1
|
Mansell JP, Tanatani A, Kagechika H. An N-Cyanoamide Derivative of Lithocholic Acid Co-Operates with Lysophosphatidic Acid to Promote Human Osteoblast (MG63) Differentiation. Biomolecules 2023; 13:1113. [PMID: 37509149 PMCID: PMC10377543 DOI: 10.3390/biom13071113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Less-calcaemic vitamin D receptor (VDR) agonists have the potential to promote osteoblast maturation in a bone regenerative setting. The emergence of lithocholic acid (LCA) as a bona fide VDR agonist holds promise as an adjunct for arthroplasty following reports that it was less calcaemic than calcitriol (1,25D). However, LCA and some earlier derivatives, e.g., LCA acetate, had to be used at much higher concentrations than 1,25D to elicit comparable effects on osteoblasts. However, recent developments have led to the generation of far more potent LCA derivatives that even outperform the efficacy of 1,25D. These new compounds include the cyanoamide derivative, Dcha-150 (also known as AY2-79). In light of this significant development, we sought to ascertain the ability of Dcha-150 to promote human osteoblast maturation by monitoring alkaline phosphatase (ALP) and osteocalcin (OC) expression. The treatment of MG63 cells with Dcha-150 led to the production of OC. When Dcha-150 was co-administered with lysophosphatidic acid (LPA) or an LPA analogue, a synergistic increase in ALP activity occurred, with Dcha-150 showing greater potency compared to 1,25D. We also provide evidence that this synergy is likely attributed to the actions of myocardin-related transcription factor (MRTF)-serum response factor (SRF) gene transcription following LPA-receptor-induced cytoskeletal reorganisation.
Collapse
Affiliation(s)
- Jason P Mansell
- School of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Aya Tanatani
- Department of Chemistry, Faculty of Science, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Hiroyuki Kagechika
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
2
|
Shiel AI, Ayre WN, Blom AW, Hallam KR, Heard PJ, Payton O, Picco L, Mansell JP. Development of a facile fluorophosphonate-functionalised titanium surface for potential orthopaedic applications. J Orthop Translat 2020; 23:140-151. [PMID: 32818135 PMCID: PMC7427324 DOI: 10.1016/j.jot.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Background Aseptic loosening of total joint replacements (TJRs) continues to be the main cause of implant failures. The socioeconomic impact of surgical revisions is hugely significant; in the United Kingdom alone, it is estimated that £137 m is spent annually on revision arthroplasties. Enhancing the longevity of titanium implants will help reduce the incidence and overall cost of failed devices. Methods In realising the development of a superior titanium technology, we exploited the natural affinity of titanium for phosphonic acids and developed a facile means of coating the metal with (3S)1-fluoro-3-hydroxy-4-(oleoyloxy)butyl-1-phosphonate (FHBP), a phosphatase-resistant analogue of lysophosphatidic acid (LPA). Importantly LPA and selected LPA analogues like FHBP synergistically cooperate with calcitriol to promote human osteoblast formation and maturation. Results Herein, we provide evidence that simply immersing titanium in aqueous solutions of FHBP afforded a surface that was superior to unmodified metal at enhancing osteoblast maturation. Importantly, FHBP-functionalised titanium remained stable to 2 years of ambient storage, resisted ∼35 kGy of gamma irradiation and survived implantation into a bone substitute (Sawbone™) and irrigation. Conclusion The facile step we have taken to modify titanium and the robustness of the final surface finish are appealing properties that are likely to attract the attention of implant manufacturers in the future. The translational potential of this article We have generated a functionalised titanium (Ti) surface by simply immersing Ti in aqueous solutions of a bioactive lipid. As a facile procedure it will have greater appeal to implant manufacturers compared to onerous and costly developmental processes.
Collapse
Affiliation(s)
- Anna I Shiel
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Wayne N Ayre
- School of Dentistry, Cardiff University, Cardiff, CF14 4XY, UK
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Southmead, Bristol, BS10 5NB, UK
| | - Keith R Hallam
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Peter J Heard
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Oliver Payton
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Loren Picco
- University of Bristol, Interface Analysis Centre, HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, UK.,Department of Physics, Virginia Commonwealth University, Richmond, 23284, VA, USA
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| |
Collapse
|
3
|
Wu XN, Ma YY, Hao ZC, Wang H. [Research progress on the biological regulatory function of lysophosphatidic acid in bone tissue cells]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:324-329. [PMID: 32573143 DOI: 10.7518/hxkq.2020.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a small phospholipid that is present in all eukaryotic tissues and blood plasma. As an extracellular signaling molecule, LPA mediates many cellular functions by binding to six known G protein-coupled receptors and activating their downstream signaling pathways. These functions indicate that LPA may play important roles in many biological processes that include organismal development, wound healing, and carcinogenesis. Recently, many studies have found that LPA has various biological effects in different kinds of bone cells. These findings suggest that LPA is a potent regulator of bone development and remodeling and holds promising application potential in bone tissue engineering. Here, we review the recent progress on the biological regulatory function of LPA in bone tissue cells.
Collapse
Affiliation(s)
- Xiang-Nan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China;Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yuan-Yuan Ma
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zhi-Chao Hao
- Hospital of Stomatology, Sun Yat-sen University, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Wu X, Ma Y, Su N, Shen J, Zhang H, Wang H. Lysophosphatidic acid: Its role in bone cell biology and potential for use in bone regeneration. Prostaglandins Other Lipid Mediat 2019; 143:106335. [PMID: 31054330 DOI: 10.1016/j.prostaglandins.2019.106335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 02/05/2023]
Abstract
Lysophosphatidic acid (LPA) is a simple phospholipid that exerts pleiotropic effects on numerous cell types by activating its family of cognate G protein-coupled receptors (GPCRs) and participates in many biological processes, including organismal development, wound healing, and carcinogenesis. Bone cells, such as bone marrow mesenchymal stromal (stem) cells (BMSCs), osteoblasts, osteocytes and osteoclasts play essential roles in bone homeostasis and repair. Previous studies have identified the presence of specific LPA receptors in these bone cells. In recent years, an increasing number of cellular effects of LPA, such as the induction of cell proliferation, survival, migration, differentiation and cytokine secretion, have been found in different bone cells. Moreover, some biomaterials containing LPA have shown the ability to enhance osteogenesis. This review will focus on findings associated with LPA functions in these bone cells and present current studies related to the application of LPA in bone regenerative medicine. Further understanding this information will help us develop better strategies for bone healing.
Collapse
Affiliation(s)
- Xiangnan Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuanyuan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055, China
| | - Naichuan Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiefei Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hai Zhang
- Department of Restorative Dentistry, School of Dentistry, University of Washington, Seattle, WA, 98195, USA
| | - Hang Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Neary G, Blom AW, Shiel AI, Wheway G, Mansell JP. Development and biological evaluation of fluorophosphonate-modified hydroxyapatite for orthopaedic applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:122. [PMID: 30032456 DOI: 10.1007/s10856-018-6130-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
There is an incentive to functionalise hydroxyapatite (HA) for orthopaedic implant use with bioactive agents to encourage superior integration of the implants into host bone. One such agent is (3S) 1-fluoro-3-hydroxy-4-(oleoyloxy) butyl-1-phosphonate (FHBP), a phosphatase-resistant lysophosphatidic acid (LPA) analogue. We investigated the effect of an FHBP-HA coating on the maturation of human (MG63) osteoblast-like cells. Optimal coating conditions were identified and cell maturation on modified and unmodified, control HA surfaces was assessed. Stress tests were performed to evaluate coating survivorship after exposure to mechanical and thermal insults that are routinely encountered in the clinical environment. MG63 maturation was found to be three times greater on FHBP-modified HA compared to controls (p < 0.0001). There was no significant loss of coating bioactivity after autoclaving (P = 0.9813) although functionality declined by 67% after mechanical cleaning and reuse (p < 0.0001). The bioactivity of modified disks was significantly greater than that of controls following storage for up to six months (p < 0.001). Herein we demonstrate that HA can be functionalised with FHBP in a facile, scalable manner and that this novel surface has the capacity to enhance osteoblast maturation. Improving the biological performance of HA in a bone regenerative setting could be realised through the simple conjugation of bioactive LPA species in the future. Depicted is a stylised summary of hydroxyapatite (HA) surface modification using an analogue of lysophosphatidic acid, FHBP. a HA surfaces are simply steeped in an aqueous solution of 2 μM FHBP. b The polar head group of some FHBP molecules react with available hydroxyl residues at the mineral surfaces forming robust HA-O-P bonds leaving acyl chain extensions perpendicular to the HA surface. These fatty acyl chains provide points of integration for other FHBP molecules to facilitate their self-assembly. This final surface finish enhanced the human osteoblast maturation response to calcitriol, the active vitamin D3 metabolite.
Collapse
Affiliation(s)
- Gráinne Neary
- Musculoskeletal Research Unit, University of Bristol, Level 1 Learning and Research Building, Bristol, BS10 5NB, UK.
| | - Ashley W Blom
- Musculoskeletal Research Unit, University of Bristol, Level 1 Learning and Research Building, Bristol, BS10 5NB, UK
| | - Anna I Shiel
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Gabrielle Wheway
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Jason P Mansell
- Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
6
|
Li Y, Yuan J, Wang Q, Sun L, Sha Y, Li Y, Wang L, Wang Z, Ma Y, Cao H. The collective influence of 1, 25-dihydroxyvitamin D 3 with physiological fluid shear stress on osteoblasts. Steroids 2018; 129:9-16. [PMID: 29155218 DOI: 10.1016/j.steroids.2017.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/23/2017] [Accepted: 11/12/2017] [Indexed: 11/27/2022]
Abstract
1, 25-dihydroxyvitamin D3 (1, 25 (OH)2 D3) and mechanical stimuli in physiological environment contributes greatly to osteoporosis pathogenesis. Wide investigations have been conducted on how 1, 25-dihydroxyvitamin D3 and mechanical stimuli separately impact osteoblasts. This study reports the collective influences of 1, 25-dihydroxyvitamin D3 and flow shear stress (FSS) on biological functions of osteoblasts. 1, 25 (OH)2 D3 were prepared in various kinds of concentrations (0, 1, 10, 100 nmmol/L), while physiological fluid shear stress (12 dynes/cm2) was produced by using a parallel-plate fluid flow system. 1, 25 (OH)2 D3 affects the responses of ROBs to FSS, including the inhibition of NO release and cell proliferation as well as the promotion of PGE2 release and cell differentiation. These findings provide a possible mechanism by which 1, 25(OH)2 D3 influences osteoblasts' responses to FSS, thus most probably providing guidance for the selection of 1, 25(OH)2 D3 concentration and mechanical loading in order to produce functional bone tissues in vitro.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China.
| | - Jiafeng Yuan
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Qianwen Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lijie Sun
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yunying Sha
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yanxiang Li
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Lizhong Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Zhonghua Wang
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Yonggang Ma
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| | - Hui Cao
- School of Pharmacy, Taizhou Polytechnic College, Taizhou 225300, China; Bone Tissue Engineering Research Center of Taizhou, Taizhou 225300, China
| |
Collapse
|
7
|
Xue L, Jiang Y, Han T, Zhang N, Qin L, Xin H, Zhang Q. Comparative proteomic and metabolomic analysis reveal the antiosteoporotic molecular mechanism of icariin from Epimedium brevicornu maxim. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:370-381. [PMID: 27422162 DOI: 10.1016/j.jep.2016.07.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Icariin, a principal flavonoid glycoside of Epimedium brevicornu Maxim, has been widely proved to possess antiosteoporotic activity with promoting bone formation and decreasing bone resorption. However, the involving mechanisms remain unclear. AIM OF THE STUDY To clear a global insight of signal pathways involved in anti-osteoporotic mechanism of icariin at proteins and metabolites level by integrating the proteomics and NMR metabonomics, in a systems biology approach. MATERIAL AND METHODS Mice were divided into sham, OVX model and icariin-treated OVX group, after 90 days treatment, difference gel electrophoresis combined with MALDI-TOF/TOF proteomics analysis on bone femur and serum metabolomics were carried out for monitor intracellular processes and elucidate anti-osteoporotic mechanism of icariin. Osteoblast and osteoclast were applied to evaluate the potential signal pathways. RESULTS Twenty three proteins in bone femur, and 8 metabolites in serum, were significantly altered and identified, involving in bone remodeling, energy metabolism, cytoskeleton, lipid metabolism, MAPK signaling, Ca2+ signaling et, al. Furthermore, animal experiment show icariin could enhance the BMD and BMC, decrease CTX-I level in ovariectomized mice. The mitochondrial membrane potential and the intracellular ATP levels were increased significantly, and the cytoskeleton were improved in icariin-treatment osteoblast and osteoclast. Icariin also increased mRNA expression of Runx2 and osterix of OB, decreased CTR and CAII mRNA expression and protein expression of P38 and JNK. However, icariin did not reveal any inhibition of the collagenolytic activity of cathepsin K, mRNA expression of MMP-9 and protein expression of ERK in osteoclast. CONCLUSION we consider icariin as multi-targeting compounds for treating with osteoporosis, involve initiating osteoblastogenesis, inhibiting adipogenesis, and preventing osteoclast differentiation.
Collapse
MESH Headings
- Adipogenesis/drug effects
- Animals
- Biomarkers/blood
- Bone Density/drug effects
- Bone Density Conservation Agents/isolation & purification
- Bone Density Conservation Agents/pharmacology
- Bone Remodeling/drug effects
- Cell Differentiation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Electrophoresis, Gel, Two-Dimensional
- Epimedium/chemistry
- Female
- Femur/drug effects
- Femur/metabolism
- Flavonoids/isolation & purification
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Metabolomics/methods
- Mice, Inbred ICR
- Osteoblasts/drug effects
- Osteoblasts/metabolism
- Osteoclasts/drug effects
- Osteoclasts/metabolism
- Osteoporosis/blood
- Osteoporosis/drug therapy
- Osteoporosis/genetics
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Proteomics/methods
- Proton Magnetic Resonance Spectroscopy
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Liming Xue
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Chemical Toxicity, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China; Department of Oral Biological and Medical Sciences, The University of British Columbia, Vancouver, BC, Canada V6T1Z3
| | - Yiping Jiang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Naidan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Luping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Hailiang Xin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Qiaoyan Zhang
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
8
|
Mansell J, Cooke M, Read M, Rudd H, Shiel A, Wilkins K, Manso M. Chitinase 3-like 1 expression by human (MG63) osteoblasts in response to lysophosphatidic acid and 1,25-dihydroxyvitamin D3. Biochimie 2016; 128-129:193-200. [DOI: 10.1016/j.biochi.2016.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/25/2016] [Indexed: 01/05/2023]
|
9
|
Fajol A, Honisch S, Zhang B, Schmidt S, Alkahtani S, Alarifi S, Lang F, Stournaras C, Föller M. Fibroblast growth factor (Fgf) 23 gene transcription depends on actin cytoskeleton reorganization. FEBS Lett 2016; 590:705-15. [DOI: 10.1002/1873-3468.12096] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/27/2016] [Accepted: 02/11/2016] [Indexed: 11/12/2022]
Affiliation(s)
- Abul Fajol
- Department of Physiology; University of Tübingen; Germany
| | - Sabina Honisch
- Department of Physiology; University of Tübingen; Germany
| | - Bingbing Zhang
- Department of Physiology; University of Tübingen; Germany
| | | | - Saad Alkahtani
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Saud Alarifi
- Department of Zoology; Science College; King Saud University; Riyadh Saudi Arabia
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Florian Lang
- Department of Physiology; University of Tübingen; Germany
| | - Christos Stournaras
- Department of Physiology; University of Tübingen; Germany
- Department of Biochemistry; University of Crete Medical School; Heraklion Greece
| | - Michael Föller
- Institute of Agricultural and Nutritional Sciences; Martin-Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
10
|
Lancaster ST, Blackburn J, Blom A, Makishima M, Ishizawa M, Mansell JP. 24,25-Dihydroxyvitamin D3 cooperates with a stable, fluoromethylene LPA receptor agonist to secure human (MG63) osteoblast maturation. Steroids 2014; 83:52-61. [PMID: 24513053 DOI: 10.1016/j.steroids.2014.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/18/2013] [Accepted: 01/27/2014] [Indexed: 12/29/2022]
Abstract
Vitamin D receptor (VDR) agonists supporting human osteoblast (hOB) differentiation in the absence of bone resorption are attractive agents in a bone regenerative setting. One potential candidate fulfilling these roles is 24,25-dihydroxy vitamin D3 (24,25D). Over forty years ago it was reported that supraphysiological levels of 24,25D could stimulate intestinal calcium uptake and aid bone repair without causing bone calcium mobilisation. VDR agonists co-operate with certain growth factors to enhance hOB differentiation but whether 24,25D might act similarly in promoting cellular maturation has not been described. Given our discovery that lysophosphatidic acid (LPA) co-operated with VDR agonists to enhance hOB maturation, we co-treated MG63 hOBs with 24,25D and a phosphatase-resistant LPA analog. In isolation 24,25D inhibited proliferation and stimulated osteocalcin expression. When co-administered with the LPA analog there were synergistic increases in alkaline phosphatase (ALP). These are encouraging findings which may help realise the future application of 24,25D in promoting osseous repair.
Collapse
Affiliation(s)
- Sarah Tamar Lancaster
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Julia Blackburn
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Ashley Blom
- Musculoskeletal Research Unit, Avon Orthopaedic Centre, Southmead Hospital, Bristol BS10 5NB, UK
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Jason Peter Mansell
- Department of Biological, Biomedical & Analytical Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK.
| |
Collapse
|
11
|
Lancaster S, Mansell JP. The role of lysophosphatidic acid on human osteoblast formation, maturation and the implications for bone health and disease. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.12.86] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Salles JP, Laurencin-Dalicieux S, Conte-Auriol F, Briand-Mésange F, Gennero I. Bone defects in LPA receptor genetically modified mice. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:93-8. [PMID: 22867754 DOI: 10.1016/j.bbalip.2012.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 07/20/2012] [Accepted: 07/24/2012] [Indexed: 12/24/2022]
Abstract
LPA and LPA(1) have been shown to increase osteoblastic proliferation and differentiation as well as activation of osteoclasts. Cell and animal model studies have suggested that LPA is produced by bone cells and bone tissues. We obtained data from invalidated mice which support the hypothesis that LPA(1) is involved in bone development by promoting osteogenesis. LPA(1)-invalidated mice demonstrate growth and sternal and costal abnormalities, which highlights the specific roles of LPA(1) during bone development. Microcomputed tomography and histological analysis demonstrate osteoporosis in the trabecular and cortical bone of LPA(1)-invalidated mice. Moreover, bone marrow mesenchymal progenitors from these mice displayed decreased osteoblastic differentiation. Infrared analysis did not indicate osteomalacia in the bone tissue of LPA(1)-invalidated mice. LPA(1) displays opposite effects to LPA(4) on the related G proteins G(i) and G(s), responsible for decrease and increase of the cAMP level respectively, which itself is essential to the control of osteoblastic differentiation. The opposite effects of LPA(1) and LPA(4) during osteoblastic differentiation support the possibility that new pharmacological agents derived from the LPA pathways could be found and used in clinical practice to positively influence bone formation and treat osteoporosis. The paracrine effect of LPA is potentially modulated by its concentration in bone tissues, which may result from various intracellular and extracellular pathways. The relevance of LPA(1) in bone remodeling, as a receptor able to influence both osteoblast and osteoclast activity, still deserves further clarification. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- Jean Pierre Salles
- Unité d'Endocrinologie, Maladies Osseuses, Gynécologie et Génétique, Hôpital des Enfants, Toulouse University Hospital, Toulouse, France.
| | | | | | | | | |
Collapse
|
13
|
VANDROVCOVÁ M, DOUGLAS T, HAUK D, GRÖSSNER-SCHREIBER B, WILTFANG J, BAČÁKOVÁ L, WARNKE PH. Influence of Collagen and Chondroitin Sulfate (CS) Coatings on Poly-(Lactide-co-Glycolide) (PLGA) on MG 63 Osteoblast-Like Cells. Physiol Res 2011; 60:797-813. [DOI: 10.33549/physiolres.931994] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Poly-(lactide-co-glycolide) (PLGA) is an FDA-approved biodegradable polymer which has been widely used as a scaffold for tissue engineering applications. Collagen has been used as a coating material for bone contact materials, but relatively little interest has focused on biomimetic coating of PLGA with extracellular matrix components such as collagen and the glycosaminoglycan chondroitin sulfate (CS). In this study, PLGA films were coated with collagen type I or collagen I with CS (collagen I/CS) to investigate the effect of CS on the behaviour of the osteoblastic cell line MG 63. Collagen I/CS coatings promoted a significant increase in cell number after 3 days (in comparison to PLGA) and after 7 days (in comparison to PLGA and collagen-coated PLGA). No influence of collagen I or collagen I/CS coatings on the spreading area after 1 day of culture was observed. However, the cells on collagen I/CS formed numerous filopodia and displayed well developed vinculin-containing focal adhesion plaques. Moreover, these cells contained a significantly higher concentration of osteocalcin, measured per mg of protein, than the cells on the pure collagen coating. Thus, it can be concluded that collagen I/CS coatings promote MG 63 cell proliferation, improve cell adhesion and enhance osteogenic cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | - L. BAČÁKOVÁ
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | |
Collapse
|
14
|
Mansell JP, Barbour M, Moore C, Nowghani M, Pabbruwe M, Sjostrom T, Blom AW. The synergistic effects of lysophosphatidic acid receptor agonists and calcitriol on MG63 osteoblast maturation at titanium and hydroxyapatite surfaces. Biomaterials 2009; 31:199-206. [PMID: 19796809 DOI: 10.1016/j.biomaterials.2009.09.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 09/10/2009] [Indexed: 01/08/2023]
Abstract
Successful osseointegration stems from the provision of a mechanically competent mineralised matrix at the implant site. Mature osteoblasts are the cells responsible for achieving this and a key factor for ensuring healthy bone tissue is associated with prosthetic materials will be 1 alpha,25 dihydroxy vitamin D3 (calcitriol). However it is known that calcitriol per se does not promote osteoblast maturation, rather the osteoblasts need to be in receipt of calcitriol in combination with selected growth factors in order to undergo a robust maturation response. Herein we report how agonists of the lysophosphatidic acid (LPA) receptor, LPA and (2S)-OMPT, synergistically co-operate with calcitriol to secure osteoblast maturation for cells grown upon two widely used bone biomaterials, titanium and hydroxyapatite. Efforts could now be focussed on functionalizing these materials with LPA receptor agonists to support in vivo calcitriol-induced osseointegration via heightened osteoblast maturation responses.
Collapse
Affiliation(s)
- Jason P Mansell
- Department of Oral & Dental Science, University of Bristol Dental School, Lower Maudlin St., Bristol BS1 2LY, UK.
| | | | | | | | | | | | | |
Collapse
|