1
|
Abdel-Hafiz HA, Horwitz KB. Post-translational modifications of the progesterone receptors. J Steroid Biochem Mol Biol 2014; 140:80-9. [PMID: 24333793 PMCID: PMC3923415 DOI: 10.1016/j.jsbmb.2013.12.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 11/30/2013] [Accepted: 12/02/2013] [Indexed: 01/21/2023]
Abstract
Progesterone plays a key role in the development, differentiation and maintenance of female reproductive tissues and has multiple non-reproductive neural functions. Depending on the cell and tissue, the hormonal environment, growth conditions and the developmental stage, progesterone can either stimulate cell growth or inhibit it while promoting differentiation. Progesterone receptors (PRs) belong to the steroid hormone receptor superfamily of ligand-dependent transcription factors. PR proteins are subject to extensive post-translational modifications that include phosphorylation, acetylation, ubiquitination and SUMOylation. The interplay among these modifications is complex with alteration of the receptors by one factor influencing the impact of another. Control over these modifications is species-, tissue- and cell-specific. They in turn regulate multiple functions including PR stability, their subcellular localization, protein-protein interactions and transcriptional activity. These complexities may explain how tissue- and gene-specific differences in regulation are achieved in the same organism, by the same receptor protein and hormone. Here we review current knowledge of PR post-translational modifications and discuss how these may influence receptor function focusing on human breast cancer cells. There is much left to be learned. However, our understanding of this may help to identify therapeutic agents that target PR activity in tissue-specific, even gene-specific ways.
Collapse
Affiliation(s)
- Hany A Abdel-Hafiz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA.
| | - Kathryn B Horwitz
- Division of Endocrinology, Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA; Department of Pathology, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Dezitter X, Fagart J, Taront S, Fay M, Masselot B, Hétuin D, Formstecher P, Rafestin-Oblin ME, Idziorek T. A structural explanation of the effects of dissociated glucocorticoids on glucocorticoid receptor transactivation. Mol Pharmacol 2014; 85:226-36. [PMID: 24225022 DOI: 10.1124/mol.113.085860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
There is a therapeutic need for glucocorticoid receptor (GR) ligands that distinguish between the transrepression and transactivation activity of the GR, the later thought to be responsible for side effects. These ligands are known as "dissociated glucocorticoids" (dGCs). The first published dGCs, RU24782 (9α-fluoro-11β-hydroxy-16α-methylpregna-21-thiomethyl-1,4-diene-3,20-dione) and RU24858 (9α-fluoro-11β-hydroxy-16α-methylpregna-21-cyanide-1,4-diene-3,20-dione), do not have the 17α-hydroxyl group that characterizes dexamethasone (Dex; 9α-fluoro-11β,17α,21-trihydroxy-16α-methylpregna-1,4-diene-3,20-dione), and they differ from one another by having C21-thiomethyl and C21-cyanide moieties, respectively. Our aim was therefore to establish the structural basis of their activity. Both RU24782 and RU24858 induced a transactivation activity highly dependent on the GR expression level but always lower than dexamethasone. They also display less ability than dexamethasone to trigger steroid receptor coactivator 1 (SRC-1) recruitment and histone H3 acetylation. Docking studies, validated by mutagenesis experiments, revealed that dGCs are not anchored by Gln642, in contrast to Dex, which is hydrogen bonded to this residue via its 17α-hydroxyl group. This contact is essential for SRC-1 recruitment and subsequent dexamethasone-induced GR transactivation, but not transrepression. The ability of dGCs to make contacts with Ile747, for both RU24858 and RU24782 and with Asn564 for RU24858 are not strong enough to maintain GR in a conformation able to efficiently recruit SRC-1, unless SRC-1 is overexpressed. Overall, our findings provide some structural guidelines for the synthesis of potential new dissociated glucocorticoids with a better therapeutic ratio.
Collapse
Affiliation(s)
- Xavier Dezitter
- Institut National de la Santé et de la Recherche Médicale U837, Institut de Recherche pour le Cancer de Lille, Lille, France (X.D., S.T., B.M., D.H., P.F., T.I.); Institut National de la Santé et de la Recherche Médicale U773, Centre de Recherche Biomédicale Bichat-Beaujon, CRB3 (J.F., M.F., M.-E.R.-O.); and Université Paris 7- Denis Diderot, site Bichat, Paris, France (J.F., M.F., M.-E.R.-O.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Lee GS, He Y, Dougherty EJ, Jimenez-Movilla M, Avella M, Grullon S, Sharlin DS, Guo C, Blackford JA, Awasthi S, Zhang Z, Armstrong SP, London EC, Chen W, Dean J, Simons SS. Disruption of Ttll5/stamp gene (tubulin tyrosine ligase-like protein 5/SRC-1 and TIF2-associated modulatory protein gene) in male mice causes sperm malformation and infertility. J Biol Chem 2013; 288:15167-80. [PMID: 23558686 DOI: 10.1074/jbc.m113.453936] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamp(tm/tm)) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamp(tm/tm) sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamp(tm/tm) males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.
Collapse
Affiliation(s)
- Geun-Shik Lee
- Steroid Hormones Section, Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-1772, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Zalachoras I, Houtman R, Meijer OC. Understanding stress-effects in the brain via transcriptional signal transduction pathways. Neuroscience 2013; 242:97-109. [PMID: 23545270 DOI: 10.1016/j.neuroscience.2013.03.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 12/22/2022]
Abstract
Glucocorticoid hormones exert crucial effects on the brain in relation to physiology, endocrine regulation, mood and cognition. Their two receptor types, glucocorticoid and mineralocorticoid receptors (GR and MR), are members of the nuclear receptor superfamily and act in large measure as transcription factors. The outcome of MR/GR action on the genome depends on interaction with members from different protein families, which are of crucial importance for cross-talk with other neuronal and hormonal signals that impinge on the glucocorticoid sensitive circuitry. Relevant interacting proteins include other transcription factors that may either tether the receptor to the DNA, or that bind in the vicinity of GR and MR to tune the transcriptional response. In addition, transcriptional coregulator proteins constitute the actual signal transduction pathway to the transcription machinery. We review the current evidence for involvement of individual coregulators in GR-dependent effects on stress responses, and learning and memory. We discuss the use of in vitro and in silico tools to predict those coregulators that are of importance for particular brain processes. Finally, we discuss the potential of selective receptor modulators that may only allow a subset of all interactions, thus allowing more selective targeting of glucocorticoid-dependent processes in the brain.
Collapse
Affiliation(s)
- I Zalachoras
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | |
Collapse
|
5
|
Zhang Z, Sun Y, Cho YW, Chow CC, Simons SS. PA1 protein, a new competitive decelerator acting at more than one step to impede glucocorticoid receptor-mediated transactivation. J Biol Chem 2012; 288:42-58. [PMID: 23161582 DOI: 10.1074/jbc.m112.427740] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Numerous cofactors modulate the gene regulatory activity of glucocorticoid receptors (GRs) by affecting one or more of the following three major transcriptional properties: the maximal activity of agonists (A(max)), the potency of agonists (EC(50)), and the partial agonist activity of antisteroids (PAA). Here, we report that the recently described nuclear protein, Pax2 transactivation domain interaction protein (PTIP)-associated protein 1 (PA1), is a new inhibitor of GR transactivation. PA1 suppresses A(max), increases the EC(50), and reduces the PAA of an exogenous reporter gene in a manner that is independent of associated PTIP. PA1 is fully active with, and strongly binds to, the C-terminal half of GR. PA1 reverses the effects of the coactivator TIF2 on GR-mediated gene induction but is unable to augment the actions of the corepressor SMRT. Analysis of competition assays between PA1 and TIF2 with an exogenous reporter indicates that the kinetic definition of PA1 action is a competitive decelerator at two sites upstream from where TIF2 acts. With the endogenous genes IGFBP1 and IP6K3, PA1 also represses GR induction, increases the EC(50), and decreases the PAA. ChIP and re-ChIP experiments indicate that PA1 accomplishes this inhibition of the two genes via different mechanisms as follows: PA1 appears to increase GR dissociation from and reduce GR transactivation at the IGFBP1 promoter regions but blocks GR binding to the IP6K3 promoter. We conclude that PA1 is a new competitive decelerator of GR transactivation and can act at more than one molecularly defined step in a manner that depends upon the specific gene.
Collapse
Affiliation(s)
- Zhenhuan Zhang
- Steroid Hormones Section, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
6
|
Blackford JA, Guo C, Zhu R, Dougherty EJ, Chow CC, Simons SS. Identification of location and kinetically defined mechanism of cofactors and reporter genes in the cascade of steroid-regulated transactivation. J Biol Chem 2012; 287:40982-95. [PMID: 23055525 DOI: 10.1074/jbc.m112.414805] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A currently obscure area of steroid hormone action is where the component factors, including receptor and reporter gene, act. The DNA binding of factors can be precisely defined, but the location and timing of factor binding and action are usually not equivalent. These questions are addressed for several factors (e.g. glucocorticoid receptor (GR), reporter, TIF2, NCoR, NELF-A, sSMRT, and STAMP) using our recently developed competition assay. This assay reveals both the kinetically defined mechanism of factor action and where the above factors act relative to both each other and the equilibrium equivalent to the rate-limiting step, which we call the concentration limiting step (CLS). The utility of this competition assay would be greatly increased if the position of the CLS is invariant and if the factor acting at the CLS is known. Here we report that the exogenous GREtkLUC reporter acts at the CLS as an accelerator for gene induction by GRs in U2OS cells. This mechanism of reporter function at the CLS persists with different reporters, factors, receptors, and cell types. We, therefore, propose that the reporter gene always acts at the CLS during gene induction and constitutes a landmark around which one can order the actions of all other factors. Current data suggest that how and where GR and the short form of SMRT act is also constant. These results validate a novel and rational methodology for identifying distally acting factors that would be attractive targets for pharmaceutical intervention in the treatment of diseases involving GR-regulated genes.
Collapse
Affiliation(s)
- John A Blackford
- Steroid Hormones Section, Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
7
|
Courtin A, Communal L, Vilasco M, Cimino D, Mourra N, de Bortoli M, Taverna D, Faussat AM, Chaouat M, Forgez P, Gompel A. Glucocorticoid receptor activity discriminates between progesterone and medroxyprogesterone acetate effects in breast cells. Breast Cancer Res Treat 2011; 131:49-63. [DOI: 10.1007/s10549-011-1394-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 02/04/2011] [Indexed: 02/07/2023]
|
8
|
Abstract
The steady state dose-response curve of ligand-mediated gene induction usually appears to precisely follow a first-order Hill equation (Hill coefficient equal to 1). Additionally, various cofactors/reagents can affect both the potency and the maximum activity of gene induction in a gene-specific manner. Recently, we have developed a general theory for which an unspecified sequence of steps or reactions yields a first-order Hill dose-response curve (FHDC) for plots of the final product versus initial agonist concentration. The theory requires only that individual reactions "dissociate" from the downstream reactions leading to the final product, which implies that intermediate complexes are weakly bound or exist only transiently. We show how the theory can be utilized to make predictions of previously unidentified mechanisms and the site of action of cofactors/reagents. The theory is general and can be applied to any biochemical reaction that has a FHDC.
Collapse
Affiliation(s)
- Carson C Chow
- Laboratory of Biological Modeling, NIDDK/CEB, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
9
|
Lee GS, Simons SS. Ligand binding domain mutations of the glucocorticoid receptor selectively modify the effects with, but not binding of, cofactors. Biochemistry 2010; 50:356-66. [PMID: 21142156 DOI: 10.1021/bi101792d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We previously reported that several point mutations in the ligand binding domain (LBD) of glucocorticoid receptors (GRs) marginally affect the binding affinity of the synthetic glucocorticoids dexamethasone (Dex) and deacylcortivazol (DAC). However, these mutations dramatically alter the efficacy (A(max)) and potency (EC(50)) of agonists, along with the partial agonist activity (PAA) of the antisteroid Dex-mesylate (DM), for gene induction and repression in a steroid-dependent manner. This was proposed to result, in part, from altered protein-protein interactions in the complex of GR with the coactivator TIF2 despite normal TIF2 binding. To explore the generality of this phenomenon, we now ask whether these mutations also affect the transactivation properties, but not binding, of other GR-bound factors. We find that an elevated concentration of GR, to probe unidentified cofactors, or of the comodulator Ubc9 does not reverse the effects of GR LBD mutations that increase the EC(50) and lower the PAA with the GREtkLUC reporter in both CV-1 and U2OS cells. This behavior is more dramatic with Ubc9 and the isolated GR LBD fused to the GAL4 DNA binding domain, despite normal binding of Ubc9 to the mutant GRs. Similar effects, albeit gene, steroid, and transcriptional property-specific, are seen with full-length GRs and three endogenous genes in U2OS cells. Thus, changes in simple steady-state binding capacities of mutant receptors for factors cannot account for the modified transcriptional properties. In all cases, the nuclear translocation of Dex- and DAC-bound wild-type and mutant receptors is the same. These results are consistent with the earlier results with TIF2 and support the hypothesis that small changes in the GR LBD can alter the activities of the bound cofactor without modifying cofactor binding. We propose that this separation of binding and the modulation of transactivation parameters occurs for a wide variety of GR-associated cofactors.
Collapse
Affiliation(s)
- Geun-Shik Lee
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases/Clinical Endocrinology Branch, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | |
Collapse
|
10
|
Simons SS. Glucocorticoid receptor cofactors as therapeutic targets. Curr Opin Pharmacol 2010; 10:613-9. [PMID: 20801081 DOI: 10.1016/j.coph.2010.08.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 10/19/2022]
Abstract
Numerous transcriptional cofactors (e.g. coactivators, corepressors, and comodulators) are known to alter the maximal transcriptional activity (A(max)) in gene induction and repression by steroid receptors in general and glucocorticoid receptors (GRs) in particular. However, recent data advance the earlier reports that these same factors also modify other parameters of glucocorticoid receptor transcriptional activity: the potency of agonists (or EC₅₀ and the partial agonist activity of antisteroids (or PAA). In several instances, factors modulate the EC₅₀ and/or PAA without changing A(max). Thus, studies of all three parameters reveal new factors acting at various stages of receptor action, thereby increasing the potential therapeutic targets for adjusting GR actions in pathological situations.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Bldg. 10, Room 8N-307B, NIDDK/CEB, National Institutes of Health (NIH), Bethesda, MD 20892-1772, USA.
| |
Collapse
|
11
|
He Y, Blackford JA, Kohn EC, Simons SS. STAMP alters the growth of transformed and ovarian cancer cells. BMC Cancer 2010; 10:128. [PMID: 20374646 PMCID: PMC2858746 DOI: 10.1186/1471-2407-10-128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 04/07/2010] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC50) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. METHODS The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. RESULTS Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. CONCLUSIONS This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This cell-line dependency is also seen for STAMP effects on glucocorticoid receptor-mediated transactivation. These preliminary findings suggest that further studies of STAMP in ovarian cancer may yield insight into ovarian cancer proliferation and may be useful in the development of biomarker panels.
Collapse
Affiliation(s)
- Yuanzheng He
- Steroid Hormones Section, Clinical Endocrinology Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | | | | | |
Collapse
|
12
|
Luo M, Simons SS. Modulation of glucocorticoid receptor induction properties by cofactors in peripheral blood mononuclear cells. Hum Immunol 2009; 70:785-9. [PMID: 19665040 DOI: 10.1016/j.humimm.2009.07.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 07/17/2009] [Accepted: 07/30/2009] [Indexed: 01/27/2023]
Abstract
Glucocorticoids are widely used for their anti-inflammatory and immunosuppressive properties. Changing concentrations of transcriptional cofactors or chemicals in transiently transfected tissue culture cells modify several properties of glucocorticoid receptor-regulated gene expression including total activity (A(max)), agonist steroid potency (EC(50)), and the percentage of full agonist activity for antisteroids (percent partial agonist activity). However, no reports exist for endogenous genes in primary human cells. Here we document that reduced concentrations of TIF2, a p160 coactivator, in peripheral blood mononuclear cells modulate these parameters for endogenous genes in a gene-selective manner, thus establishing the physiological relevance of this behavior.
Collapse
Affiliation(s)
- Min Luo
- Steroid Hormones Section, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Endocrinology Branch, National Institutes of Health, Bethesda, MD 20892-1772, USA
| | | |
Collapse
|
13
|
Ronacher K, Hadley K, Avenant C, Stubsrud E, Simons SS, Louw A, Hapgood JP. Ligand-selective transactivation and transrepression via the glucocorticoid receptor: role of cofactor interaction. Mol Cell Endocrinol 2009; 299:219-31. [PMID: 19007848 DOI: 10.1016/j.mce.2008.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 10/12/2008] [Indexed: 01/08/2023]
Abstract
The mechanisms that determine ligand-selective transcriptional responses by the glucocorticoid receptor (GR) are not fully understood. Using a wide panel of GR ligands, we investigated the relationships between the potency and maximal response for transactivation via a glucocorticoid response element (GRE) and transrepression via both nuclear factor small ka, CyrillicB (NFsmall ka, CyrillicB) and activator protein-1 (AP-1) sites, relative binding affinity for the GR, as well as interaction with both coactivators and corepressors. The results showed ligand-selective differences in potency and efficacy for each promoter, as well as for a particular ligand between the three promoters. Ligand potency correlated with relative affinity for the GR for agonists and partial agonists in transactivation but not for transrepression. Maximal response was unrelated to relative affinity of ligand for GR for both transactivation and transrepression. A good and significant correlation between full length coactivator binding in two-hybrid assays and efficacy as well as potency of different receptor-steroid complexes for both transactivation and transrepression supports a major role for coactivator recruitment in determination of ligand-selective transcriptional activity. Furthermore, ligand-selective GR binding to GRIP-1, as determined by both two-hybrid and DNA pull down assays, correlated positively with ligand-selective efficacy for transactivation of both a synthetic GRE reporter with expressed GR as well as of an endogenous gene via endogenous GR. The receptor interacting domain of the corepressor SMRT exhibited strong interaction with both agonists and partial agonists, similar to the results for coactivators, suggesting a possible role for SMRT in activation of transcription. However, there was no correlation between ligand affinity for the GR and cofactor interaction. These results provide strong quantitative biochemical support for a model in which GR-mediated ligand-selective differential interaction with GRIP-1, SRC-1A, NCoR and SMRT is a major determinant of ligand-selective and promoter-specific differences in potency and efficacy, for both transactivation and transrepression.
Collapse
Affiliation(s)
- Katharina Ronacher
- Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
14
|
Sun Y, Tao YG, Kagan BL, He Y, Simons SS. Modulation of transcription parameters in glucocorticoid receptor-mediated repression. Mol Cell Endocrinol 2008; 295:59-69. [PMID: 18583028 PMCID: PMC2662735 DOI: 10.1016/j.mce.2008.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 05/09/2008] [Accepted: 05/13/2008] [Indexed: 12/25/2022]
Abstract
Glucocorticoid receptors (GRs) affect both gene induction and gene repression. The disparities of receptor binding to DNA and increased vs. decreased gene expression have suggested significant mechanistic differences between GR-mediated induction and repression. Numerous transcription factors are known to modulate three parameters of gene induction: the total activity (Vmax) and position of the dose-response curve with glucocorticoids (EC50) and the percent partial agonist activity with antiglucocorticoids. We have examined the effects on GR-mediated repression of five modulators (coactivators TIF2 [GRIP1, SRC-2] and SRC-1, corepressor SMRT, and comodulators STAMP and Ubc9), a glucocorticoid steroid (deacylcortivazol [DAC]) of very different structure, and an inhibitor of histone deacetylation (trichostatin A [TSA]). These factors interact with different domains of GR and thus are sensitive topological probes of GR action. These agents altered the Vmax, EC50, and percent partial agonist activity of endogenous and exogenous repressed genes similarly to that previously observed for GR-regulated gene induction. Collectively, these results suggest that GR-mediated induction and repression share many of the same molecular interactions and that the causes for different levels of gene transcription arise from more distal downstream steps.
Collapse
Affiliation(s)
| | | | | | | | - S. Stoney Simons
- Address correspondence to Dr. S. Stoney Simons, Jr., Bldg. 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772 (Phone: 301-496-6796; FAX: 301-402-3572; e-mail: )
| |
Collapse
|
15
|
Simons SS. What goes on behind closed doors: physiological versus pharmacological steroid hormone actions. Bioessays 2008; 30:744-56. [PMID: 18623071 DOI: 10.1002/bies.20792] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Steroid-hormone-activated receptor proteins are among the best-understood class of factors for altering gene transcription in cells. Steroid receptors are of major importance in maintaining normal human physiology by responding to circulating concentrations of steroid in the nM range. Nonetheless, most studies of steroid receptor action have been conducted using the supra-physiological conditions of saturating concentrations (> or =100 nM) of potent synthetic steroid agonists. Here we summarize the recent developments arising from experiments using two clinically relevant conditions: subsaturating concentrations of agonist (to mimic the circulating concentrations in mammals) and saturating concentrations of antagonists (which are employed in endocrine therapies to block the actions of endogenous steroids). These studies have revealed new facets of steroid hormone action that could not be uncovered by conventional experiments with saturating concentrations of agonist steroids, such as a plethora of factors/conditions for the differential control of gene expression by physiological levels of steroid, a rational approach for examining the gene-specific variations in partial agonist activity of antisteroids, and a dissociation of steroid potency and efficacy that implies the existence of separate, and possibly novel, mechanistic steps and cofactors.
Collapse
Affiliation(s)
- S Stoney Simons
- Steroid Hormones Section, Bldg 10, Room 8N-307B, NIDDK/CEB, NIH, Bethesda, MD 20892-1772, USA
| |
Collapse
|