comparing the effect of autologous PRP with common chondrogenic induction agents (CCIAs) on the chondrogenic differentiation of BMSCs. Rabbit BMSCs were isolated and characterized by flow cytometry and differentiated towards adipocytes and osteoblasts. The chondrogenic response of BMSCs to autologous PRP and CCIAs which included transforming growth factor-β1 (TGF-β1), dexamethasone (DEX), and vitamin C (Vc) was examined by cell pellet culture. The isolated BMSCs after two passages highly expressed CD29 and CD44 but minimally expressed CD45. The osteogenic and adipogenic differentiation potentials of the isolated BMSCs were also confirmed. Compared with common CCIAs, autologous PRP significantly upregulated the chondrogenic related gene expression, including Col-2, AGC, and Sox-9. Osteogenic related gene expression, including Col-1 and OCN, was not of statistical significance between these two groups. Thus, our data shows that, compared with common chondrogenic induction agents, autologous PRP can be more effective in promoting the chondrogenesis of BMSCs.
Collapse
|
32
|
Leferink AM, Santos D, Karperien M, Truckenmüller RK, van Blitterswijk CA, Moroni L. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds. Integr Biol (Camb) 2015; 7:1574-86. [DOI: 10.1039/c5ib00177c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study shows that the classical validation of hMSC differentiation potential on 3D scaffolds might not be sufficient to ensure the maintenance of the cells functionality in the absence of differentiation inducing soluble factors.
Collapse
Affiliation(s)
- A. M. Leferink
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - D. Santos
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - M. Karperien
- Department of Developmental Bioengineering
- MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
| | - R. K. Truckenmüller
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - C. A. van Blitterswijk
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| | - L. Moroni
- Department of Tissue Regeneration and MIRA Institute for Biomedical Technology and Technical Medicine
- University of Twente
- Enschede
- The Netherlands
- Department of Complex Tissue Regeneration
| |
Collapse
|
33
|
Zhou DAA, Deng YN, Liu L, Li JJ. Effect of kidney-reinforcing and marrow-beneficial traditional Chinese medicine-intervened serum on the proliferation and osteogenic differentiation of bone marrow stromal cells. Exp Ther Med 2014; 9:191-196. [PMID: 25452801 PMCID: PMC4247301 DOI: 10.3892/etm.2014.2062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 08/29/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of kidney-reinforcing and marrow-beneficial traditional Chinese medicine (TCM)-intervened (KRMBTI)-serum on the proliferation and osteogenic differentiation of bone marrow stromal cells (BMSCs) in rats. Rat BMSCs were isolated and cultured in vitro with various concentrations of serum obtained from rats at different time-points following treatment with low, medium and high doses of KRMBT. The alkaline phosphatase (ALP) activity and proliferation of the BMCSs was assessed to determine the optimal serum sampling time-point and serum concentration. Transforming growth factor (TGF)-β1 expression of the BMSCs was detected using enzyme-linked immunosorbent assay (ELISA), and hepcidin mRNA expression in the rat livers was detected using reverse transcription polymerase chain reaction. The proliferation of BMCSs treated with serum obtained l h after dosing was observed to be significantly higher than that for BMCSs treated with serum obtained at the four other time-points (P<0.05). Furthermore, the proliferation following treatment with 25% KRMBTI-serum was significantly higher than that for the other KRMBTI-serum concentrations (P<0.01). For a 25% concentration of the serum collected at l h, the proliferation in the high- and low-dose KRMBTI-serum groups was significantly higher than that of the medium-dose and control groups (P<0.01) and no statistical significance was observed between the high- and low-dose groups. In the osteogenic differentiation process of the high-dose group, the ALP activity at every time-point was significantly higher than that of the low-dose group and the peak value of the former was achieved at concentrations between 20 and 30%. KRMBTI-serum was shown to promote the expression of TGF-β1. Furthermore, hepcidin was observed to be expressed at significantly higher levels in the high-dose group than in the control group, and hepcidin expression was significantly higher after 10 weeks compared with that after five weeks. These findings suggest that KRMBTI-serum increases TGF-β1 and hepcidin expression levels, which may be the mechanism underlying the promotion of osteogenic differentiation induced by KRMBTI-serum in BMSCs.
Collapse
Affiliation(s)
- DA-An Zhou
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, School of Rehabilitation Medicine of Capital Medical University, Beijing 100068, P.R. China ; Department of Rehabilitation, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Yue-Ning Deng
- Department of Rehabilitation, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Lei Liu
- Department of Rehabilitation, The Third Affiliated Hospital of Liaoning Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Jian-Jun Li
- Department of Spinal and Neural Function Reconstruction, China Rehabilitation Research Center, School of Rehabilitation Medicine of Capital Medical University, Beijing 100068, P.R. China
| |
Collapse
|
34
|
Ostrakhovitch EA, Akakura S, Sanokawa-Akakura R, Goodwin S, Tabibzadeh S. Dedifferentiation of cancer cells following recovery from a potentially lethal damage is mediated by H2S-Nampt. Exp Cell Res 2014; 330:135-50. [PMID: 25278485 DOI: 10.1016/j.yexcr.2014.09.027] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 12/29/2022]
Abstract
Recently, we reported that cancer cells that recover from a potentially lethal damage gain new phenotypic features comprised of mitochondrial structural remodeling associated with increased glycolytic dependency and drug resistance. Here, we demonstrate that a subset of cancer cells, upon recovery from a potentially lethal damage, undergo dedifferentiation and express genes, which are characteristic of undifferentiated stem cells. While these cells are competent in maintaining differentiated progeny of tumor, they also exhibit transdifferentiation potential. Dedifferentiation is characterized by accumulation of hydrogen sulfide (H2S), which triggers up-regulation of nicotinamide phosphoribosyltransferase (Nampt) accompanied by changes in the redox state. The molecular events triggered by Nampt include elevated production of NAD(+) and up-regulation of H2S producing enzymes, cystathionine beta synthase (CBS) and cystathionase (CTH) with 3-mercaptopyruvate sulfurtransferase (MST) being detectable only in 3D spheroids. Suppression of Nampt, or inactivation of H2S producing enzymes, all reduce H2S production and reverse the ability of cells to dedifferentiate. Moreover, H2S induced stem cell markers in parental cancer cells in a manner similar to that observed in damage recovered cells. These data suggest of existence of a positive feedback loop between H2S and Nampt that controls dedifferentiation in cancer cells that recover from a potentially lethal damage.
Collapse
Affiliation(s)
- Elena A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| | - Shin Akakura
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA
| | | | - Scott Goodwin
- Department of Radiological Sciences, University of California, Irvine, CA 92868, USA
| | - Siamak Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA 92618, USA; Department of Radiological Sciences, University of California, Irvine, CA 92868, USA.
| |
Collapse
|
35
|
Granéli C, Karlsson C, Brisby H, Lindahl A, Thomsen P. The effects of PPAR-γ inhibition on gene expression and the progression of induced osteogenic differentiation of human mesenchymal stem cells. Connect Tissue Res 2014; 55:262-74. [PMID: 24708348 DOI: 10.3109/03008207.2014.910198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mesenchymal stem cells (MSCs) can differentiate into several cell types, such as osteoblasts and adipocytes, both in vitro and in vivo. Although these two differentiation pathways are distinct from each other, cross-communication between cells of the two lineages exists both systemically and peripherally in the tissue. The transcription factor PPAR-γ, the main switch in adipogenic differentiation of MSCs, has previously been described to have a negative effect on osteogenic differentiation. The aim of this study was to investigate the effect of PPAR-γ inhibition on osteogenic differentiation of human MSCs, in vitro. Extracellular matrix analysis and quantification of osteogenic markers, revealed how these cells respond when the adipogenic differentiation pathway is blocked during induction of osteogenic differentiation. The inhibition leads to a significant increase in mineralization of the extracellular matrix, as well as an increased activity or up-regulated gene expression of alkaline phosphatase, the key enzyme involved in matrix mineralization. Furthermore, it was also demonstrated by microarray analysis, that PPAR-γ inhibition during osteogenic induction leads to a significant up-regulation of a number of genes related to both osteogenesis and adipogenesis such as c10orf10, leptin, GDF5 and KLF15. In conclusion, inhibition of PPAR-γ during induction of osteogenesis leads to increased osteogenic differentiation of human MSCs.
Collapse
Affiliation(s)
- Cecilia Granéli
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | |
Collapse
|
36
|
James AW, Shen J, Khadarian K, Pang S, Chung G, Goyal R, Asatrian G, Velasco O, Kim J, Zhang X, Ting K, Soo C. Lentiviral delivery of PPARγ shRNA alters the balance of osteogenesis and adipogenesis, improving bone microarchitecture. Tissue Eng Part A 2014; 20:2699-710. [PMID: 24785569 DOI: 10.1089/ten.tea.2013.0736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
INTRODUCTION Skeletal aging is associated not only with alterations in osteoblast (OB) and osteoclast (OC) number and activity within the basic metabolic unit, but also with increased marrow adiposity. Peroxisome proliferator-activated receptor gamma (PPARγ) is commonly considered the master transcriptional regulator of adipogenesis, however, it has known roles in osteoblast and osteoclast function as well. Here, we designed a lentiviral delivery system for PPARγ shRNA, and examined its effects in vitro on bone marrow stromal cells (BMSC) and in a mouse intramedullary injection model. METHODS PPARγ shRNA was delivered by a replication-deficient lentiviral vector, after in vitro testing to confirm purity, concentration, and efficacy for Pparg transcript reduction. Next, control green fluorescent protein lentivirus or PPARγ shRNA expressing lentivirus were delivered by intramedullary injection into the femoral bone marrow of male SCID mice. Analyses included daily monitoring of animal health, and postmortem analysis at 4 weeks. Postmortem analyses included high resolution microcomputed tomography (microCT) reconstructions and analysis, routine histology and histomorphometric analysis, quantitative real time polymerase chain reaction analysis of Pparg transcript levels, and immunohistochemical analysis for markers of adipocytes (PPARγ, fatty acid binding protein 4 [FABP4]), osteoblasts (alkaline phosphatase [ALP], osteocalcin [OCN]), and osteoclasts (tartrate-resistant acid phosphatase [TRAP], Cathepsin K). RESULTS In vitro, PPARγ shRNA delivery significantly reduced Pparg expression in mouse BMSC, accompanied by a significant reduction in lipid droplet accumulation. In vivo, a near total reduction in mature marrow adipocytes was observed at 4 weeks postinjection. This was accompanied by significant reductions in adipocyte-specific markers. Parameters of trabecular bone were significantly increased by both microCT and histomorphometric analysis. By immunohistochemical staining and semi-quantification, a significant increase in OCN+osteoblasts and decrease in TRAP+multinucleated osteoclasts was observed with PPARγ shRNA treatment. DISCUSSION These findings suggest that acute loss of PPARγ in the bone marrow compartment has a significant role beyond anti-adipose effects. Specifically, we found pro-osteoblastogenic, anti-osteoclastic effects after PPARγ shRNA treatment, resulting in improved trabecular bone architecture. Future studies will examine the isolated and direct effects of PPARγ shRNA on OB and OC cell types, and it may help determine whether PPARγ antagonists are potential therapeutic agents for osteoporotic bone loss.
Collapse
Affiliation(s)
- Aaron W James
- 1 Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California , Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Shoshani O, Zipori D. Stress as a fundamental theme in cell plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:371-7. [PMID: 25038585 DOI: 10.1016/j.bbagrm.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/16/2023]
Abstract
Over a decade of intensive investigation of the possible plasticity of mammalian cells has eventually substantiated that mammalian species are endowed with a remarkable capacity to change mature cell fates. We review below the evidence for the occurrence of processes such as dedifferentiation and transdifferentiation within mammalian tissues in vivo, and in cells removed from their protective microenvironment and seeded in culture under conditions poorly resembling their physiological state in situ. Overall, these studies point to one major conclusion: stressful conditions, whether due to in vivo tissue damage or otherwise to isolation of cells from their in vivo restrictive niches, lead to extreme fate changes. Some examples of dedifferentiation are discussed in detail showing that rare cells within the population tend to turn back into less mature ones due to severe cell damage. It is proposed that cell stress, mechanistically sensed by isolation from neighboring cells, leads to dedifferentiation, in an attempt to build a new stem cell reservoir for subsequent regeneration of the damaged tissue. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- Ofer Shoshani
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
38
|
Gao B, Huang Q, Lin YS, Wei BY, Guo YS, Sun Z, Wang L, Fan J, Zhang HY, Han YH, Li XJ, Shi J, Liu J, Yang L, Luo ZJ. Dose-dependent effect of estrogen suppresses the osteo-adipogenic transdifferentiation of osteoblasts via canonical Wnt signaling pathway. PLoS One 2014; 9:e99137. [PMID: 24918446 PMCID: PMC4053448 DOI: 10.1371/journal.pone.0099137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 05/11/2014] [Indexed: 12/26/2022] Open
Abstract
Fat infiltration within marrow cavity is one of multitudinous features of estrogen deficiency, which leads to a decline in bone formation functionality. The origin of this fat is unclear, but one possibility is that it is derived from osteoblasts, which transdifferentiate into adipocytes that produce bone marrow fat. We examined the dose-dependent effect of 17β-estradiol on the ability of MC3T3-E1 cells and murine bone marrow-derived mesenchymal stem cell (BMMSC)-derived osteoblasts to undergo osteo-adipogenic transdifferentiation. We found that 17β-estradiol significantly increased alkaline phosphatase activity (P<0.05); calcium deposition; and Alp, Col1a1, Runx2, and Ocn expression levels dose-dependently. By contrast, 17β-estradiol significantly decreased the number and size of lipid droplets, and Fabp4 and PPARγ expression levels during osteo-adipogenic transdifferentiation (P<0.05). Moreover, the expression levels of brown adipocyte markers (Myf5, Elovl3, and Cidea) and undifferentiated adipocyte markers (Dlk1, Gata2, and Wnt10b) were also affected by 17β-estradiol during osteo-adipogenic transdifferentiation. Western blotting and immunostaining further showed that canonical Wnt signaling can be activated by estrogen to exert its inhibitory effect of osteo-adipogenesis. This is the first study to demonstrate the dose-dependent effect of 17β-estradiol on the osteo-adipogenic transdifferentiation of MC3T3-E1 cells and BMMSCs likely via canonical Wnt signaling. In summary, our results indicate that osteo-adipogenic transdifferentiation modulated by canonical Wnt signaling pathway in bone metabolism may be a new explanation for the gradually increased bone marrow fat in estrogen-inefficient condition.
Collapse
Affiliation(s)
- Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Qiang Huang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yan-Shui Lin
- Department of Orthopaedics, First Affiliated Hospital, Chengdu Medical College, Chengdu, People’s Republic of China
| | - Bo-Yuan Wei
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yun-Shan Guo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Long Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jing Fan
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Hong-Yang Zhang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Yue-Hu Han
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Xiao-Jie Li
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jun Shi
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
| | - Jian Liu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| | - Zhuo-Jing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, People’s Republic of China
- * E-mail: (ZJL); (LY); (JL)
| |
Collapse
|
39
|
Cerium oxide nanoparticles inhibit adipogenesis in rat mesenchymal stem cells: potential therapeutic implications. Pharm Res 2014; 31:2952-62. [PMID: 24805277 DOI: 10.1007/s11095-014-1390-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/15/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Cerium oxide nanoparticles (nanoceria, NC) have extraordinary antioxidant activity that made them suitable as a therapeutic agent for several diseases where reactive oxygen species (ROS) act by impairing the normal redox balance. Among different functions, it has been proven that ROS are cellular messengers involved in the adipogenesis: we thus investigated the implication of NC administration in the potential inhibition of adipogenic differentiation of mesenchymal stem cells (MSCs) used as a model of adipogenesis. METHODS We evaluated cytotoxic effects and adipogenic maturation of mesenchymal stem cells following in vitro NC administration, both at gene and at phenotype level. RESULTS Overall, our results demonstrated that NC efficiently inhibit the maturation of MSCs toward adipocytes owing to their ability to reduce the production of the ROS necessary during adipogenesis. CONCLUSIONS These findings, even if preliminary, represent an important step toward the potential pharmaceutical application of NC in the treatment of obesity.
Collapse
|
40
|
Takata T, Morimoto C. Raspberry ketone promotes the differentiation of C3H10T1/2 stem cells into osteoblasts. J Med Food 2014; 17:332-8. [PMID: 24404978 DOI: 10.1089/jmf.2013.2763] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The decrease in the bone mass associated with osteoporosis caused by ovariectomy, aging, and other conditions is accompanied by an increase in bone marrow adipose tissue. The balance between osteoblasts and adipocytes is influenced by a reciprocal relationship. The development of modalities to promote local/systemic bone formation by inhibiting bone marrow adipose tissue is important in the treatment of fractures or metabolic bone diseases such as osteoporosis. In this study, we examined whether raspberry ketone [4-(4-hydroxyphenyl)butan-2-one; RK], which is one of the major aromatic compounds of red raspberry and exhibits anti-obesity action, could promote osteoblast differentiation in C3H10T1/2 stem cells. Confluent C3H10T1/2 stem cells were treated for 6 days with 10-100 μg/mL of RK in culture medium containing 10 nM all-trans-retinoic acid (ATRA) or 300 ng/mL recombinant human bone morphogenetic protein (rhBMP)-2 protein as an osteoblast-differentiating agent. RK in the presence of ATRA increased alkaline phosphatase (ALP) activity in a dose-dependent manner. RK in the presence of rhBMP-2 also increased ALP activity. RK in the presence of ATRA also increased the levels of mRNAs of osteocalcin, α1(I) collagen, and TGF-βs (TGF-β1, TGF-β2, and TGF-β3) compared with ATRA only. RK promoted the differentiation of C3H10T1/2 stem cells into osteoblasts. However, RK did not affect the inhibition of early-stage adipocyte differentiation. Our results suggest that RK enhances the differentiation of C3H10T1/2 stem cells into osteoblasts, and it may promote bone formation by an action unrelated to adipocyte differentiation.
Collapse
Affiliation(s)
- Tomoyo Takata
- 1 Department of Medical Technology, Faculty of Health Science, Ehime Prefectural University of Health Sciences , Ehime, Japan
| | | |
Collapse
|
41
|
Dorai T, Diouri J, O'Shea O, Doty SB. Curcumin Inhibits Prostate Cancer Bone Metastasis by Up-Regulating Bone Morphogenic Protein-7 in Vivo.. ACTA ACUST UNITED AC 2014; 5:369-386. [PMID: 24949215 DOI: 10.4236/jct.2014.54044] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of studies have focused on the beneficial properties of Curcumin (diferuloyl methane, used in South Asian cuisine and traditional medicine) such as the chemoprevention of cancer. Recent studies have also indicated that this material has significant benefits for the treatment of cancer and is currently undergoing several clinical trials. We have been interested in the application of this compound as a therapeutic agent for advanced prostate cancer, particularly the skeletal complications in this malignancy. Our earlier work indicated that this compound could inhibit the osteomimetic properties which occur in castration resistant prostate cancer cells, by interfering with the common denominators between these cancer cells and the bone cells in the metastatic tumor microenvironment, namely the osteoblasts and the osteoclast. We predicted that curcumin could break the vicious cycle of reciprocal stimulation that results in uncontrolled osteolysis in the bony matrix. In this work, we have evaluated the potential of this compound in inhibiting the bone metastasis of hormone refractory prostate cancer cells in an established animal model. Our results strongly suggest that curcumin modulates the TGF-β signaling that occurs due to bone matrix degradation by up-regulating the metastasis inhibitory bone morphogenic protein-7 (BMP- 7). This enhancement of BMP-7 in the context of TGF-βin the tumor microenvironment is shown to enhance the mesenchymal-to-epithelial transition. Most importantly, we show that as a result of BMP-7 up-regulation, a novel brown/beige adipogenic differentiation program is also up-regu- lated which plays a role in the inhibition of bone metastasis. Our results suggest that curcumin may subvert the TGF-βsignaling to an alternative adipogenic differentiation program in addition to the previously established interference with the osteomimetic properties, thus inhibiting the bone metastatic processes in a chemopreventive as well as therapeutic setting.
Collapse
Affiliation(s)
- Thambi Dorai
- Department of Urology, New York Medical College, Valhalla, USA
| | - Janane Diouri
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| | - Orla O'Shea
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| | - Stephen B Doty
- Analytical Microscopy Laboratory, Hospital for Special Surgery, New York, USA
| |
Collapse
|
42
|
Schilling T, Ebert R, Raaijmakers N, Schütze N, Jakob F. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 2014; 139:252-61. [PMID: 23262262 DOI: 10.1016/j.jsbmb.2012.12.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/13/2023]
Abstract
Phytoestrogens and other plant-derived compounds and extracts have been developed for the treatment of menopause-related complaints and disorders, e.g. hot flushes and osteoporosis. Since estrogens have been discussed to enhance the risk for hormone-sensitive cancers, research activities try to find alternatives. Phytoestrogens like genistein and resveratrol as well as other plant-derived compounds are capable of substituting for estrogens to some extent. Their effects on mesenchymal stem cells and the tissues derived therefrom have been investigated in vitro and in preclinical settings. Besides their well-known estrogenic, i.e. mainly antiresorptive effects on bone via estrogen receptor (ER) signalling, they also directly or indirectly affect osteogenic and adipogenic pathways. As a novel mechanism, phytoestrogens and plant-derived saponins and flavonoids like kaempferol and xanthohumol have been described to reciprocally affect the osteogenic versus the adipogenic differentiation pathway. Both, ER-mediated and other pathways mediate a shift towards osteogenesis by inhibiting PPARγ and C/EBPα, the key adipogenic transcription factors (TFs), while stimulating the key osteogenic TFs Runx2 and Sp7. Besides ER signalling, the broad spectrum of molecular mechanisms supporting osteogenesis comprises the modulation of PPARγ, Wnt/β-catenin, and Sirt1 signalling, which inversely influence the transcription or transactivation of osteogenic versus adipogenic TFs. Preventing the age- and hormone deficiency-related shift towards adipogenesis without provoking adverse estrogenic effects represents a very promising strategy for treating bone loss and other metabolic diseases beyond bone. Research on plant-derived compounds will have to be pursued in vitro as well as in preclinical studies and controlled clinical trials in humans are urgently needed. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Tatjana Schilling
- University of Würzburg, Orthopaedic Department, Orthopaedic Centre for Musculoskeletal Research, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
43
|
Hah YS, Joo HH, Kang YH, Park BW, Hwang SC, Kim JW, Sung IY, Rho GJ, Woo DK, Byun JH. Cultured human periosteal-derived cells have inducible adipogenic activity and can also differentiate into osteoblasts in a perioxisome proliferator-activated receptor-mediated fashion. Int J Med Sci 2014; 11:1116-28. [PMID: 25170294 PMCID: PMC4147637 DOI: 10.7150/ijms.9611] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/06/2014] [Indexed: 01/09/2023] Open
Abstract
We investigated the adipogenic activity of cultured human periosteal-derived cells and studied perioxisome proliferator-activated receptor (PPAR) ligand-mediated differentiation of cultured human periosteal-derived cells into osteoblasts. Periosteal-derived cells expressed adipogenic markers, including CCAAT/enhancer binding protein α (C/EBP- α), C/EBP-δ, aP2, leptin, LPL, and PPARγ. Lipid vesicles were formed in the cytoplasm of periosteal-derived cells. Thus, periosteal-derived cells have potential adipogenic activity. The PPARα and PPARγ agonists, WY14643 and pioglitazone, respectively, did not modulate alkaline phosphatase (ALP) activity in periosteal-derived cells during induced osteoblastic differentiation, however, the PPARα and PPARγ antagonists, GW6471 and T0070907, respectively, both decreased ALP activity in these cells. WY14643 did not affect, whereas pioglitazone enhanced, alizarin red-positive mineralization and calcium content in the periosteal-derived cells. GW6471 and T0070907 both decreased mineralization and calcium content. By RT-PCR, pioglitazone significantly increased ALP expression in periosteal-derived cells between culture day 3 and 2 weeks. Pioglitazone increased Runx2 expression after 3 days, which declined thereafter, but did not alter osteocalcin expression. Both of GW6471 and T0070907 decreased ALP mRNA expression. These results suggest that pioglitazone enhances osteoblastic differentiation of periosteal-derived cells by increasing Runx2 and ALP mRNA expression, and increasing mineralization. GW6471 and T0070907 inhibit osteoblastic differentiation of the periosteal-derived cells by decreasing ALP expression and mineralization in the periosteal-derived cells. In conclusion, although further study will be needed to clarify the mechanisms of PPAR-regulated osteogenesis, our results suggest that PPARγ agonist stimulates osteoblastic differentiation of cultured human periosteal-derived cells and PPARα and PPARγ antagonists inhibit osteoblastic differentiation in these cells.
Collapse
Affiliation(s)
- Young-Sool Hah
- 1. Clinical Research Institute of Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyun-Ho Joo
- 2. Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Young-Hoon Kang
- 2. Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Bong-Wook Park
- 2. Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Sun-Chul Hwang
- 3. Department of Orthopaedic Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Jong-Woo Kim
- 4. Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Iel-Yong Sung
- 5. Department of Oral and Maxillofacial Surgery, College of Medicine, Ulsan University, Ulsan, Republic of Korea
| | - Gyu-Jin Rho
- 6. OBS/Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong Kyun Woo
- 7. College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - June-Ho Byun
- 2. Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| |
Collapse
|
44
|
Miyaki LAM, Sibov TT, Pavon LF, Mamani JB, Gamarra LF. Study of internalization and viability of multimodal nanoparticles for labeling of human umbilical cord mesenchymal stem cells. EINSTEIN-SAO PAULO 2013; 10:189-96. [PMID: 23052454 DOI: 10.1590/s1679-45082012000200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 06/13/2012] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE To analyze multimodal magnetic nanoparticles-Rhodamine B in culture media for cell labeling, and to establish a study of multimodal magnetic nanoparticles-Rhodamine B detection at labeled cells evaluating they viability at concentrations of 10µg Fe/mL and 100µg Fe/mL. METHODS We performed the analysis of stability of multimodal magnetic nanoparticles-Rhodamine B in different culture media; the mesenchymal stem cells labeling with multimodal magnetic nanoparticles-Rhodamine B; the intracellular detection of multimodal magnetic nanoparticles-Rhodamine B in mesenchymal stem cells, and assessment of the viability of labeled cells by kinetic proliferation. RESULTS The stability analysis showed that multimodal magnetic nanoparticles-Rhodamine B had good stability in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium. The mesenchymal stem cell with multimodal magnetic nanoparticles-Rhodamine B described location of intracellular nanoparticles, which were shown as blue granules co-localized in fluorescent clusters, thus characterizing magnetic and fluorescent properties of multimodal magnetic nanoparticles-Rhodamine B. CONCLUSION The stability of multimodal magnetic nanoparticles-Rhodamine B found in cultured Dulbecco's Modified Eagle's-Low Glucose medium and RPMI 1640 medium assured intracellular mesenchymal stem cells labeling. This cell labeling did not affect viability of labeled mesenchymal stem cells since they continued to proliferate for five days.
Collapse
|
45
|
Lin CY, Yang JR, Teng SL, Tsai S, Chen MH. Microarray analysis of gene expression of bone marrow stem cells cocultured with salivary acinar cells. J Formos Med Assoc 2013; 112:713-20. [DOI: 10.1016/j.jfma.2012.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/30/2022] Open
|
46
|
Ferraro GA, De Francesco F, Nicoletti G, Paino F, Desiderio V, Tirino V, D'Andrea F. Human adipose CD34+ CD90+ stem cells and collagen scaffold constructs grafted in vivo fabricate loose connective and adipose tissues. J Cell Biochem 2013; 114:1039-49. [PMID: 23129214 DOI: 10.1002/jcb.24443] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Stem cell based therapies for the repair and regeneration of various tissues are of great interest for a high number of diseases. Adult stem cells, instead, are more available, abundant and harvested with minimally invasive procedures. In particular, mesenchymal stem cells (MSCs) are multi-potent progenitors, able to differentiate into bone, cartilage, and adipose tissues. Human adult adipose tissue seems to be the most abundant source of MSCs and, due to its easy accessibility; it is able to give a considerable amount of stem cells. In this study, we selected MSCs co-expressing CD34 and CD90 from adipose tissue. This stem cell population displayed higher proliferative capacity than CD34(-) CD90(-) cells and was able to differentiate in vitro into adipocytes (PPARγ(+) and adiponectin(+)) and endothelial cells (CD31(+) VEGF(+) Flk1(+)). In addition, in methylcellulose without VEGF, it formed a vascular network. The aim of this study was to investigate differentiation potential of human adipose CD34(+) /CD90(+) stem cells loaded onto commercial collagen sponges already used in clinical practice (Gingistat) both in vitro and in vivo. The results of this study clearly demonstrate that human adult adipose and loose connective tissues can be obtained in vivo, highlighting that CD34(+) /CD90 ASCs are extremely useful for regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe A Ferraro
- Dipartimento di Scienze Ortopediche, Riabilitative, Traumatologiche e Plastico-Ricostruttive, Seconda Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Sadie-Van Gijsen H, Crowther NJ, Hough FS, Ferris WF. The interrelationship between bone and fat: from cellular see-saw to endocrine reciprocity. Cell Mol Life Sci 2013; 70:2331-49. [PMID: 23178849 PMCID: PMC11113730 DOI: 10.1007/s00018-012-1211-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/07/2012] [Indexed: 01/03/2023]
Abstract
The number of mature osteoblasts and marrow adipocytes in bone is influenced by the differentiation of the common mesenchymal progenitor cell towards one phenotype and away from the other. Consequently, factors which promote adipogenesis not only lead to fatty marrow but also inhibit osteoblastogenesis, resulting in decreased osteoblast numbers, diminished bone formation and, potentially, inadequate bone mass and osteoporosis. In addition to osteoblast and bone adipocyte numbers being influenced by this skewing of progenitor cell differentiation towards one phenotype, mature osteoblasts and adipocytes secrete factors which may evoke changes in the cell fate and function of each other. This review examines the endogenous factors, such as PPAR-γ2, Wnt, IGF-1, GH, FGF-2, oestrogen, the GP130 signalling cytokines, vitamin D and glucocorticoids, which regulate the selection between osteoblastogenesis and adipogenesis and the interrelationship between fat and bone. The role of adipokines on bone, such as adiponectin and leptin, as well as adipose-derived oestrogen, is reviewed and the role of bone as an energy regulating endocrine organ is discussed.
Collapse
Affiliation(s)
- H. Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - N. J. Crowther
- Department of Chemical Pathology, National Health Laboratory Services, University of Witwatersrand Medical School, 7 York Road, Parktown, 2193 South Africa
| | - F. S. Hough
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| | - W. F. Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg, 7505 South Africa
| |
Collapse
|
48
|
Sundelacruz S, Levin M, Kaplan DL. Depolarization alters phenotype, maintains plasticity of predifferentiated mesenchymal stem cells. Tissue Eng Part A 2013; 19:1889-908. [PMID: 23738690 DOI: 10.1089/ten.tea.2012.0425.rev] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although adult stem cell transplantation has been implemented as a therapy for tissue repair, it is limited by the availability of functional adult stem cells. A potential approach to generate stem and progenitor cells may be to modulate the differentiated status of somatic cells. Therefore, there is a need for a better understanding of how the differentiated phenotype of mature cells is regulated. We hypothesize that bioelectric signaling plays an important role in the maintenance of the differentiated state, as it is a functional regulator of the differentiation process in various cells and tissues. In this study, we asked whether the mature phenotype of osteoblasts and adipocytes derived from human mesenchymal stem cells (hMSCs) could be altered by modulation of their membrane potential. hMSC-derived osteoblasts and adipocytes were depolarized by treatment with ouabain, a Na(+)/K(+) ATPase inhibitor, or by treatment with high concentrations of extracellular K(+). To characterize the effect of voltage modulation on the differentiated state, the depolarized cells were evaluated for (1) the loss of differentiation markers; (2) the up-regulation of stemness markers and stem properties; and (3) differences in gene expression profiles in response to voltage modulation. hMSC-derived osteoblasts and adipocytes exhibited significant down-regulation of bone and fat tissue markers in response to depolarization, despite the presence of differentiation-inducing soluble factors, suggesting that bioelectric signaling overrides biochemical signaling in the maintenance of cell state. Suppression of the osteoblast or adipocyte phenotype was not accompanied by up-regulation of genes associated with the stem state. Thus, depolarization does not activate the stem cell genetic signature and, therefore, does not induce a full reprogramming event. However, after transdifferentiating the depolarized cells to evaluate for multi-lineage potential, depolarized osteoblasts demonstrated improved ability to achieve correct adipocyte morphology compared with nondepolarized osteoblasts. The present study thus demonstrates that depolarization reduces the differentiated phenotype of hMSC-derived cells and improves their transdifferentiation capacity, but does not restore a stem-like genetic profile. Through global transcript profiling of depolarized osteoblasts, we identified pathways that may mediate the effects of voltage signaling on cell state, which will require a detailed mechanistic inquiry in future studies.
Collapse
Affiliation(s)
- Sarah Sundelacruz
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | |
Collapse
|
49
|
Notch signalling inhibits the adipogenic differentiation of single-cell-derived mesenchymal stem cell clones isolated from human adipose tissue. Cell Biol Int 2013; 36:1161-70. [PMID: 22974058 DOI: 10.1042/cbi20120288] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ADSCs (adipose-derived mesenchymal stem cells) are candidate adult stem cells for regenerative medicine. Notch signalling participates in the differentiation of a heterogeneous ADSC population. We have isolated, human adipose tissue-derived single-cell clones using a cloning ring technique and characterized for their stem cell characteristics. The role of Notch signalling in the differentiation capacity of these adipose-derived single-cell-clones has also been investigated. All 14 clones expressed embryonic and mesenchymal stem cell marker genes. These clones could differentiate into both osteogenic and adipogenic lineages. However, the differentiation potential of each clone was different. Low adipogenic clones had significantly higher mRNA expression levels of Notch 2, 3 and 4, Jagged1, as well as Delta1, compared with those of high adipogenic clones. In contrast, no changes in expression of Notch signalling component mRNA between low and high osteogenic clones was found. Notch receptor mRNA expression decreased with the adipogenic differentiation of both low and high adipogenic clones. The γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-(S)-phenylglycine t-butyl ester), enhanced adipogenic differentiation. Correspondingly, cells seeded on a Notch ligand (Jagged1) bound surface showed lower intracellular lipid accumulation. These results were noted in both low and high adipogenic clones, indicating that Notch signalling inhibited the adipogenic differentiation of adipose ADSC clones, and could be used to identify an adipogenic susceptible subpopulation for soft-tissue augmentation application.
Collapse
|
50
|
Zuo Q, Cui W, Liu F, Wang Q, Chen Z, Fan W. Co-cultivated mesenchymal stem cells support chondrocytic differentiation of articular chondrocytes. INTERNATIONAL ORTHOPAEDICS 2013; 37:747-52. [PMID: 23354690 PMCID: PMC3609966 DOI: 10.1007/s00264-013-1782-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/07/2013] [Indexed: 11/23/2022]
Abstract
Purpose This study investigated which of the reciprocal stimuli between articular chondrocytes (ACs) and mesenchymal stem cells (MSCs) played the more important role in enhancing cartilage matrix formation, and examined the relative importance of physical contact and soluble factors in the co-culture system. Methods Rat ACs and bone marrow MSCs with green fluorescent protein (GFP-BMSCs) were co-cultured in vitro with or without direct cell–cell contact at the ratio of 2:1. After co-culturing in direct cell–cell contact, ACs and GFP-BMSCs were separated by flow cytometry. The effects of different co-culture methods were analysed by quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and western blotting. Results SOX-9, COL2 and aggrecan mRNA levels and protein expression in ACs co-cultured with direct cell–cell contact were significantly higher than in ACs co-cultured without direct cell–cell contact; and similar results were found in GFP-BMSCs. After co-culture either with or without direct cell–cell contact, mRNA levels and protein expression of SOX-9, COL2 and aggrecan in GFP-BMSCs were significantly lower than in ACs in the equivalent co-culture systems. Though the expression of chondrocyte-specific proteins in GFP-BMSCs was enhanced, the protein expression was still much lower than in ACs cultured alone. Conclusions Reciprocal interactions exist between ACs and BMSCs in co-culture. The stimulating and supporting effects of BMSCs on ACs were more important in enhancing cartilage-matrix formation than the reciprocal effect of ACs on BMSCs. Both soluble factors and direct physical contact occur in AC/BMSC co-cultures, with physical contact playing a predominant, or at least very important role.
Collapse
Affiliation(s)
- Qiang Zuo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | |
Collapse
|