1
|
Charif SE, Inserra PIF, Villarreal FM, Schmidt AR, Cortasa SA, Proietto S, Corso MC, Llanos Dumont MI, Di Giorgio NP, Halperin J, Vitullo AD, Dorfman VB. Light/darkness modulation of the hypothalamic-pituitary-ovarian axis in the plains vizcacha, Lagostomus maximus, a seasonal breeding species. Gen Comp Endocrinol 2025; 366:114714. [PMID: 40139328 DOI: 10.1016/j.ygcen.2025.114714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 03/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Photoperiod is the main environmental signal that affects animal behavior and reproduction. Light stimulus is traduced by a neural pathway that modulates pineal gland melatonin release, which synchronizes physiologic functions with day duration, highly influencing seasonal reproduction. The plains vizcacha (Lagostomus maximus) is a Hystricomorph rodent with seasonal reproduction that inhabits the Neotropic in South America. The aim of this work was to elucidate the effect of light/darkness exposition on the reproductive hypothalamic-pituitary-ovarian (HPO) axis in the female plains vizcacha. During 15 days, animals were subjected to different light/darkness regimens (Control group, CTL: 12:12 h dark:light; Darkness group, DARK: continuous darkness; Light group, LIGHT: continuous light). The melatoninergic system and reproductive hormones were evaluated. Plasma melatonin levels significantly decreased in DARK whereas both melatonin receptors (MT1 and MT2) expression significantly increased in the hypothalamus and decreased in the pituitary gland, and only MT1 expression increased in the ovaries. Continuous light did not induce significant variations in melatonin levels related to CTL, however, MTs expression changed at pituitary and ovary levels. Strikingly, both light/darkness regimens increased reproductive hormone expression. While darkness induced hypothalamic gonadotropin-releasing hormone (GnRH) expression and estradiol (E2) secretion, light increased LH and progesterone (P4) secretion. In conclusion, light availability may impact the reproductive axis of plains vizcacha inducing hormonal changes, with an organ-specific response, and sustaining HPO axis activity, thus ensuring reproduction. Environmental light and darkness, their availability and exposure length, could synchronize the reproductive axis in seasonal breeding species like the plains vizcacha. New & Noteworthy: Hypothalamic, pituitary, and ovarian variations were induced by continuous light or darkness in the plains vizcacha. Plasma melatonin decreased by continuous darkness-inducing hypothalamic, pituitary, and ovarian melatonin receptors variations. Fifteen days of continuous darkness induced GnRH, LH, and estradiol secretion, while 15 days of continuous light induced LH and P4 secretion. Environmental light/darkness would synchronize the reproductive axis in seasonal breeding species like the plains vizcacha.
Collapse
Affiliation(s)
- Santiago Elías Charif
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Technology Institute (INTEC), Universidad Argentina de la Empresa (UADE), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Pablo Ignacio Felipe Inserra
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico Martín Villarreal
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alejandro Raúl Schmidt
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Santiago Andrés Cortasa
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Sofía Proietto
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - María Clara Corso
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Micaela Inés Llanos Dumont
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina
| | - Noelia Paula Di Giorgio
- Laboratorio de Neuroendocrinología, Instituto de Biología y Medicina Experimental (IByME) - CONICET, Ciudad Autónoma de Buenos Aires, Argentina
| | - Julia Halperin
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Alfredo Daniel Vitullo
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Verónica Berta Dorfman
- Centro de Estudios Biomédicos Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Ciudad Autónoma de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
2
|
Yasuo S. Seasonal Adaptation of Mammalian Development: Effect of Early-Life Photoperiod on Reproduction, Somatic Growth, and Neurobehavioral Systems. Zoolog Sci 2025; 42. [PMID: 39932753 DOI: 10.2108/zs240059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/15/2024] [Indexed: 05/08/2025]
Abstract
For the survival and efficient breeding of wild-living animals, it is crucial to predict seasonal changes and prepare appropriate physiological functions and neurobehavioral mechanisms. In mammals, photoperiod serves as a reliable cue for seasonal changes in the environment, primarily transmitted by melatonin. This review focuses on the seasonal adaptation of mammalian development, specifically the effect of early-life photoperiod on reproductive, somatic, and neurobehavioral development in small- and large-sized mammals. Prediction of seasons through early-life photoperiod is particularly important for small mammals, which have relatively short longevity, to adjust their maximum growth and breeding ability in appropriate seasons during the birth year or the following round. Brain plasticity, as well as cognitive and emotional behaviors, are also highly modulated by early-life photoperiods for successful mating and spatial memory for foraging. This review first summarizes the basic knowledge and recent progress in the programming and epigenetic regulatory mechanisms of reproductive and neurobehavioral development in small mammals, including C57BL/6J mice, which cannot produce detectable amounts of melatonin. The review then focuses on the influence of perinatal environmental conditions or birth season on adult phenotypes in large livestock and humans. Studies have advanced on the concept of the developmental origins of health and disease (DOHaD). Evidence from large mammals suggests that the prediction of seasons is crucial for high-fitness functions over several years. Finally, this review discusses the association of the season of birth with life course physiology and diseases in humans, and the possible mechanisms.
Collapse
Affiliation(s)
- Shinobu Yasuo
- Laboratory of Regulation in Metabolism and Behavior, Faculty of Agriculture, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan,
| |
Collapse
|
3
|
Duittoz AH, Kenny DA. Review: Early and late determinants of puberty in ruminants and the role of nutrition. Animal 2023; 17 Suppl 1:100812. [PMID: 37567653 DOI: 10.1016/j.animal.2023.100812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 08/13/2023] Open
Abstract
This article reviews the scientific literature on puberty with a focus on ruminants and draws inference, where appropriate, from recent findings in transgenic mouse models and human pathology. Early genetic determinants of puberty have been discovered in humans suffering from hypogonadotropic hypogonadism or central precocious puberty. Transgenic mouse models selected on the basis of the causative defective genes helped in discovering the cellular and molecular mechanisms involved. Most of the genes found are involved in the development of neuroendocrine networks during embryo development and early postnatal life. Notwithstanding that the development of neuroendocrine networks takes place early in puberty, a delay or acceleration in the development of Gonadotropin Releasing Hormone (GnRH) neurons has an impact on puberty onset inducing a delay or an advance, respectively. Among the genes discovered in humans and laboratory models, only a few of them displayed polymorphisms associated with advanced sexual maturity, but also marbling, growth traits and callipygian conformation. This could be related to the fact that rather than puberty onset, most research monitored sexual maturity. Sexual maturity occurs after puberty onset and involves factors regulating the maturation of gonads and in the expression of sexual behaviour. The association with growth and metabolic traits is not surprising since nutrition is the major environmental factor that will act on late genetic determinants of puberty onset. However, a recent hypothesis emerged suggesting that it is the postnatal activation of the GnRH neuronal network that induces the acceleration of growth and weight gain. Hence, nutritional factors need the activation of GnRH neurons first before acting on late genetic determinants. Moreover, nutritional factors can also affect the epigenetic landscape of parental gamete's genome with the consequence of specific methylation of genes involved in GnRH neuron development in the embryo. Season is another important regulator of puberty onset in seasonal small ruminants and appears to involve the same mechanisms that are involved in seasonal transition in adults. The social environment is also an underestimated factor affecting puberty onset in domestic ruminants, most research studies focused on olfactory cues, but the genetic basis has not heretofore been adequately tackled by the scientific community. Additionally, there is some evidence to suggest transgenerational effects exist, in that nutritional and social cues to which parents were exposed, could affect the epigenetic landscape of parental gametes resulting in the epigenetic regulation of early genetic determinants of puberty onset in their offspring.
Collapse
Affiliation(s)
- A H Duittoz
- UMR 0083 BOA, INRAE, Centre Val de Loire, 37380 Nouzilly, France.
| | - D A Kenny
- Teagasc, Animal & Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath. C15 PW93, Ireland
| |
Collapse
|
4
|
Kivrak MB, Aydin I. Induction of ovulation using repeated doses of sulpiride, a dopamine antagonist, in ewe lambs. Reprod Domest Anim 2023; 58:379-386. [PMID: 36369678 DOI: 10.1111/rda.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
Abstract
This study aimed to test the hypothesis that sulpiride can increase the concentration of circulating gonadotropin that can promote puberty in pre-pubertal ewe lambs. Here, 12 1-3-year-old Merino rams and 60 7-9-month-old Merino sheep were included in the study. The sheep were randomly divided into sulpiride (n = 30) and control (n = 30) groups. The sulpiride group was subcutaneously injected with 0.6 mg/kg sulpiride twice daily (morning and evening) for 9 days. During these 9 days, blood samples were taken from the sheep before drug administration and at 4 h after every drug administration. The number of ovulating animals in the sulpiride group was significantly higher than that in the control group (90% vs. 32%). No oestrous signs were observed in either group during ram release. Further, there were no differences in the levels of mean follicle-stimulating hormone in the two groups based on treatment (p = .2), time (p = .3) or treatment-by-time interaction (p = .3). After sulpiride administration, the luteinizing hormone (LH) levels of the sulpiride group rapidly increased and remained stable for a long time, whereas physiological LH fluctuations in the control group remained unchanged. Within-group changes in terms of LH concentrations were significant for both groups (p < .001), whereas LH pulse frequency was significantly different between the sulpiride group (p = .03). Therefore, it is concluded that sulpiride can be used as a non-steroidal alternative to stimulate pre-pubertal ewe lambs and sheep during anoestrus.
Collapse
Affiliation(s)
- Mehmet Bugra Kivrak
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| | - Ibrahim Aydin
- Department of Obstetrics and Gynecology, Faculty of Veterinary Medicine, Selcuk University, Konya, Turkey
| |
Collapse
|
5
|
Song F, Xu Y, Peng P, Li H, Zheng R, Zhang H, Han Y, Weng Q, Yuan Z. Seasonal Changes in the Structure and Function of Gut Microbiota in the Muskrat ( Ondatra zibethicus). Metabolites 2023; 13:248. [PMID: 36837868 PMCID: PMC9966595 DOI: 10.3390/metabo13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/12/2023] Open
Abstract
The gut microbiota plays a crucial role in the nutrition, metabolism, and immune function of the host animal. The muskrat (Ondatra zibethicus) is a typical seasonal breeding animal. The present study performed a metagenomic analysis of cecum contents from muskrats in the breeding and non-breeding seasons. The results indicated that the breeding muskrats and non-breeding muskrats differed in gut microbiota structure and function. During the breeding season, the relative abundance of phylum Bacteroidetes, genus Prevotella, and genus Alistipes increased, while the relative abundance of phylum Firmicutes and phylum Actinobacteria decreased. The muskrat gut microbiota was enriched in the metabolism-related pathways, especially amino acid and vitamin metabolism, and genetically related metabolites in the breeding season. We presumed that the muskrat gut microbiota might seasonally change to secure reproductive activity and satisfy the metabolic demands of different seasons. This study could explore potential mechanisms by which gut microbiota affects reproduction. Moreover, this study may provide a new theoretical basis for the management of muskrat captive breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhengrong Yuan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Santos-Jimenez Z, Martínez-Ros P, Encinas T, Morales-Cruz JL, Guerrero-Gallegos HZ, Gonzalez-Avalos R, Gonzalez-Bulnes A, Guillen-Muñoz JM. Ovarian Response and Fertility after Short-Term Progestagen/eCG Treatments Are Compromised in Nulliparous Sheep during Non-Breeding Season. Vet Sci 2022; 9:663. [PMID: 36548824 PMCID: PMC9781245 DOI: 10.3390/vetsci9120663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The objective of this investigation was to determine the ovarian response, fertility, and prolificacy of nulliparous sheep when compared to multiparous sheep after a short-term (7 days) CIDR/eCG treatment which was administered during the non-breeding season. All the multiparous sheep, whereas only 54% of the nulliparous ewes, showed signs of estrus. However, 81.8% of the multiparous sheep and 100% of the nulliparous ewes ovulated. Fertility was also low after short-term progesterone treatments during the anestrous season in maiden sheep (30.8 vs. 72.7% in multiparous ewes). Such results indicate significant differences in the response to CIDR/eCG protocols for induction and synchronization of estrus and ovulation between nulliparous and multiparous sheep during the non-breeding season.
Collapse
Affiliation(s)
- Zurisaday Santos-Jimenez
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Paula Martínez-Ros
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain
| | - Teresa Encinas
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Juan Luis Morales-Cruz
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Torreón 25315, Coahuila, Mexico
| | | | - Ramiro Gonzalez-Avalos
- Unidad Laguna, Universidad Autónoma Agraria Antonio Narro, Torreón 25315, Coahuila, Mexico
| | - Antonio Gonzalez-Bulnes
- Departamento de Farmacologia y Toxicologia, Facultad de Veterinaria, UCM, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Departamento de Produccion y Sanidad Animal, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities, C/Tirant lo Blanc 7, Alfara del Patriarca, 46115 Valencia, Spain
| | | |
Collapse
|
7
|
Zhang J, Wang C, Li X, Zhang Y, Xing F. Expression and functional analysis of GnRH at the onset of puberty in sheep. Arch Anim Breed 2022; 65:249-257. [PMID: 36035881 PMCID: PMC9399933 DOI: 10.5194/aab-65-249-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/23/2022] [Indexed: 11/22/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a key factor at the onset
of puberty. This decapeptide has been found in mammalian ovaries, but its
regulatory mechanism in the ovary of sheep at the onset of puberty is not
clear. This study investigated the coding sequence (CDS) of the GnRH gene in the
ovary of Duolang sheep and the expression of GnRH mRNA in different tissues at
the onset of puberty, and analyzed the effect of GnRH on ovarian granulosa
cells (GCs) of Duolang sheep. The results showed that the GnRH CDS of sheep was
cloned, the full length of the GnRH CDS in sheep ovary was 279 bp, and the
nucleotide sequence was completely homologous to that in the hypothalamus. The
expression of GnRH mRNA was highest in the hypothalamus and ovary. The expression of
related hormones and receptors in GCs of Duolang sheep treated with
different concentrations of GnRH for 24 h was affected. GnRH
significantly inhibited LH synthesis and LHR expression in GCs. Low
concentration (100 ng mL-1) had the most obvious therapeutic effect on follicle-stimulating hormone (FSH) and
FSHR. Higher concentration (250 ng mL-1) significantly promoted estradiol and
ERβ mRNA. These findings provide strong evidence that ovarian GnRH is
an important regulatory factor at the onset of puberty in sheep.
Collapse
Affiliation(s)
- Jihu Zhang
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
- Key laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Chenguang Wang
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
- Key laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Xiaojun Li
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
- Key laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Yongjie Zhang
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
- Key laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| | - Feng Xing
- College of Animal Science and Technology, Tarim University, Alar,
Xinjiang 843300, China
- Key laboratory of Tarim, Animal Husbandry Science and Technology,
Xinjiang Production & Construction Corps, Alar, Xinjiang 843300, China
| |
Collapse
|
8
|
Wang Y, Su R, Liu P, Yuan Z, Han Y, Zhang H, Weng Q. Seasonal changes of mitochondrial autophagy and oxidative response in the testis of the wild ground squirrels ( Spermophilus dauricus). Am J Physiol Regul Integr Comp Physiol 2021; 321:R625-R633. [PMID: 34494473 DOI: 10.1152/ajpregu.00105.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mitochondria are the main organelles for mammalian energy metabolism and have been implicated in the regulation of germ cell maintenance and spermatogenesis. However, little is known about the changes in the mitochondria of the testis of seasonal breeders. Here, we characterized the seasonal changes in the mitochondria in the testis of the wild ground squirrels. Increased testicle weight, seminiferous tubule diameter, and sperm count were observed in the wild ground squirrels at the breeding season. RNA-seq analysis of the wild ground squirrel testes revealed that mitochondrial-related genes were expressed differentially between the breeding and nonbreeding seasons. Immunohistochemical staining showed that key mitophagy factors including PINK1, MFN2, and PARKIN were highly expressed in various cell types of testis during the breeding season. In addition, the abundance and enzymatic activities of mitochondrial-localized antioxidative enzymes superoxide dismutase 2 (SOD2) and Catalase were decreased in the testis during the breeding season, suggesting a tightly controlled redox balance at least partially facilitated by mitophagy during the seasonal breeding. Taken together, our study reveals that mitochondrial autophagy and oxidative stress may be implicated in the seasonal reproductive recrudescence of the wild ground squirrels, which deepens our understanding of the mitochondrial regulation of seasonal reproductivity in wildlife and provides new insights into the development of potential therapeutic interventions of male infertility.
Collapse
Affiliation(s)
- Yuhan Wang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ruting Su
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Pinxuan Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
9
|
Tao L, Wang X, Zhong Y, Liu Q, Xia Q, Chen S, He X, Di R, Chu M. Combined approaches identify known and novel genes associated with sheep litter size and non-seasonal breeding. Anim Genet 2021; 52:857-867. [PMID: 34494299 DOI: 10.1111/age.13138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 01/29/2023]
Abstract
Improvement of ewe reproduction is considerable by appropriately increasing litter size and sustaining non-seasonal breeding. However, their genetic makeups have not been entirely elucidated. Genome-wide analyses of 821 individuals were performed by combining three genomic approaches (genome-wide association study, XP-nSL, and runs of homozygosity). Consequently, 35 candidate genes including three domestication genes (TSHR, GTF2A1, and KITLG) were identified. Other than the FecB mutation at BMPR1B, we described a significant association of a missense mutation rs406686139 at seasonal lambing-associated TSHR gene with litter size. Some promising novel genes may be relevant for sheep reproduction by multitude biological processes, such as FETUB functioning in fertilization, HNRNPA1 in oogenesis, DCUN1D1 in spermatogenesis, and HRG in fertility outcome. The present study suggests that improvement of ewe reproduction is attributed to selective breeding, and casts light on the genetic basis and improvement of sheep reproduction.
Collapse
Affiliation(s)
- Lin Tao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingjie Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qiuyue Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Xia
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Si Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
10
|
Bailey AM, Hall CA, Legan SJ, Demas GE. Food restriction during development delays puberty but does not affect adult seasonal reproductive responses to food availability in Siberian hamsters (Phodopus sungorus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 335:691-702. [PMID: 34343418 DOI: 10.1002/jez.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/08/2022]
Abstract
Seasonally breeding animals respond to environmental cues to determine optimal conditions for reproduction. Siberian hamsters (Phodopus sungorus) primarily rely on photoperiod as a predictive cue of future energy availability. When raised in long-day photoperiods (>14 h light), supplemental cues such as food availability typically do not trigger the seasonal reproductive response of gonadal regression, which curtails reproduction in unsuitable environments. We investigated whether recognition of food availability as a cue could be altered by a nutritional challenge during development. Specifically, we predicted that hamsters receiving restricted food during development would be sensitized to food restriction (FR) as adults and undergo gonadal regression in response. Male and female hamsters were given either ad libitum (AL) food or FR from weaning until d60. The FR treatment predictably limited growth and delayed puberty in both sexes. For 5 weeks after d60, all hamsters received an AL diet to allow FR hamsters to gain mass equal to AL hamsters. Then, adult hamsters of both juvenile groups received either AL or FR for 6 weeks. Juvenile FR had lasting impacts on adult male body mass and food intake. Adult FR females exhibited decreased estrous cycling and uterine horn mass indiscriminately of juvenile food treatment, but there was little effect on male reproductive measurements. Overall, we observed a delay in puberty in response to postweaning FR, but this delay appeared not to affect seasonal reproductive responses in the long term. These findings increase our understanding of seasonal reproductive responses in a relevant environmental context.
Collapse
Affiliation(s)
- Allison M Bailey
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Carlisha A Hall
- Department of Biology, University of North Carolina, Pembroke, North Carolina, USA
| | - Sandra J Legan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Gregory E Demas
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
11
|
Zhang X, Zhang L, Sun W, Lang X, Wu J, Zhu C, Jia J, Jin J, La Y, Casper DP. Study on the correlation between BMPR1B protein in sheep blood and reproductive performance. J Anim Sci 2020; 98:5821092. [PMID: 32300800 DOI: 10.1093/jas/skaa100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
Sheep reproductive performance is one of the important economic traits in sheep farming. The bone morphogenetic protein receptor 1B (BMPR1B) gene and protein may play an important role in sheep fertility. This study was to investigate the association of blood BMPR1B protein expression with reproductive performance in sheep. Mongolian sheep with single and twin births and polytocous Small Tail Han sheep were selected due to differences in birth numbers. The BMPR1B mRNA in sheep blood was measured by a reverse transcription-polymerase chain reaction as well as the BMPR1B protein was measured by enzyme-linked immunosorbent assay in blood samples of Mongolian and Small Tail Han sheep. The results demonstrated that blood BMPR1B concentration in Mongolian sheep with twin birth was higher (P < 0.05) than Small Tail Han sheep and Mongolian sheep with single birth. The protein concentration in the anestrus season was higher (P < 0.045) than those in the estrus season for both Mongolian and Small Tail Han sheep. Moreover, BMPR1B concentration in Mongolian sheep increased (P < 0.05) at the age of 6 to 12 mo and that in Small Tail Han sheep increased (P < 0.05) at the age of 3 to 6 mo. The result indicates that the increase in BMPR1B protein concentrations in the blood of Mongolian ewes and Small Tail Han ewes may be beneficial to follicular development, but too high or too low of this blood protein concentration in Mongolian and Small Tail Han sheep is not conducive to ovulation.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liping Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weibo Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xia Lang
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jianping Wu
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Caiye Zhu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianlei Jia
- Animal Husbandry, Pasture, and Green Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Jinpen Jin
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| | - Younfu La
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | | |
Collapse
|
12
|
Lozano H, Raes M, Vargas JJ, Ballieu A, Grajales H, Manrique C, Beckers JF, Kirschvink N. Onset of puberty and regularity of oestral cycles in ewe lambs of four breeds under high-altitude conditions in a non-seasonal country. Trop Anim Health Prod 2020; 52:3395-3402. [PMID: 32935321 DOI: 10.1007/s11250-020-02372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/07/2020] [Indexed: 11/28/2022]
Abstract
Twenty-four Colombian Creole, Romney Marsh, Hampshire and Corriedale ewes raised under high-altitude conditions in a non-seasonal country were used to determine and to characterize the onset of puberty and of regularity ovarian function since the age of 3months. They underwent blood collection for determination of progesterone and monthly weight assessment. Oestrus was assessed daily by a teaser ram. In all breeds, age at onset of puberty ranged from 5.4 to 6.9 months and age at onset of regular ovarian function ranged from 7.4 to 8.6 months. Colombian Creole showed a higher body development at onset of puberty: 73.5 ± 8.3% versus 56.2 ± 7.4 in Romney Marsh, 58.8 ± 10.4 in Hampshire, and 57.3 ± 8.0 in Corriedale (p < 0.05), as well as a higher relative daily weight gain (+17%, p < 0.05). A negative correlation between daily weight gain and age at onset of puberty was established. Progesterone at onset of puberty and of regularity did not differ between breeds, but characterization of the luteal phase by the progesterone area under the curve (P4-AUC) revealed at both time points significantly lower values for Creole lambs (p < 0.05). Decreased P4-AUC paralleled a higher proportion of short oestral cycles observed prior to onset of regularity in Creoles, whereas an increased proportion of extra-long cycles were recorded in Romney Marsh (p < 0.05). These results establish first reference data for economically important breeds raised under tropical conditions. In comparison with other breeds, Colombian Creole requires a higher body development to achieve puberty and that an important proportion of short characterizes its prepubertal period cycles.
Collapse
Affiliation(s)
- Harvey Lozano
- Faculty of Veterinary Medicine and Animal Sciences, Universidad Nacional de Colombia, Cra. 30 #, 45-03, Bogotá D.C., Colombia. .,Veterinary Department, Faculty of Sciences, University of Namur, Namur, Belgium.
| | - Marianne Raes
- Veterinary Department, Faculty of Sciences, University of Namur, Namur, Belgium
| | - Jimmy J Vargas
- Faculty of Veterinary Medicine and Animal Sciences, Universidad Nacional de Colombia, Cra. 30 #, 45-03, Bogotá D.C., Colombia.,Veterinary Department, Faculty of Sciences, University of Namur, Namur, Belgium
| | - Amelie Ballieu
- Veterinary Department, Faculty of Sciences, University of Namur, Namur, Belgium
| | - Henry Grajales
- Faculty of Veterinary Medicine and Animal Sciences, Universidad Nacional de Colombia, Cra. 30 #, 45-03, Bogotá D.C., Colombia
| | - Carlos Manrique
- Faculty of Veterinary Medicine and Animal Sciences, Universidad Nacional de Colombia, Cra. 30 #, 45-03, Bogotá D.C., Colombia
| | - Jean François Beckers
- Department of Physiology of Reproduction, Faculty of Veterinary Medicine, University of Liege, Liege, Belgium
| | - Nathalie Kirschvink
- Veterinary Department, Faculty of Sciences, University of Namur, Namur, Belgium
| |
Collapse
|
13
|
Northup SL, Coffman EA, Strickland LG, Pohler KG, Daniel JA, Whitlock BK. Intravenous infusion of kisspeptin increased serum luteinizing hormone acutely and decreased serum follicle stimulating hormone chronically in prepubertal bull calves. Theriogenology 2019; 144:1-7. [PMID: 31881476 DOI: 10.1016/j.theriogenology.2019.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/15/2019] [Accepted: 12/19/2019] [Indexed: 12/01/2022]
Abstract
Kisspeptin (KP) is a hypothalamic neuropeptide that stimulates the secretion of gonadotropin releasing hormone. To determine the acute and chronic effects of KP on serum concentrations of luteinizing hormone (LH) and follicle stimulating hormone (FSH), prepubertal bull calves [12 ± 1 (SD) weeks of age; 96.5 ± 14.5 kg BW] were administered one of four treatments [0.0 (control; CON), 0.125 (L-KP), 0.25 (M-KP), or 0.5 (H-KP) μg of KP/kg BW/hour] by intravenous infusion for 76 h. Blood samples were collected every 15 min for the first (acute; 1-6 h; Day 1) and last (chronic; 71-76 h; Day 4) 6 h of the intravenous infusions. Serum concentrations of LH and FSH were determined by radioimmunoassay. For each day, effects of treatment, time, and interactions on LH and FSH concentrations and pulse parameters were analyzed using procedures for repeated measures with JMP Software (SAS Inst. Inc., Cary, NC). There was a treatment effect (P = 0.002) and a treatment × time interaction during Day 1 (P = 0.02) such that LH concentrations were greatest following administration of all doses of KP when compared to CON. However, there was no treatment effect (P = 0.57) or a treatment × time interaction during Day 4 (P = 0.20) on serum LH concentrations. There was a treatment by day interaction (P = 0.02) on mean serum FSH concentrations. Most notably, on Day 4 mean serum FSH concentrations during intravenous infusion of M-KP and H-KP doses were less than that of CON. There was a treatment by day interaction (P = 0.0054) on FSH pulse amplitude concentrations, such that intravenous infusion of all doses of KP on Day 4 decreased FSH pulse amplitudes. In conclusion, acute infusion of KP increased LH concentrations and chronic infusion of KP decreased FSH concentrations. Despite the potential suppression of the hypothalamic-pituitary-gonadal axis with chronic infusion of KP, there are likely applications of KP, KP analogs, or KP receptor agonists to hasten the onset of puberty in livestock.
Collapse
Affiliation(s)
- Samantha L Northup
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA; Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Elizabeth A Coffman
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Lew G Strickland
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA; Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Ky G Pohler
- Department of Animal Science, University of Tennessee, Knoxville, TN, USA
| | - Jay A Daniel
- School of Mathematical and Natural Sciences, Berry College, Mount Berry, GA, USA
| | - Brian K Whitlock
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
14
|
Yang H, Lin S, Lei X, Yuan C, Yu Y, Zhao Z, Chen J. Nutritional status affects the microRNA profile of the hypothalamus of female sheep. Reprod Fertil Dev 2019; 30:946-957. [PMID: 29366447 DOI: 10.1071/rd17179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/21/2017] [Indexed: 12/19/2022] Open
Abstract
Recent studies on the seasonal regulation of the oestrous cycle in sheep have focussed mainly on the responses to photoperiod. However, the brain systems that control reproductive activity also respond to nutritional inputs, although the molecular mechanisms involved are not completely understood. One possibility is that small, non-coding RNAs, such as micro-RNAs (miRNAs), have significant influence. In the present study, the amounts and characteristics of miRNAs in hypothalamus from oestrous and anestrous ewes, fed low- or high-nutrient diets, were compared using Illumina HiSeq sequencing technology. In total, 398 miRNAs, including 261 novel miRNAs, were identified in ewes with an enhanced nutritional status (HEN), whereas 384 miRNAs, including 247 novel miRNAs, were identified in the ewes with a lesser nutritional status (HAN). There were eight conserved and 140 novel miRNAs expressed differentially between the two libraries. Based on quantitative real-time polymerase chain reaction, six miRNAs were assessed to verify the accuracy of the library database. Moreover, the correlation between the miRNA target and several upstream and downstream genes in the oestrus-related pathways were also verified in hypothalamus nerve cells. According to the results, nutritional status plays an important role in oestrous regulation in sheep, and the hypothalamic processes and pathways induced by nutritional signals (folic acid and tyrosine) are different from those induced by photoperiodic regulation of oestrus. We have expanded the repertoire of sheep miRNAs that could contribute to the molecular mechanisms that regulate the initiation of oestrous cycles in anestrous ewes in response to the influence of nutritional status.
Collapse
Affiliation(s)
- Heng Yang
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Shan Lin
- College of Life Sciences, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Xiaoping Lei
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Cong Yuan
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Yaosheng Yu
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| | - Jingbo Chen
- College of Animal Science and Technology, Shihezi University, North Fourth Road, Shihezi 832003, China
| |
Collapse
|
15
|
Abstract
Precocious puberty is defined as the appearance of secondary sex characteristics before 8 years of age in girls and before 9 years of age in boys. Central precocious puberty (CPP) is diagnosed when activation of the hypothalamic-pituitary axis is identified. It is a rare disease with a clear female predominance. A background of international adoption increases its risk, with other environmental factors such as endocrine disruptors also being associated with CPP. The causes of CPP are heterogeneous, with alterations of the CNS being of special interest. Physical injuries of the CNS are more frequent in boys, while idiopathic etiology is more prevalent among girls. However, in the last decade the number of idiopathic cases has diminished thanks to the discovery of mutations in different genes, including KISS1, KISS1R, MKRN3, and DLK1 that cause CPP. For the diagnosis of CPP, hormone studies are needed in addition to the clinical data regarding signs of pubertal onset. For this purpose, the GnRH test continues to be the gold standard. Imaging analyses, such as bone age and brain MRI, are also very useful. Furthermore, genetic testing must be incorporated in the diagnosis of CPP, especially in familial cases. Early puberty has been related to various consequences in the medium and long term such as behavioral problems, breast cancer, obesity, and metabolic comorbidities. However, there are few studies that have exclusively analyzed patients with CPP. GnRH analogs are the most frequent treatment election with the main objective being to improve adult height. Currently, there are new formulations that are being investigated.
Collapse
Affiliation(s)
- Leandro Soriano-Guillén
- Department of Pediatrics, Universidad Autónoma de Madrid, Spain; Department of Pediatrics, Hospital Universitario Fundación Jiménez Díaz, Instituto de Investigación Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Argente
- Department of Pediatrics, Universidad Autónoma de Madrid, Spain; Department of Pediatrics & Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; IMDEA Food Institute, CEIUAM+CSIC, Madrid, Spain.
| |
Collapse
|
16
|
Sharpe RM. Programmed for sex: Nutrition–reproduction relationships from an inter-generational perspective. Reproduction 2018; 155:S1-S16. [DOI: 10.1530/rep-17-0537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/21/2017] [Indexed: 01/18/2023]
Abstract
Reproduction is our biological reason for being. Our physiology has been shaped via countless millennia of evolution with this one purpose in mind, so that at birth we are ‘programmed for sex’, although this will not kick-start functionally until puberty. Our development from an early embryo is focused on making us fit to reproduce and is intimately connected to nutrition and energy stores. Fluctuations in food supply has probably been a key evolutionary shaper of the reproductive process, and this review hypothesizes that we have developed rapid, non-genomic adaptive mechanisms to such fluctuations to better fit offspring to their perceived (nutritional) environment, thus giving them a reproductive advantage. There is abundant evidence for this notion from ‘fetal programming’ studies and from experimental ‘inter-generational’ studies involving manipulation of parental (especially paternal) diet and then examining metabolic changes in resulting offspring. It is argued that the epigenetic reprogramming of germ cells that occurs during fetal life, after fertilisation and during gametogenesis provides opportunities for sensing of the (nutritional) environment so as to affect adaptive epigenetic changes to alter offspring metabolic function. In this regard, there may be adverse effects of a modern Western diet, perhaps because it is deficient in plant-derived factors that are proven to be capable of altering the epigenome, folate being a prime example; we have evolved in tune with such factors. Therefore, parental and even grandparental diets may have consequences for health of future generations, but how important this might be and the precise epigenetic mechanisms involved are unknown.
Collapse
|
17
|
Annual reproductive activity of ewes from Jezersko-Solchava, Bovec and Istrian breeds under variable field conditions. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Clarke IJ, Arbabi L. New concepts of the central control of reproduction, integrating influence of stress, metabolic state, and season. Domest Anim Endocrinol 2016; 56 Suppl:S165-79. [PMID: 27345314 DOI: 10.1016/j.domaniend.2016.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 03/02/2016] [Accepted: 03/02/2016] [Indexed: 10/21/2022]
Abstract
Gonadotropin releasing hormone is the primary driver of reproductive function and pulsatile GnRH secretion from the brain causes the synthesis and secretion of LH and FSH from the pituitary gland. Recent work has revealed that the secretion of GnRH is controlled at the level of the GnRH secretory terminals in the median eminence. At this level, projections of kisspeptin cells from the arcuate nucleus of the hypothalamus are seen to be closely associated with fibers and terminals of GnRH cells. Direct application of kisspeptin into the median eminence causes release of GnRH. The kisspeptin cells are activated at the time of a natural "pulse" secretion of GnRH, as reflected in the secretion of LH. This appears to be due to input to the kisspeptin cells from glutamatergic cells in the basal hypothalamus, indicating that more than 1 neural element is involved in the secretion of GnRH. Because the GnRH secretory terminals are outside the blood-brain barrier, factors such as kisspeptin may be administered systemically to cause GnRH secretion; this offers opportunities for manipulation of the reproductive axis using factors that do not cross the blood-brain barrier. In particular, kisspeptin or analogs of the same may be used to activate reproduction in the nonbreeding season of domestic animals. Another brain peptide that influences reproductive function is gonadotropin inhibitory hormone (GnIH). Work in sheep shows that this peptide acts on GnRH neuronal perikarya, but projections to the median eminence also allow secretion into the hypophysial portal blood and action of GnIH on pituitary gonadotropes. GnIH cells are upregulated in anestrus, and infusion of GnIH can block the ovulatory surge in GnRH and/or LH secretion. Metabolic status may also affect the secretion of reproduction, and this could involve action of gut peptides and leptin. Neuropeptide Y and Y-receptor ligands have a negative impact on reproduction, and Neuropeptide Y production is markedly increased in negative energy balance; this may be the cause of lowered GnRH and gonadotropin secretion in this state. There is a complex interaction between appetite-regulating peptide neurons and kisspeptin neurons that enables the former to regulate the latter both positively and negatively. In terms of how GnRH secretion is reduced during stress, recent data indicate that GnIH cells are integrally involved, with increased input to the GnRH cells. The secretion of GnIH into the portal blood is not increased during stress, so the negative effect is most likely effected at the level of GnRH neuronal cell bodies.
Collapse
Affiliation(s)
- I J Clarke
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia.
| | - L Arbabi
- Department of Physiology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
19
|
Luridiana S, Mura MC, Daga C, Cosso G, Bodano S, Farci F, Zidda F, Carcangiu V. Influences of melatonin treatment, melatonin receptor 1A (MTNR1A) and kisspeptin (KiSS-1) gene polymorphisms on first conception in Sarda ewe lambs. Reprod Fertil Dev 2016; 28:750-6. [DOI: 10.1071/rd14120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/16/2014] [Indexed: 11/23/2022] Open
Abstract
In order to investigate if the melatonin receptor 1A (MTNR1A) and kisspeptin (KiSS-1) genes influence the reproductive response to melatonin treatment, 510 Sarda ewe lambs were divided into groups C (control) and M; Group M received one melatonin implant (18 mg). After 35 days rams were introduced for 40 days and subsequent lambing dates and number of newborns were recorded. The MTNR1A gene Exon II and KiSS-1 gene Exon I were amplified and genotyped by restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism analysis. Two single nucleotide polymorphisms (SNPs; C606T and G612A) in MTNR1A and one (G1035A) in KiSS-1 were found. The most frequent genotypes were G/G (63%) and C/C (53%) for MTNR1A and G/G (92%) for KiSS-1. Treated animals showed a higher lambing rate (P < 0.05) and an advanced lambing date (P < 0.05) compared with controls. The three SNPs did not influence the onset of reproductive activity. The majority of the G/G animals of Group M lambed before 190 days after ram introduction (P < 0.05), while in Group C a higher number of G/G animals lambed after this date. Data revealed the positive effect of melatonin treatment on the time of first conception in ewe lambs and highlighted that the G/G genotype of the MTNR1A gene is able to influence the reproductive response to melatonin treatment.
Collapse
|
20
|
Clulow J, Trudeau VL, Kouba AJ. Amphibian Declines in the Twenty-First Century: Why We Need Assisted Reproductive Technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:275-316. [DOI: 10.1007/978-1-4939-0820-2_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Beltramo M, Dardente H, Cayla X, Caraty A. Cellular mechanisms and integrative timing of neuroendocrine control of GnRH secretion by kisspeptin. Mol Cell Endocrinol 2014; 382:387-399. [PMID: 24145132 DOI: 10.1016/j.mce.2013.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 01/11/2023]
Abstract
The hypothalamus integrates endogenous and exogenous inputs to control the pituitary-gonadal axis. The ultimate hypothalamic influence on reproductive activity is mediated through timely secretion of GnRH in the portal blood, which modulates the release of gonadotropins from the pituitary. In this context neurons expressing the RF-amide neuropeptide kisspeptin present required features to fulfill the role of the long sought-after hypothalamic integrative centre governing the stimulation of GnRH neurons. Here we focus on the intracellular signaling pathways triggered by kisspeptin through its cognate receptor KISS1R and on the potential role of proteins interacting with this receptor. We then review evidence implicating both kisspeptin and RFRP3--another RF-amide neuropeptide--in the temporal orchestration of both the pre-ovulatory LH surge in female rodents and the organization of seasonal breeding in photoperiodic species.
Collapse
Affiliation(s)
- Massimiliano Beltramo
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France.
| | - Hugues Dardente
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Xavier Cayla
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| | - Alain Caraty
- UMR Physiologie de la Reproduction et des Comportements (INRA, UMR85, CNRS, UMR7247, Université François Rabelais Tours, IFCE), F-37380 Nouzilly, France
| |
Collapse
|
22
|
Hua S, Wang Y, Wu H, Quan F, Zhang H, Zhang Y. Differences in DNA methylation and mRNA levels between the breeding and non-breeding seasons of in vitro produced IVF and SCNT sheep embryos. Small Rumin Res 2013. [DOI: 10.1016/j.smallrumres.2013.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Escobar S, Felip A, Gueguen MM, Zanuy S, Carrillo M, Kah O, Servili A. Expression of kisspeptins in the brain and pituitary of the european sea bass (Dicentrarchus labrax). J Comp Neurol 2013; 521:933-48. [DOI: 10.1002/cne.23211] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 05/04/2012] [Accepted: 08/03/2012] [Indexed: 11/09/2022]
|
24
|
Smith JT. The role of kisspeptin and gonadotropin inhibitory hormone in the seasonal regulation of reproduction in sheep. Domest Anim Endocrinol 2012; 43:75-84. [PMID: 22177698 DOI: 10.1016/j.domaniend.2011.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022]
Abstract
Sheep are seasonal breeders, experiencing an annual period of reproductive quiescence in response to increased photoperiod during the late-winter into spring and renaissance during the late summer. The nonbreeding (anestrous) season is characterized by a reduction in the pulsatile secretion of GnRH from the brain, in part because of an increase in negative feedback activity of estrogen. Neuronal populations in the hypothalamus that produce kisspeptin and gonadotropin-inhibitory hormone (GnIH) appear to be important for the seasonal shift in reproductive activity, and the former are also mandatory for puberty onset. Kisspeptin cells in the arcuate nucleus (ARC) and preoptic area appear to regulate GnRH neurons and transmit sex-steroid feedback signals to these neurons. Moreover, kisspeptin expression in the ARC is markedly up-regulated at the onset of the breeding season, as too are the number of kisspeptin fibers in close apposition to GnRH neurons. The lower levels of kisspeptin seen during the nonbreeding season can be "corrected" by infusion of kisspeptin, which causes ovulation in seasonally acyclic females. The role of GnIH is less clear, but mounting evidence supports a role for this neuropeptide in the inhibitory regulation of both GnRH secretion and gonadotropin release from the pituitary gland. Contrary to kisspeptin, GnIH expression is markedly reduced at the onset of the breeding season. In addition, the number of GnIH fibers in close apposition to GnRH neurons also decreases during this time. Importantly, exogenous GnIH treatment can block both the pulsatile release of LH and the preovulatory LH surge during the breeding season. In summary, it is most likely the integrated function of both these neuropeptide systems that modulate the annual shift in photoperiod to a physiological change in fertility.
Collapse
Affiliation(s)
- J T Smith
- Department of Physiology, Monash University, Victoria 3800, Australia.
| |
Collapse
|
25
|
[The neuroendocrine regulatory mechanisms of mammalian seasonal reproduction]. YI CHUAN = HEREDITAS 2012; 34:281-8. [PMID: 22425946 DOI: 10.3724/sp.j.1005.2012.00281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The seasonal reproduction of mammal means the reproduction experiences an annual period from quiescence to renaissance. Studies have shown that kisspeptin and RFRP play an important role in the reproductive seasonality. The non-breeding season is characterized by an increase in the negative feedback effect of estrogen on GnRH, and this effect is transmitted by kisspeptin neurons, which may be an important factor affecting the reproduction activities. The expression of RFRP depends on melatonin secretion, and shows an apparent inhibition on reproduction in non-breeding season. In addition, thyroid hormones influence termination of the breeding season. Dopaminergic neuron A14/A15 also contributes to the seasonal changes in estrogen negative feedback. These neural systems may synergistically modulate the seasonal changes of reproductive function with the photoperiod. This review makes a systematic expatiation on the relationship between seasonal reproduction and these neural systems.
Collapse
|
26
|
Powers JG, Baker DL, Ackerman MG, Bruemmer JE, Spraker TR, Conner MM, Nett TM. Passive transfer of maternal GnRH antibodies does not affect reproductive development in elk (Cervus elaphus nelsoni) calves. Theriogenology 2012; 78:830-41. [PMID: 22541328 DOI: 10.1016/j.theriogenology.2012.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 03/12/2012] [Accepted: 03/20/2012] [Indexed: 11/16/2022]
Abstract
Gonadotropin-releasing hormone is intermittently released from the hypothalamus in consistent patterns from before birth to final maturation of the hypothalamic-pituitary-gonadal axis at puberty. Disruption of this signaling via GnRH vaccination during the neonatal period can alter reproduction at maturity. The objective of this study was to investigate the long-term effects of GnRH-antibody exposure on reproductive maturation and function in elk calves passively exposed to high concentrations of GnRH antibodies immediately after birth. Fifteen elk calves (eight males and seven females) born to females treated with GnRH vaccine or sham vaccine during midgestation were divided into two groups based on the concentration of serum GnRH antibodies measured during the neonatal period. Those with robust (>15 pmol (125)I-GnRH bound per mL of serum) titers (N = 10; four females and six males) were designated as the exposed group, whereas those with undetectable titers (N = 5; three females and two males) were the unexposed group. Onset of puberty, reproductive development, and endocrine function in antibody-exposed and unexposed male and female elk calves were compared. Neonatal exposure to high concentrations of GnRH antibodies had no effect on body weight (P = 0.968), endocrine profiles (P > 0.05), or gametogenesis in either sex. Likewise, there were no differences between groups in gross or histologic structure of the hypothalamus, pituitary, testes, or ovaries. Pituitary stimulation with a GnRH analog before the second potential reproductive season induced substantial LH secretion in all experimental elk. All females became pregnant during their second reproductive season and all males exhibited similar mature secondary sexual characteristics. There were no differences between exposure groups in hypothalamic GnRH content (P = 0.979), pituitary gonadotropin content (P > 0.05) or gonadal structure. We concluded that suppressing GnRH signaling through immunoneutralization during the neonatal period likely does not alter long-term reproductive function in this species.
Collapse
Affiliation(s)
- J G Powers
- Colorado State University, Animal Reproduction and Biotechnology Laboratory, Fort Collins, Colorado, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Valasi I, Chadio S, Fthenakis G, Amiridis G. Management of pre-pubertal small ruminants: Physiological basis and clinical approach. Anim Reprod Sci 2012; 130:126-34. [DOI: 10.1016/j.anireprosci.2012.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Li Q, Roa A, Clarke IJ, Smith JT. Seasonal variation in the gonadotropin-releasing hormone response to kisspeptin in sheep: possible kisspeptin regulation of the kisspeptin receptor. Neuroendocrinology 2012; 96:212-21. [PMID: 22343304 DOI: 10.1159/000335998] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 12/06/2011] [Indexed: 12/25/2022]
Abstract
Kisspeptin signaling in the hypothalamus appears critical for the onset of puberty and driving the reproductive axis. In sheep, reproduction is seasonal, being activated by short days and inhibited by long days. During the non-breeding (anestrous) season, gonadotropin-releasing hormone (GnRH) and gonadotropin secretion is reduced, as is the expression of Kiss1 mRNA in the brain. Conversely, the luteinizing hormone response to kisspeptin during this time is greater. To determine whether the GnRH response to kisspeptin is increased during anestrus, we utilized hypophysial portal blood sampling. In anestrus ewes, the GnRH and LH responses to kisspeptin were greater compared to the breeding season (luteal phase). To ascertain whether this difference reflects a change in Kiss1r, we measured its expression on GnRH neurons using in situ hybridization. The level of Kiss1r was greater during the non-breeding season compared to the breeding season. To further examine the mechanism underlying this change in Kiss1r, we examined Kiss1r/GnRH expression in ovariectomized ewes (controlling for sex steroids) during the breeding and non-breeding seasons, and also ovariectomized non-breeding season ewes with or without estradiol replacement. In both experiments, Kiss1r expression on GnRH neurons was unchanged. Finally, we examined the effect of kisspeptin treatment on Kiss1r. Kiss1r expression on GnRH neurons was reduced by kisspeptin infusion. These studies indicate the kisspeptin response is indeed greater during the non-breeding season and this may be due in part to increased Kiss1r expression on GnRH neurons. We also show that kisspeptin may regulate the expression of its own receptor.
Collapse
Affiliation(s)
- Qun Li
- Department of Physiology, Monash University, Melbourne, Vic., Australia
| | | | | | | |
Collapse
|
29
|
Control of GnRH secretion: one step back. Front Neuroendocrinol 2011; 32:367-75. [PMID: 21216259 DOI: 10.1016/j.yfrne.2011.01.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 01/09/2023]
Abstract
The reproductive system is controlled by gonadotropin releasing hormone (GnRH) secretion from the brain, which is finely modulated by a number of factors including gonadal sex steroids. GnRH cells do not express estrogen receptor α, but feedback is transmitted by neurons that are at least 'one step back' from the GnRH cells. Modulation by season, stress and nutrition are effected by neuronal pathways that converge on the GnRH cells. Kisspeptin and gonadotropin inhibitory hormone (GnIH) neurons are regulators of GnRH secretion, the former being a major conduit for transmission of sex steroid feedback. GnIH cells project to GnRH cells and may play a role in the seasonal changes in reproductive activity in sheep. GnIH also modulates the action of GnRH at the level of the pituitary gonadotrope. This review focuses on the role that kisspeptin and GnIH neurons play, as modulators that are 'one step back' from GnRH neurons.
Collapse
|