1
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Irawan F, Halliday MJ, Hegarty RS, Cowley FC. The effects and toxicological mechanisms of leucaena toxicity on ruminant reproduction: a review. Toxicon 2025; 260:108367. [PMID: 40258405 DOI: 10.1016/j.toxicon.2025.108367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/23/2025]
Abstract
Leucaena leucocephala (leucaena) is a high-quality proteinaceous feed which can improve the nutrition of ruminant livestock in tropical countries. However, this legume contains toxic secondary compounds (mimosine and dihydroxypyridine) in all parts of the plant. Several studies have shown that leucaena secondary compounds could damage male and female animals' reproductive performance, including decreased libido and semen quality, embryonic and foetal death, malformation, and lower the conception rate. This paper identifies some toxicological mechanisms that might be responsible for reproductive failure in the ruminant. Some strategies are suggested to make leucaena feeding safer for breeding ruminants. These can be categorised into strategies that reduce the toxicity of mimosine and DHP via detoxification pathways, and strategies that counteract certain effects of toxicity, and so indirectly reduce the impact on reproductive function.
Collapse
Affiliation(s)
- Fahrul Irawan
- Faculty of Animal Science, Hasanuddin University, Makassar, 90244, Indonesia.
| | - Michael J Halliday
- School of Environmental and Rural Science, The University of New England, Armidale, NSW, 2350, Australia
| | - Roger S Hegarty
- New Zealand Agricultural Greenhouse Gas Research Centre, Palmerston North, 4410, New Zealand
| | - Frances C Cowley
- School of Environmental and Rural Science, The University of New England, Armidale, NSW, 2350, Australia
| |
Collapse
|
3
|
Ezrari S, Ben Khadda Z, Boutagayout A, Rehali M, Jaadan H, El Housni Z, Khoulati A, Saddari A, Maleb A. Health risks and toxicity mechanisms of medicinal and aromatic plants (MAPs): A comprehensive review of adverse effects on organ systems, genotoxicity and reproductive toxicity. Fitoterapia 2025; 184:106630. [PMID: 40398515 DOI: 10.1016/j.fitote.2025.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/22/2025] [Accepted: 05/17/2025] [Indexed: 05/23/2025]
Abstract
The use of medicinal and aromatic plants (MAPs) requires careful evaluation due to their potential effects on human health. Assessing the risks, including toxicity and adverse effects, is essential to ensure their safe application. Our bibliometric analysis revealed a high prevalence of research focusing on MAPs' health impacts, with frequent mentions of "side effects" and "toxicity," emphasizing the need for further investigation into their active ingredients and mechanisms of action. The potential health effects of MAPs have been documented across various organ systems, including gastrointestinal (vomiting and diarrhea), renal (nephrotoxicity), hepatic (hepatotoxicity), and neurological (neurotoxicity). These effects arise from interactions between plant compounds and metabolic enzymes, cellular receptors, and signaling pathways, potentially leading to toxicity. The mechanisms discussed include oxidative stress, mitochondrial dysfunction, inhibition of metabolic enzymes, DNA damage (genotoxicity), and endocrine disruption, which may explain the diverse observed toxicological profiles. This review highlights the complex relationship between botanical substances and human health, integrating current applications while raising awareness of associated risks. It also underscores the importance of strict regulations and responsible use to ensure the safe and effective integration of MAPs into healthcare practices.
Collapse
Affiliation(s)
- Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed Premier, Oujda, Morocco.
| | - Zineb Ben Khadda
- Laboratory of Epidemiology and Research in Health Sciences, Faculty of Medicine and Pharmacy, Sidi Mohammed Ben Abdellah University, Morocco
| | - Abdellatif Boutagayout
- Environment and Valorization of Microbial and Plant Resources Unit, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Mariyem Rehali
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences, and Technology Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
| | - Hayat Jaadan
- Laboratory OLMAN-BGPE, Polydisciplinary Faculty of Nador, Morocco
| | - Zakariae El Housni
- Laboratory of Biotechnology and Molecular biology, Department of biology, Moulay Ismail University, Meknes Faculty of Sciences, PO Box 11201, Zitoune, Meknes, Morocco.
| | - Amine Khoulati
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed Premier, Oujda, Morocco
| | - Abderrazak Saddari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed Premier, Oujda, Morocco; Laboratory of Microbiology, Mohammed VI University Hospital, Oujda, Morocco
| | - Adil Maleb
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy of Oujda, University Mohammed Premier, Oujda, Morocco; Laboratory of Microbiology, Mohammed VI University Hospital, Oujda, Morocco
| |
Collapse
|
4
|
Mandal P, Lima MRM, Wallingford AK, Warren ND, Brito AF, Smith RG. Short-term exposure to elevated temperature and CO 2 alters phytoestrogen production in red clover. Sci Rep 2025; 15:9105. [PMID: 40097473 PMCID: PMC11914074 DOI: 10.1038/s41598-025-92250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
Phytoestrogens are plant-produced secondary compounds that mimic the animal sex hormone estrogen. Several legumes, including red clover, produce phytoestrogens as stress defense molecules, and climate change-driven increases in atmospheric temperature and CO2 may intensify their production. We conducted a growth chamber study to determine the effects of short-term exposure to elevated temperature (eT) and CO2 (eCO2), both alone and in combination, on phytoestrogen concentrations in red clover and cowpea. Plants were grown in ambient conditions (24/18 °C, day/night, and ~ 400 ppm CO2) and then exposed to eT (35/26 °C, day/night), eCO2 (750 ± 50 ppm), or both factors for 10 days. Phytoestrogen concentrations in cowpea vegetative tissues were below the level of detection under all conditions. In red clover, exposure to eT reduced total phytoestrogen concentration by 50%, from 3.9 to 1.9 mg/g dry matter. Most of this decrease was driven by reduced concentrations of the isoflavones formononetin and biochanin A. Elevated CO2 did not influence total phytoestrogen levels in red clover but reduced daidzein concentration by 43%. Plant physiological variables measured concurrently with phytoestrogens were weakly correlated with concentrations of individual phytoestrogen compounds and total phytoestrogens in red clover.
Collapse
Affiliation(s)
- Palash Mandal
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
- Department of Agronomy and Haor Agriculture, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Marta R M Lima
- School of Animal Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Anna K Wallingford
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Nicholas D Warren
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - André F Brito
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire, Durham, NH, USA
| | - Richard G Smith
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA.
| |
Collapse
|
5
|
Majeed I, Nisa MU, Rahim MA, Ramadan MF, Al‐Asmari F, Alissa M, Zongo E. Role of Seed Therapy on Estrous and Non-Estrous Cycle in Healthy Female Rats. Food Sci Nutr 2025; 13:e4692. [PMID: 39807431 PMCID: PMC11725979 DOI: 10.1002/fsn3.4692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/25/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
Seed cycling therapy (SCT) involves the consumption of specific seeds during the follicular and luteal phases of the menstrual cycle to help balance reproductive hormones. This study aimed to investigate the effects of SCT on healthy female Wistar albino rats to prevent hormonal imbalances. For SCT, a seed mixture (SM1) consisting of flax, pumpkin, and soybeans (estrogenic seeds) was administered at doses of 5.4, 4, 8, and 12 g per 100 g of diet during the non-estrous phase. Another seed mixture (SM2) comprising sunflower, sesame, and chickpeas (also estrogenic) was given at doses of 3.12, 8, and 8 g per 100 g during the estrous phase. A total of 36 female Wistar albino rats were divided into four groups, each containing nine rats: Basal diet, seed cycling 1, seed cycling 2, and seed cycling 3 (SC3). All diets were isocaloric and iso-nitrogenous. The results showed that body weight, feed intake, and water consumption were significantly decreased in the SC3 group (p < 0.05), with increased nutrient digestibility. The tested diets led to significant positive changes in levels of follicle-stimulating hormone, luteinizing hormone, high-density lipoproteins (HDL-c), low-density lipoproteins (LDL-c), LDL-c/HDL-c ratio, aspartate aminotransferase, and alanine aminotransferase across both phases of the cycle. There was also a notable increase in estrogen, testosterone, prolactin, and insulin levels (p < 0.05). Ovarian histology results showed normal morphology in the SC3 group, suggesting that this dosage was the most effective. The findings indicate that further studies are warranted to explore the genetic mechanisms underlying phytoestrogen action during reproductive stages.
Collapse
Affiliation(s)
- Iqra Majeed
- Department of Nutritional Sciences, Faculty of Medical SciencesGovernment College UniversityFaisalabadPakistan
| | - Mahr Un Nisa
- Department of Nutritional Sciences, Faculty of Medical SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Abdul Rahim
- Department of Food Science & Nutrition, Faculty of Medicine and Allied Health SciencesTimes InstituteMultanPakistan
| | - Mohamed Fawzy Ramadan
- Department of Clinical Nutrition, Faculty of Applied Medical SciencesUmm Al‐Qura UniversityMakkahSaudi Arabia
| | - Fahad Al‐Asmari
- Department of Food and Nutrition SciencesCollege of Agricultural and Food Sciences, King Faisal UniversityAl‐AhsaSaudi Arabia
| | - Mohammed Alissa
- Department of Medical LaboratoryCollege of Applied Medical Sciences, Prince Sattam bin Abdulaziz UniversityAl‐KharjSaudi Arabia
| | - Eliasse Zongo
- Laboratory of Research and Teaching in Animal Health and BiotechnologyNazi Boni UniversityBobo‐DioulassoBurkina Faso
| |
Collapse
|
6
|
Lin Q, Zhang J, Liu X, Zheng Q, Lin D, Pan M. Association between Healthy Eating Index-2015 total and component food scores with reproductive lifespan among postmenopausal women: a population-based study from NHANES 2005-2016. BMC Public Health 2024; 24:2631. [PMID: 39334070 PMCID: PMC11438058 DOI: 10.1186/s12889-024-19902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Prior research has demonstrated that nutrition plays a crucial role in the establishment and maturation of the reproductive lifetime. Although the specific dietary components involved in preventing or postponing the reproductive lifespan are still unknown, a healthy diet can affect the reproductive lifespan. Here, the study aimed to explore the relationship between reproductive lifespan and diet quality by utilizing the Healthy Eating Index-2015 (HEI-2015). METHODS In this study, a total of 2761 postmenopausal women were selected from the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2016. Diet quality was determined using HEI-2015 based on two 24-hour dietary recalls. Reproductive lifespan was defined as the number of years between self-reported age at menarche and menopause. Weighted linear regression and eXtreme Gradient Boosting (XGBoost) models were used to analyze the relationship between HEI-2015 and reproductive lifespan. Subsequently, the impact of various components of HEI-2015 on reproductive lifespan was assessed through weighted quantile sum (WQS) regression models. RESULTS Among 2761 postmenopausal women, the mean age was 63.7 years. 41.5% were obese, and 49.7% were non-Hispanic white. After adjusting for sociodemographic characteristics, lifestyle factors, and medical history, individuals in the highest tertile of HEI-2015 had a 4.81% (95% CI: 1.82-7.79%) longer reproductive time life. Higher HEI-2015 was also significantly associated with a higher likelihood of late menopause (p for trend < 0.05). Based on XGBoost models, the relative importance of HEI-2015 on reproductive lifespan was determined. Whole fruits, whole grains, total protein foods, and greens and beans significantly contributed to extending age at menopause and reproductive time life in the HEI-2015. The weights of the WQS index for age at menopause were 27.1%, 23.2%, 10.1%, and 7.5% respectively, while the weights of the WQS index for reproductive time life were 30.2%, 14.6%, 9.3%, and 14.0% respectively. CONCLUSION There is a positive association between the HEI-2015 and reproductive lifespan. This underscores the significance of enhancing adherence to healthy dietary patterns in preventing a shorter reproductive lifespan.
Collapse
Affiliation(s)
- Qiwang Lin
- Department of Pharmacy, Fujian Maternity and Child Health Hospital College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Jun Zhang
- Department of Obstetrics & Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Xiuwu Liu
- Nursing Department & Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Qingyan Zheng
- Department of Obstetrics & Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China
| | - Dan Lin
- Nursing Department & Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China.
| | - Mian Pan
- Department of Obstetrics & Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, 350001, People's Republic of China.
| |
Collapse
|
7
|
Meyer Z, Soukup ST, Lubs A, Ohde D, Walz C, Schoen J, Willenberg HS, Hoeflich A, Brenmoehl J. Impact of Dietary Isoflavones in Standard Chow on Reproductive Development in Juvenile and Adult Female Mice with Different Metabolic Phenotypes. Nutrients 2024; 16:2697. [PMID: 39203833 PMCID: PMC11357413 DOI: 10.3390/nu16162697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Two factors influencing female reproduction have been repeatedly studied in different animal species and humans, namely, 1. secondary plant compounds, especially phytoestrogens (mainly isoflavones (IFs)), and 2. the physical constitution/metabolic phenotype (e.g., obesity). So far, these research results have only been considered separately. In this study, we investigated the influence on reproduction of both phytochemicals, mainly dietary IFs, and the metabolic phenotype represented by three mouse models considered as three distinct genetic groups (a control group, a mouse model with high metabolic activity, and a mouse line with obese body weight). The IF content in different investigated standard chows with similar macronutrient profiles varied significantly (p < 0.005), leading to high mean total plasma IF levels of up to 5.8 µmol/L in juvenile and 6.7 µmol/L in adult female mice. Reproductive performance was only slightly affected; only an IF dose-dependent effect on gestation length was observed in all genetic groups, as well as an effect on pregnancy rate in obese mice. Dietary IF exposure, however, caused earlier onset of vaginal opening by 4-10 days in juvenile mice (p < 0.05), dependent on the genetic group, resulting in a slight acceleration of sexual maturation in the already precocious obese model and to a strong earlier maturation in the otherwise late-maturing sporty model, bred for high treadmill performance. Therefore, our results may help to draw the missing line between the effect of dietary secondary plant constituents, such as IFs, and metabolic phenotype on sexual development.
Collapse
Affiliation(s)
- Zianka Meyer
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Sebastian T. Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Anna Lubs
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Daniela Ohde
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Christina Walz
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jennifer Schoen
- Working Group Cell Physiology & Reproduction, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
- Reproduction Biology Department, Leibniz Institute for Zoo and Wildlife Research IZW, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Holger S. Willenberg
- Center for Internal Medicine, Section of Endocrinology and Metabolic Diseases, University Medicine Rostock, Ernst-Heydemann-Str. 6, 18057 Rostock, Germany
| | - Andreas Hoeflich
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Julia Brenmoehl
- Working Group Endocrinology of Farm Animals, Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| |
Collapse
|
8
|
Quesada-Vázquez S, Eseberri I, Les F, Pérez-Matute P, Herranz-López M, Atgié C, Lopez-Yus M, Aranaz P, Oteo JA, Escoté X, Lorente-Cebrian S, Roche E, Courtois A, López V, Portillo MP, Milagro FI, Carpéné C. Polyphenols and metabolism: from present knowledge to future challenges. J Physiol Biochem 2024; 80:603-625. [PMID: 39377969 PMCID: PMC11502541 DOI: 10.1007/s13105-024-01046-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/31/2024] [Indexed: 10/25/2024]
Abstract
A diet rich in polyphenols and other types of phytonutrients can reduce the occurrence of chronic diseases. However, a well-established cause-and-effect association has not been clearly demonstrated and several other issues will need to be fully understood before general recommendations will be carried out In the present review, some of the future challenges that the research on phenolic compounds will have to face in the next years are discussed: toxicological aspects of polyphenols and safety risk assessment; synergistic effects between different polyphenols; metabotype-based nutritional advice based on a differential gut microbial metabolism of polyphenols (precision nutrition); combination of polyphenols with other bioactive compounds; innovative formulations to improve the bioavailability of phenolic compounds; and polyphenols in sports nutrition and recovery.Other aspects related to polyphenol research that will have a boost in the next years are: polyphenol and gut microbiota crosstalk, including prebiotic effects and biotransformation of phenolic compounds into bioactive metabolites by gut microorganisms; molecular docking, molecular dynamics simulation, and quantum and molecular mechanics studies on the protein-polyphenol complexes; and polyphenol-based coating films, nanoparticles, and hydrogels to facilitate the delivery of drugs, nucleic acids and proteins.In summary, this article provides some constructive inspirations for advancing in the research of the applications, risk assessment and metabolic effects of dietary polyphenols in humans.
Collapse
Affiliation(s)
- Sergio Quesada-Vázquez
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Itziar Eseberri
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
| | - María Herranz-López
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Miguel Hernández University (UMH), Elche, 03202, Spain
| | - Claude Atgié
- Equipe ClipIn (Colloïdes pour l'Industrie et la Nutrition), Bordeaux INP, Institut CBMN, UMR 5248, Pessac, 33600, France
| | - Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Paula Aranaz
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain
| | - José A Oteo
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit. Center for Biomedical Research of La Rioja (CIBIR), Logroño, 26006, Spain
- Hospital Universitario San Pedro, Logroño, 26006, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Unitat de Nutrició i Salut, Reus, 43204, Spain
| | - Silvia Lorente-Cebrian
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Health and Sport Science, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS-Aragon), 50009, Zaragoza, Spain
| | - Enrique Roche
- Department of Applied Biology-Nutrition, Institute of Bioengineering, Miguel Hernández University (UMH), Elche, 03202, Spain
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, 03010, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
| | - Arnaud Courtois
- Département des Sciences de l'Environnement, Institut des Sciences de la Vigne et du Vin, UMR OEnologie (UMR 1366, INRAE, Bordeaux INP), AXE Molécules à Intérêt Biologique, Bordeaux, 33882, France
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, 50830, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, 50013, Spain
| | - María Puy Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU) and Lucio Lascaray Research Institute, Vitoria, 01006, Spain
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain
- Liver Vascular Biology Research Group, IDIBAPS Biomedical Research Institute, CIBEREHD, University of Barcelona, Spain, 08034, Barcelona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Sciences and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, 31008, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, 31008, Spain.
- CIBERobn Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Madrid, 28029, Spain.
| | - Christian Carpéné
- Institut des Maladies Métaboliques et Cardiovasculaires, INSERM UMR1297, Toulouse, 31432, France
- Team Dinamix, Institute of Metabolic and Cardiovascular Diseases (I2MC), Paul Sabatier University, Toulouse, 31432, France
| |
Collapse
|
9
|
Gong G, Ganesan K, Wan Y, Liu Y, Huang Y, Luo Y, Wang X, Zhang Z, Zheng Y. Unveiling the neuroprotective properties of isoflavones: current evidence, molecular mechanisms and future perspectives. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38794836 DOI: 10.1080/10408398.2024.2357701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Neurodegenerative diseases encompass a wide range of debilitating and incurable brain disorders characterized by the progressive deterioration of the nervous system's structure and function. Isoflavones, which are naturally occurring polyphenolic phytochemicals, have been found to regulate various cellular signaling pathways associated with the nervous system. The main objective of this comprehensive review is to explore the neuroprotective effects of isoflavones, elucidate the underlying mechanisms, and assess their potential for treating neurodegenerative disorders. Relevant data regarding isoflavones and their impact on neurodegenerative diseases were gathered from multiple library databases and electronic sources, including PubMed, Google Scholar, Web of Science, and Science Direct. Numerous isoflavones, including genistein, daidzein, biochanin A, and formononetin, have exhibited potent neuroprotective properties against various neurodegenerative diseases. These compounds have been found to modulate neurotransmitters, which in turn contributes to their ability to protect against neurodegeneration. Both in vitro and in vivo experimental studies have provided evidence of their neuroprotection mechanisms, which involve interactions with estrogenic receptors, antioxidant effects, anti-inflammatory properties, anti-apoptotic activity, and modulation of neural plasticity. This review aims to provide current insights into the neuroprotective characteristics of isoflavones and shed light on their potential therapeutic applications in future clinical scenarios.
Collapse
Affiliation(s)
- Guowei Gong
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Kumar Ganesan
- School of Chinese Medicine, The Hong Kong University, Hong Kong SAR, China
| | - Yukai Wan
- Second Clinical Medical College of Guangzhou, University of Traditional Chinese Medicine, Guangzhou, China
| | - Yaqun Liu
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yongping Huang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuting Luo
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Xuexu Wang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Zhenxia Zhang
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
| | - Yuzhong Zheng
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, China
- Guangdong East Drug and Food and Health Branch, Chaozhou, China
| |
Collapse
|
10
|
Konstantinou EK, Gioxari A, Dimitriou M, Panoutsopoulos GI, Panagiotopoulos AA. Molecular Pathways of Genistein Activity in Breast Cancer Cells. Int J Mol Sci 2024; 25:5556. [PMID: 38791595 PMCID: PMC11122029 DOI: 10.3390/ijms25105556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
The most common malignancy in women is breast cancer. During the development of cancer, oncogenic transcription factors facilitate the overproduction of inflammatory cytokines and cell adhesion molecules. Antiapoptotic proteins are markedly upregulated in cancer cells, which promotes tumor development, metastasis, and cell survival. Promising findings have been found in studies on the cell cycle-mediated apoptosis pathway for medication development and treatment. Dietary phytoconstituents have been studied in great detail for their potential to prevent cancer by triggering the body's defense mechanisms. The underlying mechanisms of action may be clarified by considering the role of polyphenols in important cancer signaling pathways. Phenolic acids, flavonoids, tannins, coumarins, lignans, lignins, naphthoquinones, anthraquinones, xanthones, and stilbenes are examples of natural chemicals that are being studied for potential anticancer drugs. These substances are also vital for signaling pathways. This review focuses on innovations in the study of polyphenol genistein's effects on breast cancer cells and presents integrated chemical biology methods to harness mechanisms of action for important therapeutic advances.
Collapse
Affiliation(s)
| | | | | | | | - Athanasios A. Panagiotopoulos
- Department of Nutritional Science and Dietetics, School of Health Sciences, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.K.K.); (A.G.); (M.D.); (G.I.P.)
| |
Collapse
|
11
|
Zapater C, Moreira C, Knigge T, Monsinjon T, Gómez A, Pinto PIS. Evolutionary history and functional characterization of duplicated G protein-coupled estrogen receptors in European sea bass. J Steroid Biochem Mol Biol 2024; 236:106423. [PMID: 37939740 DOI: 10.1016/j.jsbmb.2023.106423] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/29/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Across vertebrates, the numerous estrogenic functions are mainly mediated by nuclear and membrane receptors, including the G protein-coupled estrogen receptor (GPER) that has been mostly associated with rapid non-genomic responses. Although Gper-mediated signalling has been characterized in only few fish species, Gpers in fish appear to present more mechanistic functionalities as those of mammals due to additional gene duplicates. In this study, we ran a thorough investigation of the fish Gper evolutionary history in light of available genomes, we carried out the functional characterization of the two gper gene duplicates of European sea bass (Dicentrarchus labrax) using luciferase reporter gene transactivation assays, validated it with natural and synthetic estrogen agonists/antagonists and applied it to other chemicals of aquaculture and ecotoxicological interest. Phylogenetic and synteny analyses of fish gper1 and gper1-like genes suggest their duplication may have not resulted from the teleost-specific whole genome duplication. We confirmed that both sbsGper isoforms activate the cAMP signalling pathway and respond differentially to distinct estrogenic compounds. Therefore, as observed for nuclear estrogen receptors, both sbsGpers duplicates retain estrogenic activity although they differ in their specificity and potency (Gper1 being more potent and more specific than Gper1-like), suggesting a more conserved role for Gper1 than for Gper1-like. In addition, Gpers were able to respond to estrogenic environmental pollutants known to interfere with estrogen signalling, such as the phytoestrogen genistein and the anti-depressant fluoxetine, a point that can be taken into account in aquatic environment pollution screenings and chemical risk assessment, complementing previous assays for sea bass nuclear estrogen receptors.
Collapse
Affiliation(s)
- Cinta Zapater
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Catarina Moreira
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Thomas Knigge
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Tiphaine Monsinjon
- UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), University of Le Havre Normandy, F-76600 Le Havre, France.
| | - Ana Gómez
- Instituto de Acuicultura Torre de la Sal, CSIC, 12595 Torre de la Sal, Castellón, Spain.
| | - Patrícia I S Pinto
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal.
| |
Collapse
|
12
|
Shao Y, Huang J, Wei M, Fan L, Shi H, Shi H. Soybean isoflavone promotes milk yield and milk fat yield through the ERα-mediated Akt/mTOR pathway in dairy goats. J Anim Sci 2024; 102:skae352. [PMID: 39657106 DOI: 10.1093/jas/skae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024] Open
Abstract
Soybean isoflavone (SIF) in soybeans are natural phytoestrogens, which is functioned as an estrogen agonistic or antagonistic. SIF regulates the capacity of animals to synthesize triacylglycerols by directly utilizing long-chain fatty acids. However, few studies have focused on its regulatory lipid metabolism in lactating dairy goats. The objective of this study was to investigate the influence of SIF on milk yield and composition using Saanen dairy goats as a model, employing both in vivo and in vitro approaches. In the in vivo phase, a total of 20 goats were randomly divided into 2 groups: the control group fed a basal diet, and the experimental group fed a basal diet supplemented with SIF at a dosage of 100 mg/d. The results underscored a significant elevation in serum estrogen and prolactin levels in the SIF-supplemented group (P < 0.05). Notably, SIF supplementation also displayed a higher milk fat percentage (P = 0.03). Transitioning to in vitro experimentation, the addition of SIF (75 µM) to goat mammary epithelial cells exhibited a pronounced effect on cell proliferation. It spurred cell proliferation and led to an increase in triacylglycerol levels (P < 0.05). Consistently, SIF showcased an enhancement in the expression of key genes associated with milk fat de novo synthesis. SIF demonstrated a rescuing effect on the suppressive impact of MK2206 on Akt protein phosphorylation. Importantly, the study observed that the knockdown of estrogen receptor alpha (ERα) expression completely counteracted the effect of SIF on lipid droplet accumulation. Collectively, the current study establishes the critical role of SIF in process of fatty acid de novo in the goat mammary gland. This regulation is notably mediated through the ERα-Akt axis, thus enriching our understanding of this intricate biological process. This research sheds light on the potential benefits of SIF supplementation in dairy goat farming, ultimately contributing to improved milk production and quality.
Collapse
Affiliation(s)
- Yuexin Shao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Jiangtao Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Manhong Wei
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066600, China
| | - Liaoyu Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaiping Shi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hengbo Shi
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Paes LT, D'Almeida CTDS, do Carmo MAV, da Silva Cruz L, Bubula de Souza A, Viana LM, Gonçalves Maltarollo V, Martino HSD, Domingues de Almeida Lima G, Larraz Ferreira MS, Azevedo L, Barros FARD. Phenolic-rich extracts from toasted white and tannin sorghum flours have distinct profiles influencing their antioxidant, antiproliferative, anti-adhesive, anti-invasive, and antimalarial activities. Food Res Int 2024; 176:113739. [PMID: 38163694 DOI: 10.1016/j.foodres.2023.113739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024]
Abstract
Sorghum is a gluten-free cereal commonly used in foods, and its consumption has been associated with the prevention of human chronic conditions such as obesity and cancer, due to the presence of dietary fiber and phenolic compounds. This study aimed to evaluate, for the first time, the antiproliferative, antioxidant, anti-adhesion, anti-invasion, and antimalarial activities of phenolic extracts from toasted white and tannin sorghum flours to understand how different phenolic profiles contribute to sorghum biological activities. Water and 70 % ethanol/water (v/v), eco-friendly solvents, were used to obtain the phenolic extracts of toasted sorghum flours, and their phenolic profile was analyzed by UPLC-MSE. One hundred forty-five (145) phenolic compounds were identified, with 23 compounds common to all extracts. The solvent type affected the phenolic composition, with aqueous extract of both white sorghum (WSA) and tannin sorghum (TSA) containing mainly phenolic acids. White sorghum (WSE) and tannin sorghum (TSE) ethanolic extracts exhibited a higher abundance of flavonoids. WSE demonstrated the lowest IC50 on EA.hy926 (IC50 = 46.6 µg/mL) and A549 cancer cells (IC50 = 33.1 µg/mL), while TSE showed the lowest IC50 (IC50 = 70.8 µg/mL) on HCT-8 cells (human colon carcinoma). Aqueous extracts also demonstrated interesting results, similar to TSE, showing selectivity for cancer cells at higher IC50 concentrations. All sorghum extracts also reduced the adhesion and invasion of HCT-8 cells, suggesting antimetastatic potential. WSE, rich in phenolic acids and flavonoids, exhibited greater toxicity to both the W2 (chloroquine-resistant) and 3D7 (chloroquine-sensitive) strains of Plasmodium falciparum (IC50 = 8 µg GAE/mL and 22.9 µg GAE/mL, respectively). These findings underscore the potential health benefits of toasted sorghum flours, suggesting diverse applications in the food industry as a functional ingredient or even as an antioxidant supplement. Moreover, it is suggested that, besides the phenolic concentration, the phenolic profile is important to understand the health benefits of sorghum flours.
Collapse
Affiliation(s)
- Laise Trindade Paes
- Department of Food Technology, Federal University of Vicosa, Vicosa, MG, Brazil
| | | | | | | | | | | | - Vinicius Gonçalves Maltarollo
- Pharmaceutical Products Department, Faculty of Pharmacy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil
| | - Luciana Azevedo
- Faculty of Nutrition, Federal University of Alfenas, Alfenas, MG, Brazil
| | | |
Collapse
|
14
|
Bailón-Uriza R, Ayala-Méndez JA, Celis-González C, Chávez-Brambila J, Hernández Marín I, Maldonado-Alvarado JDD, Montoya-Cossío J, Molina-Segui F, May-Hau A, Riobó Serván P, Neri-Ruz E, Peralta-Sánchez A, Reyes E, Rosado-López R, Santa Rita-Escamilla MT, Tena Alavez G, Laviada Molina H. [Soy beverages and women's health: evidence review and experts opinion]. NUTR HOSP 2023; 40:1056-1067. [PMID: 37154022 DOI: 10.20960/nh.04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Introduction Soy drinks are an increasingly consumed option within the Western diet. However, there are concerns about potential endocrine disruptor effects and possible impact on women's reproductive health. This review evaluates scientific documents in gynecology and obstetrics under an evidence-based medicine approach. All methods adhered to PRISMA 2020 declaration guidelines. The evaluated studies do not support a positive association between soy intake and early puberty or breast cancer; instead, a protective effect against such neoplasm was observed. Transplacental passage of soy isoflavones and their presence in breast milk has been reported without any maternal-fetal complications nor congenital malformations. Exposure to soy-derived products appears to have a neutral effect on body weight and bone health. Studies performed in adults indicate that soy may promote a minimal increase in thyrotropin (TSH) in subjects with subclinical hypothyroidism. The impact of soy-based foods on gut microbiota appears favorable, especially when consuming fermented products. Many of the human studies have been conducted with isoflavones supplements, isolated or textured soy proteins. Therefore, the results and conclusions should be interpreted cautiously, as these are not entirely applicable to commercial soy beverages.
Collapse
Affiliation(s)
| | | | | | - Jesús Chávez-Brambila
- Hospital de Ginecología y Obstetricia "Luis Castelazo Ayala". Instituto Mexicano del Seguro Social
| | | | | | | | | | - Abraham May-Hau
- Escuela de Ciencias de la Salud. Universidad Marista de Mérida
| | | | | | | | - Eduardo Reyes
- Departamento de Atención a la Salud. Universidad Autónoma Metropolitana Unidad Xochimilco
| | | | | | | | | |
Collapse
|
15
|
Westmark CJ. Toward an understanding of the role of the exposome on fragile X phenotypes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 173:141-170. [PMID: 37993176 DOI: 10.1016/bs.irn.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Fragile X syndrome (FXS) is the leading known monogenetic cause of autism with an estimated 21-50% of FXS individuals meeting autism diagnostic criteria. A critical gap in medical care for persons with autism is an understanding of how environmental exposures and gene-environment interactions affect disease outcomes. Our research indicates more severe neurological and metabolic outcomes (seizures, autism, increased body weight) in mouse and human models of autism spectrum disorders (ASD) as a function of diet. Thus, early-life exposure to chemicals in the diet could cause or exacerbate disease outcomes. Herein, we review the effects of potential dietary toxins, i.e., soy phytoestrogens, glyphosate, and polychlorinated biphenyls (PCB) in FXS and other autism models. The rationale is that potentially toxic chemicals in the diet, particularly infant formula, could contribute to the development and/or severity of ASD and that further study in this area has potential to improve ASD outcomes through dietary modification.
Collapse
Affiliation(s)
- Cara J Westmark
- Department of Neurology, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States; Molecular Environmental Toxicology Center, University of Wisconsin-Madison, Medical Sciences Center, Room 3619, 1300 University Avenue, Madison, WI, United States.
| |
Collapse
|
16
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
17
|
Han X, Sun Y, Huangfu B, He X, Huang K. Ultra-high-pressure passivation of soybean agglutinin and safety evaluations. Food Chem X 2023; 18:100726. [PMID: 37397201 PMCID: PMC10314156 DOI: 10.1016/j.fochx.2023.100726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
Soybean agglutinin (SBA) is a heat-sensitive anti-nutritional factor (ANF). It affects nutrient absorption and causes organism poisoning. This study explored the SBA passivation ability and mechanism by ultra-high pressure (HHP), a non-thermal food processing technology. The results indicated that more than 500 MPa HHP treatment reduced the SBA activity by destroying its secondary and tertiary structures. Also, the cell and animal experiments showed that HHP treatment reduced the cytotoxicity of SBA, improved the mice's body weight, and alleviated liver, kidney, and digestive tract damage in Vivo. These results demonstrated that HHP had a high passivation efficiency against the SBA, thereby HHP promoting the safety of soybean products. This study provided supporting evidence for ultra-high-pressure treatment applications in soybean processing.
Collapse
Affiliation(s)
- Xiao Han
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yu Sun
- Lanzhou Anning District Bureau of Statistics, Gansu 730070, China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), the Ministry of Agriculture and Rural Affairs of the P.R. China, Beijing, 100083, China
| |
Collapse
|
18
|
Panpan Z, Alifu N, Sataer M, Yiming A, Amuti S, Wenjing M, Binghua W. Effects of phytoestrogens combined with cold stress on sperm parameters and testicular proteomics in rats. Open Life Sci 2023; 18:20220531. [PMID: 36742450 PMCID: PMC9883686 DOI: 10.1515/biol-2022-0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 01/26/2023] Open
Abstract
Phytoestrogens and cold negatively influence male fertility. However, the combined effects of these two factors on male reproduction remain unknown. Herein, we studied the changes of sperm parameters and identify potential biomarkers involved in testis of rats, which were intervened by phytoestrogens combined with cold stress. Male Sprague-Dawley rats were randomly divided into control and model groups. The rats in the model group were fed an estrogen diet and placed in a climate chamber [10 ± 2°C; humidity of 75 ± 5%] for 12 h/daily. When compared with the control group after 24 weeks, the rats in the model group showed increased food intake, urine and stool outputs, and higher estradiol and follicle-stimulating hormone levels. However, lower sperm concentration, motility, and viability, and reduced testosterone levels were detected. The epithelial cells of the seminiferous tubules and epididymal ducts presented morphological abnormalities. Proteomic analysis showed that 24 testicular proteins were upregulated and 15 were downregulated. The identified proteins were involved in reticulophagy and stress response. Our findings suggest that the phytoestrogens combined with cold stress had negative effects on the reproductive function of male rats and provide the basis for the establishment of "course simulation" type of oligospermia animal model.
Collapse
Affiliation(s)
- Zhang Panpan
- School of Pharmacy, Xinjiang Medical University, Urumqi, China,Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Nurbiah Alifu
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | | | - Adilijiang Yiming
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| | - Ma Wenjing
- Central Laboratory, Xinjiang Medical University, Urumqi, China
| | - Wang Binghua
- Department of Human Anatomy, School of Basic Medical Sciences, Xinjiang Medical University, Shangde North Road 345, Urumqi 830017, China
| |
Collapse
|
19
|
Bubnov R, Spivak M. Pathophysiology-Based Individualized Use of Probiotics and Prebiotics for Metabolic Syndrome: Implementing Predictive, Preventive, and Personalized Medical Approach. ADVANCES IN PREDICTIVE, PREVENTIVE AND PERSONALISED MEDICINE 2023:133-196. [DOI: 10.1007/978-3-031-19564-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Ku CW, Ku CO, Tay LPC, Xing HK, Cheung YB, Godfrey KM, Colega MT, Teo C, Tan KML, Chong YS, Shek LPC, Tan KH, Chan SY, Lim SX, Chong MFF, Yap F, Chan JKY, Loy SL. Dietary Supplement Intake and Fecundability in a Singapore Preconception Cohort Study. Nutrients 2022; 14:nu14235110. [PMID: 36501137 PMCID: PMC9739604 DOI: 10.3390/nu14235110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
Subfertility is a global problem affecting millions worldwide, with declining total fertility rates. Preconception dietary supplementation may improve fecundability, but the magnitude of impact remains unclear. This prospective cohort study aimed to examine the association of preconception micronutrient supplements with fecundability, measured by time to pregnancy (TTP). The study was conducted at KK Women's and Children's Hospital, Singapore, between February 2015 and October 2017, on 908 women aged 18-45 years old, who were trying to conceive and were enrolled in the Singapore PREconception Study of long-Term maternal and child Outcomes (S-PRESTO). Baseline sociodemographic characteristics and supplement intake were collected through face-to-face interviews. The fecundability ratio (FR) was estimated using discrete-time proportional hazard modelling. Adjusting for potentially confounding variables, folic acid (FA) (FR 1.26, 95% confidence interval 1.03-1.56) and iodine (1.28, 1.00-1.65) supplement users had higher fecundability compared to non-users. Conversely, evening primrose oil supplement users had lower fecundability (0.56, 0.31-0.99) than non-users. In this study, preconception FA and iodine supplementation were associated with shortened TTP, while evening primrose oil use was associated with longer TTP. Nonetheless, the association between supplement use and the magnitude of fecundability changes will need to be further confirmed with well-designed randomised controlled trials.
Collapse
Affiliation(s)
- Chee Wai Ku
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Chee Onn Ku
- Faculty of Science, National University of Singapore, Singapore 117546, Singapore
| | - Liza Pui Chin Tay
- Department of Obstetrics and Gynaecology, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Hui Kun Xing
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yin Bun Cheung
- Program in Health Services & Systems Research and Center for Quantitative Medicine, Duke-NUS Medical School, Singapore 169857, Singapore
- Tampere Center for Child, Adolescent and Maternal Health Research, Tampere University, 33014 Tampere, Finland
| | - Keith M. Godfrey
- Medical Research Council Lifecourse Epidemiology Centre, University of Southampton, Southampton SO16 6YD, UK
- National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton National Health Service Foundation Trust, Southampton SO16 6YD, UK
| | - Marjorelee T. Colega
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Cherlyen Teo
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Karen Mei Ling Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 119228, Singapore
| | - Lynette Pei-Chi Shek
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 119228, Singapore
- Khoo Teck Puat-National University Children’s Medical Institute, National University Hospital, National University Health System, Singapore 119074, Singapore
| | - Kok Hian Tan
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore 119228, Singapore
| | - Shan Xuan Lim
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore
| | - Mary Foong-Fong Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore 117609, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, National University Health System, Singapore 117549, Singapore
| | - Fabian Yap
- Duke-NUS Medical School, Singapore 169857, Singapore
- Department of Paediatrics, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence:
| | - See Ling Loy
- Department of Reproductive Medicine, KK Women’s and Children’s Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
21
|
Alonso-Miravalles L, Barone G, Waldron D, Bez J, Joehnke MS, Petersen IL, Zannini E, Arendt EK, O'Mahony JA. Formulation, pilot-scale preparation, physicochemical characterization and digestibility of a lentil protein-based model infant formula powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5044-5054. [PMID: 33682129 DOI: 10.1002/jsfa.11199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/25/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Infant formula is a human milk substitute for consumption during the first months of life. The protein component of such products is generally of dairy origin. Alternative sources of protein, such as those of plant origin, are of interest due to dairy allergies, intolerances, and ethical and environmental considerations. Lentils have high levels of protein (20-30%) with a good amino acid profile and functional properties. In this study, a model lentil protein-based formula (LF), in powder format, was produced and compared to two commercial plant-based infant formulae (i.e., soy; SF and rice; RF) in terms of physicochemical properties and digestibility. RESULTS The macronutrient composition was similar between all the samples; however, RF and SF had larger volume-weighted mean particle diameters (D[4,3] of 121-134 μm) than LF (31.9 μm), which was confirmed using scanning electron and confocal laser microscopy. The larger particle sizes of the commercial powders were attributed to their agglomeration during the drying process. Regarding functional properties, the LF showed higher D[4,3] values (17.8 μm) after 18 h reconstitution in water, compared with the SF and RF (5.82 and 4.55 μm, respectively), which could be partially attributed to hydrophobic protein-protein interactions. Regarding viscosity at 95 °C and physical stability, LF was more stable than RF. The digestibility analysis showed LF to have similar values (P < 0.05) to the standard SF. CONCLUSION These results demonstrated that, from the nutritional and physicochemical perspectives, lentil proteins represent a good alternative to other sources of plant proteins (e.g., soy and rice) in infant nutritional products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Giovanni Barone
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - David Waldron
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Juergen Bez
- Fraunhofer Institute for Process Engineering and Packaging, Freising, Germany
| | | | - Iben Lykke Petersen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Emanuele Zannini
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Elke K Arendt
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - James A O'Mahony
- School of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| |
Collapse
|
22
|
The Role of Soy Isoflavones in the Prevention of Bone Loss in Postmenopausal Women: A Systematic Review with Meta-Analysis of Randomized Controlled Trials. J Clin Med 2022; 11:jcm11164676. [PMID: 36012916 PMCID: PMC9409780 DOI: 10.3390/jcm11164676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the report was to determine the effects of soy isoflavones on lumbar spine, femoral neck, and total hip bone mineral density (BMD) in menopausal women. MEDLINE (PubMed), EMBASE, and Cochrane Library databases were searched for articles published in English during 1995–2019. Studies were identified and reviewed for inclusion and exclusion eligibility. Weighted mean differences (WMD) were calculated for each study and were pooled by using the random effects model. Eighteen randomized controlled trials were selected for meta-analysis. Different types of soy phytoestrogens, i.e., genistein extracts, soy isoflavones extracts, soy protein isolate, and foods containing diverse amounts of isoflavones were used in the studies. The analysis showed that daily intake of 106 (range, 40–300) mg of isoflavones for 6–24 months moderately but statistically significantly positively affects BMD, compared with controls: lumbar spine WMD = 1.63 (95% CI: 0.51 to 2.75)%, p = 0004; femoral neck WMD = 1.87 (95% CI: 0.14 to 3.60)%, p = 0.034; and total hip WMD = 0.39 (95% CI: 0.08 to 0.69)%, p = 0.013. Subgroups analyses indicated that the varying effects of isoflavones on BMD across the trials might be associated with intervention duration, racial diversity (Caucasian, Asian), time after menopause, form of supplements (especially genistein), and dose of isoflavones. Our review and meta-analysis suggest that soy isoflavones are effective in slowing down bone loss after menopause.
Collapse
|
23
|
Ma KK, Grossmann L, Nolden AA, McClements DJ, Kinchla AJ. Functional and Physical Properties of Commercial Pulse Proteins Compared to Soy Derived Protein. FUTURE FOODS 2022. [DOI: 10.1016/j.fufo.2022.100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
24
|
Bio-Refinery of Oilseeds: Oil Extraction, Secondary Metabolites Separation towards Protein Meal Valorisation—A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Edible oil extraction is a large and well-developed sector based on solvent assisted extraction using volatile organic compounds such as hexane. The extraction of oil from oilseeds generates large volumes of oilseed by-products rich in proteins, fibres, minerals and secondary metabolites that can be valued. This work reviews the current status and the bio-macro-composition of oilseeds, namely soybean, rapeseed, sunflower and flaxseed, and the refining process, comprising the extraction of oil, the valorisation and separation of valuable secondary metabolites such as phenolic compounds, and the removal of anti-nutritional factors such as glucosinolates, while retaining the protein in the oilseed meal. It also provides an overview of alternative solvents and some of the unconventional processes used as a replacement to the conventional extraction of edible oil, as well as the solvents used for the extraction of secondary metabolites and anti-nutritional factors. These biologically active compounds, including oils, are primordial raw materials for several industries such as food, pharmaceutical or cosmetics.
Collapse
|
25
|
Berk Ş, Kaya S, Akkol EK, Bardakçı H. A comprehensive and current review on the role of flavonoids in lung cancer-Experimental and theoretical approaches. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153938. [PMID: 35123170 DOI: 10.1016/j.phymed.2022.153938] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND It is well-known that flavonoids, which can be easily obtained from many fruits and vegetables are widely preferred in the treatment of some important diseases. Some researchers noted that these chemical compounds exhibit high inhibition effect against various cancer types. Many experimental studies proving this ability of the flavonoids with high antioxidant activity are available in the literature. PUROPOSE The main aim of this review is to summarize comprehensively anticancer properties of flavonoids against the lung cancer in the light of experimental studies and well-known theory and electronic structure principles. In this review article, more detailed and current information about the using of flavonoids in the treatment of lung cancer is presented considering theoretical and experimental approaches. STUDY DESIGN In addition to experimental studies including the anticancer effects of flavonoids, we emphasized the requirement of the well-known electronic structure principle in the development of anticancer drugs. For this aim, Conceptual Density Functional Theory should be considered as a powerful tool. Searching the databases including ScienceDirect, PubMed and Web of Science, the suitable reference papers for this project were selected. METHODS Theoretical tools like DFT and Molecular Docking provides important clues about anticancer behavior and drug properties of molecular systems. Conceptual Density Functional Theory and CDFT based electronic structure principles and rules like Hard and Soft Acid-Base Principle (HSAB), Maximum Hardness Principle, Minimum Polarizability, Minimum Electrophilicity Principles and Maximum Composite Hardness Rule introduced by one of the authors of this review are so useful to predict the mechanisms and powers of chemical systems. Especially, it cannot be ignored the success of HSAB Principle in the explanations and highlighting of biochemical interactions. RESULTS Both theoretical analysis and experimental studies confirmed that flavonoids have higher inhibition effect against lung cancer. In addition to many superior properties like anticancer activity, antimicrobial activity, antioxidant activity, antidiabetic effect of flavonoids, their toxicities are also explained with the help of published popular papers. Action modes of the mentioned compounds are given in detail. CONCLUSION The review includes detailed information about the mentioned electronic structure principles and rules and their applications in the cancer research. In addition, the epidemiology and types of lung cancer anticancer activity of flavonoids in lung cancer are explained in details.
Collapse
Affiliation(s)
- Şeyda Berk
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Savaş Kaya
- Health Services Vocational School, Department of Pharmacy, Sivas Cumhuriyet University, Sivas 58140, Turkey.
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey
| | - Hilal Bardakçı
- Department of Pharmacognosy, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, Istanbul 34752, Turkey
| |
Collapse
|
26
|
Ronis MJJ, Gomez-Acevedo H, Shankar K, Hennings L, Sharma N, Blackburn ML, Miousse I, Dawson H, Chen C, Mercer KE, Badger TM. Soy Formula Is Not Estrogenic and Does Not Result in Reproductive Toxicity in Male Piglets: Results from a Controlled Feeding Study. Nutrients 2022; 14:nu14051126. [PMID: 35268101 PMCID: PMC8912539 DOI: 10.3390/nu14051126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/17/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023] Open
Abstract
Soy infant formula which is fed to over half a million infants per year contains isoflavones such as genistein, which have been shown to be estrogenic at high concentrations. The developing testis is sensitive to estrogens, raising concern that the use of soy formulas may result in male reproductive toxicity. In the current study, male White-Dutch Landrace piglets received either sow milk (Sow), or were provided milk formula (Milk), soy formula (Soy), milk formula supplemented with 17-beta-estradiol (2 mg/kg/d) (M + E2) or supplemented with genistein (84 mg/L of diet; (M + G) from postnatal day 2 until day 21. E2 treatment reduced testis weight (p < 0.05) as percentage of body weight, significantly suppressed serum androgen concentrations, increased tubule area, Germ cell and Sertoli cell numbers (p < 0.05) relative to those of Sow or Milk groups. Soy formula had no such effects relative to Sow or Milk groups. mRNAseq revealed 103 differentially expressed genes in the M + E2 group compared to the Milk group related to endocrine/metabolic disorders. However, little overlap was observed between the other treatment groups. These data suggest soy formula is not estrogenic in the male neonatal piglet and that soy formula does not significantly alter male reproductive development.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Str., New Orleans, LA 70112, USA
- Correspondence:
| | - Horacio Gomez-Acevedo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Kartik Shankar
- Department of Pediatrics-Nutrition, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Leah Hennings
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Neha Sharma
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Michael L. Blackburn
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
| | - Isabelle Miousse
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Harry Dawson
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Celine Chen
- USDA ARS Nutrition Center, Diet Genomics and Immunology Laboratory, Beltsville, MD 20705, USA; (H.D.); (C.C.)
| | - Kelly E. Mercer
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Thomas M. Badger
- Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA; (N.S.); (M.L.B.); (K.E.M.); (T.M.B.)
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
27
|
Subramaniam MN, Goh PS, Kanakaraju D, Lim JW, Lau WJ, Ismail AF. Photocatalytic membranes: a new perspective for persistent organic pollutants removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:12506-12530. [PMID: 34101123 DOI: 10.1007/s11356-021-14676-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
The presence of conventional and emerging pollutants infiltrating into our water bodies is a course of concern as they have seriously threatened water security. Established techniques such as photocatalysis and membrane technology have proven to be promising in removing various persistent organic pollutants (POP) from wastewaters. The emergence of hybrid photocatalytic membrane which incorporates both photocatalysis and membrane technology has shown greater potential in treating POP laden wastewater based on their synergistic effects. This article provides an in-depth review on the roles of both photocatalysis and membrane technology in hybrid photocatalytic membranes for the treatment of POP containing wastewaters. A concise introduction on POP's in terms of examples, their origins and their effect on a multitude of organisms are critically reviewed. The fundamentals of photocatalytic mechanism, current directions in photocatalyst design and their employment to treat POP's are also discussed. Finally, the challenges and future direction in this field are presented.
Collapse
Affiliation(s)
- Mahesan Naidu Subramaniam
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Devagi Kanakaraju
- Faculty of Resource and Science Technology, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Jun Wei Lim
- Department of Fundamental and Applied Sciences, HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar, Darul Ridzuan, 32610, Perak, Malaysia
| | - Woei Jye Lau
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| |
Collapse
|
28
|
He X, Wang Y, Wu M, Wei J, Sun X, Wang A, Hu G, Jia J. Secoisolariciresinol Diglucoside Improves Ovarian Reserve in Aging Mouse by Inhibiting Oxidative Stress. Front Mol Biosci 2022; 8:806412. [PMID: 35059437 PMCID: PMC8764264 DOI: 10.3389/fmolb.2021.806412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian reserve is a key factor in the reproductive function of the ovaries. Ovarian aging is characterized by a gradual decline in the quantity and quality of follicles. The underlying mechanism of ovarian aging is complex and age-related oxidative stress is considered one of the most likely factors. Secoisolariciresinol diglucoside (SDG) has been shown to have good scavenging ability against reactive oxygen species (ROS) which slowly accumulates in ovarian tissues. However, it is unknown whether SDG had beneficial effects on aging ovaries. In this study, we used 37-week-old female C57BL/6J mouse as a natural reproductive aging model to evaluate the role of SDG in ovarian aging. SDG (7 and 70 mg/kg) intragastric administration was performed in the mice daily. After 8 weeks, the effects of SDG on aging ovaries were evaluated by counting the number of follicles and the expression of follicle-stimulating hormone receptors (FSHR) in the ovary. The mechanism of SDG on the aging ovaries was further explored through ovarian metabolomics. It was found that SDG can effectively increase the number of growing follicles and increase the expression of the FSHR protein. The metabolomics results showed that the ovaries in the SDG intervention group achieved better uptake and transport of nutrients, including amino acids and glucose that are necessary for the development of oocytes. At the same time, the ovaries of the SDG intervention group showed that the drug reduced ROS generation. Additionally, we found that ovarian telomere length and ovarian mitochondrial DNA copy number that are highly susceptible to ROS damage and are also related to aging. The results showed that SDG can significantly increase mitochondrial DNA copy number and slow down the process of telomere shortening. These data indicate that SDG improves ovarian reserve by inhibiting oxidative stress.
Collapse
Affiliation(s)
- XueLai He
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yong Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - MeiQi Wu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - JiangChun Wei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - XianDuo Sun
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - AnHua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - GaoSheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - JingMing Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
29
|
Kim Y, Kim DW, Kim K, Choe JS, Lee HJ. Usual intake of dietary isoflavone and its major food sources in Koreans: Korea National Health and Nutrition Examination Survey 2016-2018 data. Nutr Res Pract 2022; 16:S134-S146. [PMID: 35651842 PMCID: PMC9127517 DOI: 10.4162/nrp.2022.16.s1.s134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/25/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Dong Woo Kim
- Food and Nutrition Major, Division of Human Ecology, Korea National Open University, Seoul 03087, Korea
| | - Kijoon Kim
- Department of Food and Nutrition, Sookmyung Women’s University, Seoul 04310, Korea
| | - Jeong-Sook Choe
- Department of Agro-materials Evaluation, National Institute of Agricultural Sciences, Wanju 55365, Korea
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, Korea
- Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
30
|
Baldovska S, Roychoudhury S, Bandik M, Mihal M, Mnahoncakova E, Arvay J, Pavlik A, Slama P, Kolesarova A. Ovarian steroid hormone secretion by human granulosa cells after supplementation of sambucus nigra l. extract. Physiol Res 2021; 70:755-764. [PMID: 34505534 DOI: 10.33549/physiolres.934680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Beneficial effects of Sambucus nigra L. (black elder) as a traditional medicine have been associated with the phytoconstituents including polyphenols, terpenes and lectins. Various antioxidant rich natural products have also been implicated with improvement of reproductive health and fertility, however, the effect of Sambucus nigra on the ovarian cell functions has not been investigated yet. The objectives of the present study were to screen the polyphenols in the elderflower and elderberry extracts, and to examine the secretion activity of steroid hormones 17beta-estradiol and progesterone by human ovarian granulosa cells HGL5 after supplementation of the extracts at a concentration range of 12.5 to 100 microg.ml-1. Qualitative as well as quantitative screening of polyphenols by high-performance liquid chromatography with diode-array detector (HPLC-DAD) analysis revealed rutin to be the most abundant polyphenol in both elderflower and elderberry extracts. In culture, neither elderflower nor elderberry extract caused any significant impact (p>0.05) in cell viability as studied by AlamarBlue assay in comparison to control. However, a dose-dependent stimulation of 17beta-estradiol release was detected by ELISA after supplementation of elderflower (at 50 microg.ml-1; p<0.01) and elderberry (at 100 microg.ml-1; p<0.05) extracts at higher doses used in the study. On the other hand, both elderflower and elderberry extracts stimulated the secretion of progesterone by HGL5 cells at a lower dose (12.5 microg.ml-1; p<0.05), as compared to control. Therefore, elderflower and elderberry extracts may have the potential to regulate steroidogenesis in ovarian cells.
Collapse
Affiliation(s)
- S Baldovska
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic. Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Zamani-Garmsiri F, Emamgholipour S, Rahmani Fard S, Ghasempour G, Jahangard Ahvazi R, Meshkani R. Polyphenols: Potential anti-inflammatory agents for treatment of metabolic disorders. Phytother Res 2021; 36:415-432. [PMID: 34825416 DOI: 10.1002/ptr.7329] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 10/17/2021] [Accepted: 10/23/2021] [Indexed: 12/31/2022]
Abstract
Ample evidence highlights the potential benefits of polyphenols in health status especially in obesity-related metabolic disorders such as insulin resistance, type 2 diabetes, and cardiovascular diseases. Mechanistically, due to the key role of "Metainflammation" in the pathomechanism of metabolic disorders, recently much focus has been placed on the properties of polyphenols in obesity-related morbidities. This narrative review summarizes the current knowledge on the role of polyphenols, including genistein, chlorogenic acid, ellagic acid, caffeic acid, and silymarin in inflammatory responses pertinent to metabolic disorders and discusses the implications of this evidence for future directions. This review provides evidence that the aforementioned polyphenols benefit health status in metabolic disorders via direct and indirect regulation of a variety of target proteins involved in inflammatory signaling pathways. However, due to limitations of the in vitro and in vivo studies and also the lack of long-term human clinical trials studies, further high-quality investigations are required to firmly establish the clinical efficacy of the polyphenols for the prevention and management of metabolic disorders.
Collapse
Affiliation(s)
- Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Antimicrobial Resistance Research Center, Institute of immunology and infectious Disease, Iran University of Medical Sciences, Tehran, Iran
| | - Ghasem Ghasempour
- Department of Clinical Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Jahangard Ahvazi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Kang S, Jo H, Kim MR. Safety Assessment of Endocrine Disruption by Menopausal Health Functional Ingredients. Healthcare (Basel) 2021; 9:healthcare9101376. [PMID: 34683056 PMCID: PMC8544397 DOI: 10.3390/healthcare9101376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 12/23/2022] Open
Abstract
During menopause, women experience various symptoms including hot flashes, mood changes, insomnia, and sweating. Hormone replacement therapy (HRT) has been used as the main treatment for menopausal symptoms; however, other options are required for women with medical contraindications or without preference for HRT. Functional health foods are easily available options for relieving menopausal symptoms. There are growing concerns regarding menopausal functional health foods because the majority of them include phytoestrogens which have the effect of endocrine disruption. Phytoestrogens may cause not only hormonal imbalance or disruption of the normal biological function of the organ systems, but also uterine cancer or breast cancer if absorbed and accumulated in the body for a long period of time, depending on the estrogen receptor binding capacity. Therefore, we aimed to determine the effects and safety of menopausal functional health ingredients and medicines on the human body as endocrine disruptors under review in the literature and the OECD guidelines.
Collapse
Affiliation(s)
- Soyeon Kang
- St. Vincent’s Hospital, Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Hagyeong Jo
- Seoul St. Mary’s Hospital, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Mee-Ran Kim
- Seoul St. Mary’s Hospital, Division of Gynecologic Endocrinology, Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6170
| |
Collapse
|
33
|
D'Almeida CTDS, Mameri H, Menezes NDS, de Carvalho CWP, Queiroz VAV, Cameron LC, Morel MH, Takeiti CY, Ferreira MSL. Effect of extrusion and turmeric addition on phenolic compounds and kafirin properties in tannin and tannin-free sorghum. Food Res Int 2021; 149:110663. [PMID: 34600665 DOI: 10.1016/j.foodres.2021.110663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/26/2021] [Accepted: 08/23/2021] [Indexed: 11/29/2022]
Abstract
Sorghum is a potential substitute for corn/wheat in cereal-based extruded products. Despite agronomic advantages and its rich diversity of phenolic compounds, sorghum kafirins group together and form complex with tannins, leading to a low digestibility. Phenolic content/profile by UPLC-ESI-QTOF-MSE and kafirins polymerization by SE-HPLC were evaluated in wholemeal sorghum extrudates; tannin-rich (#SC319) and tannin-free (#BRS330) genotypes with/without turmeric powder. Total phenolic, proantocyanidin and flavonoid contents were strongly correlated with antioxidant capacity (r > 0.9, p < 0.05). Extrusion increased free (+60%) and decreased bound phenolics (-40%) in #SC319, but reduced both (-40%; -90%, respectively) in #BRS330, which presented lower abundance after extrusion. Turmeric addition did not significantly impact antioxidant activity, phenolic content and profile and kafirins profile. Tannins presence/absence impacted phenolic profiles and polymerization of kafirins which appears related to the thermoplastic process. The extrusion improved proteins solubility and can positively enhance their digestibility (phenolic compounds-proteins interactions), making more accessible to proteolysis in sorghum extrudates.
Collapse
Affiliation(s)
- Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Hamza Mameri
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | | | | | - L C Cameron
- Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil
| | - Marie-Hélène Morel
- INRAE, Université de Montpellier, Montpellier SupAgro, CIRAD, UMR 1208 IATE, Montpellier, France
| | | | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro, UNIRIO, Brazil; Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, UNIRIO, Brazil.
| |
Collapse
|
34
|
Yang L, Lu D, Yang B, Peng Z, Fang K, Liu Z, Song P, Ren Z, Wang L, Zhou J, Dong Q. DEHP-induced testicular injury through gene methylation pathway and the protective effect of soybean isoflavones in Sprague-Dawley rats. Chem Biol Interact 2021; 348:109569. [PMID: 34197824 DOI: 10.1016/j.cbi.2021.109569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/22/2020] [Accepted: 06/25/2021] [Indexed: 02/05/2023]
Abstract
As one of the most important members of Phthalate esters (PAEs), di-(2-ethylhexyl) phthalate (DEHP) is widely used in plastics and known as a male reproductive toxicant. Many studies have shown that soybean isoflavones (SI) can rescue the testicular injury caused by DEHP, but the underlying mechanism is unknown. Because methylation is one of the most important mechanisms for maintaining normal biological functions, we studied whether methylation is involved in testicular injury induced by DEHP and whether SI could counter testicular impairment in peripubertal male Sprague Dawley rats. Compared with the control group, we found that the mRNA levels of testicular Sod2, Gpx1, and Igf-1 significantly decreased in the 900 mg/kg DEHP group (DEHP' group) (P < 0.01); however, in the DEHP + SI group, the mRNA levels of the genes obviously increased compared with the DEHP' group (P < 0.01). Simultaneously, the methylation level changes of testicular Sod2, Gpx1, and Igf-1 were similar to the mRNA levels (P < 0.01). Therefore, DEHP may affect testis and leydig cells via inducing methylation of Sod2, Gpx1, and Igf-1, and SI may rescue the impairments at the methylation level. In summary, SI is supposed to be used in DEHP-induced testicular injury treatment.
Collapse
Affiliation(s)
- Luchen Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Dongliang Lu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China; Department of Urology, Shenzheng Hospital, Southern Medical University, Shenzheng, 518110, PR China.
| | - Bo Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhufeng Peng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Kun Fang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhenghuan Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Pan Song
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Zhengju Ren
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Linchun Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Jing Zhou
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| | - Qiang Dong
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
35
|
Knizia D, Yuan J, Bellaloui N, Vuong T, Usovsky M, Song Q, Betts F, Register T, Williams E, Lakhssassi N, Mazouz H, Nguyen HT, Meksem K, Mengistu A, Kassem MA. The Soybean High Density 'Forrest' by 'Williams 82' SNP-Based Genetic Linkage Map Identifies QTL and Candidate Genes for Seed Isoflavone Content. PLANTS 2021; 10:plants10102029. [PMID: 34685837 PMCID: PMC8541105 DOI: 10.3390/plants10102029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Isoflavones are secondary metabolites that are abundant in soybean and other legume seeds providing health and nutrition benefits for both humans and animals. The objectives of this study were to construct a single nucleotide polymorphism (SNP)-based genetic linkage map using the ‘Forrest’ by ‘Williams 82’ (F×W82) recombinant inbred line (RIL) population (n = 306); map quantitative trait loci (QTL) for seed daidzein, genistein, glycitein, and total isoflavone contents in two environments over two years (NC-2018 and IL-2020); identify candidate genes for seed isoflavone. The FXW82 SNP-based map was composed of 2075 SNPs and covered 4029.9 cM. A total of 27 QTL that control various seed isoflavone traits have been identified and mapped on chromosomes (Chrs.) 2, 4, 5, 6, 10, 12, 15, 19, and 20 in both NC-2018 (13 QTL) and IL-2020 (14 QTL). The six QTL regions on Chrs. 2, 4, 5, 12, 15, and 19 are novel regions while the other 21 QTL have been identified by other studies using different biparental mapping populations or genome-wide association studies (GWAS). A total of 130 candidate genes involved in isoflavone biosynthetic pathways have been identified on all 20 Chrs. And among them 16 have been identified and located within or close to the QTL identified in this study. Moreover, transcripts from four genes (Glyma.10G058200, Glyma.06G143000, Glyma.06G137100, and Glyma.06G137300) were highly abundant in Forrest and Williams 82 seeds. The identified QTL and four candidate genes will be useful in breeding programs to develop soybean cultivars with high beneficial isoflavone contents.
Collapse
Affiliation(s)
- Dounya Knizia
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
- Laboratoire de Biotechnologies & Valorisation des Bio-Ressources (BioVar), Department de Biology, Faculté des Sciences, Université Moulay Ismail, Meknès 50000, Morocco;
| | - Jiazheng Yuan
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Nacer Bellaloui
- Crop Genetics Research Unit, USDA, Agriculture Research Service, 141 Experiment Station Road, Stoneville, MS 38776, USA;
| | - Tri Vuong
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA;
| | - Frances Betts
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Teresa Register
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Earl Williams
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
| | - Naoufal Lakhssassi
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
| | - Hamid Mazouz
- Laboratoire de Biotechnologies & Valorisation des Bio-Ressources (BioVar), Department de Biology, Faculté des Sciences, Université Moulay Ismail, Meknès 50000, Morocco;
| | - Henry T. Nguyen
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA; (T.V.); (M.U.); (H.T.N.)
| | - Khalid Meksem
- Department of Plant, Soil, and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA; (D.K.); (N.L.); (K.M.)
| | - Alemu Mengistu
- Crop Genetics Research Unit, USDA, Agricultural Research Service, Jackson, TN 38301, USA;
| | - My Abdelmajid Kassem
- Plant Genomics and Biotechnology Laboratory, Department of Biological and Forensic Sciences, Fayetteville State University, Fayetteville, NC 28301, USA; (J.Y.); (F.B.); (T.R.); (E.W.)
- Correspondence:
| |
Collapse
|
36
|
Alshehri MM, Sharifi-Rad J, Herrera-Bravo J, Jara EL, Salazar LA, Kregiel D, Uprety Y, Akram M, Iqbal M, Martorell M, Torrens-Mas M, Pons DG, Daştan SD, Cruz-Martins N, Ozdemir FA, Kumar M, Cho WC. Therapeutic Potential of Isoflavones with an Emphasis on Daidzein. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6331630. [PMID: 34539970 PMCID: PMC8448605 DOI: 10.1155/2021/6331630] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Daidzein is a phytoestrogen isoflavone found in soybeans and other legumes. The chemical composition of daidzein is analogous to mammalian estrogens, and it could be useful with a dual-directional purpose by substituting/hindering with estrogen and estrogen receptor (ER) complex. Hence, daidzein puts forth shielding effects against a great number of diseases, especially those associated with the control of estrogen, such as breast cancer, diabetes, osteoporosis, and cardiovascular disease. However, daidzein also has other ER-independent biological activities, such as oxidative damage reduction acting as an antioxidant, immune regulator as an anti-inflammatory agent, and apoptosis regulation, directly linked to its potential anticancer effects. In this sense, the present review is aimed at providing a deepen analysis of daidzein pharmacodynamics and its implications in human health, from its best-known effects alleviating postmenopausal symptoms to its potential anticancer and antiaging properties.
Collapse
Affiliation(s)
- Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Evelyn L. Jara
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
| | - Luis A. Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Yadav Uprety
- Amrit Campus, Tribhuvan University, Kathmandu, Nepal
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Directorate of Medical Sciences, GC University Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Margalida Torrens-Mas
- Translational Research In Aging and Longevity (TRIAL Group), Health Research Institute of the Balearic Islands (IdISBA), 07122 Palma, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional (GMOT), Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears (UIB), Instituto de Investigación Sanitaria Illes Balears (IdISBa), 07122 Palma, Spain
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, PRD, Portugal
| | - Fethi Ahmet Ozdemir
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Bingol University, Bingol 1200, Turkey
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
37
|
Lord N, Zhang B, Neill CL. Investigating Consumer Demand and Willingness to Pay for Fresh, Local, Organic, and “On-the-Stalk” Edamame. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.651505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction of locally adapted, commercially viable edamame varieties can allow it to be marketed as fresh, local, organic, or on the stalk. Here, we utilized a one-and-one-half bounded (OOHB) elicitation format to estimate mean willingness to pay (WTP) for these external attributes in relation to a vector of explanatory variables. Results showed 84-, 85-, and 28-cent premiums for fresh, local, and organic edamame (10 oz). Pro-environmental attitudes drove WTP for all three of these attributes, while shopping location significantly increased mean WTP for fresh and organic attributes. A 40-cent price discount was observed for the “on-the-stalk” attribute, suggesting that convenience also plays an important role in marketing edamame. The results suggest that more research regarding edamame demand is warranted.
Collapse
|
38
|
Hama JR, Kolpin DW, LeFevre GH, Hubbard LE, Powers MM, Strobel BW. Exposure and Transport of Alkaloids and Phytoestrogens from Soybeans to Agricultural Soils and Streams in the Midwestern United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11029-11039. [PMID: 34342221 DOI: 10.1021/acs.est.1c01477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytotoxins are naturally produced toxins with potencies similar/higher than many anthropogenic micropollutants. Nevertheless, little is known regarding their environmental fate and off-field transport to streams. To fill this research gap, a network of six basins in the Midwestern United States with substantial soybean production was selected for the study. Stream water (n = 110), soybean plant tissues (n = 8), and soil samples (n = 16) were analyzed for 12 phytotoxins (5 alkaloids and 7 phytoestrogens) and 2 widely used herbicides (atrazine and metolachlor). Overall, at least 1 phytotoxin was detected in 82% of the samples, with as many as 11 phytotoxins detected in a single sample (median = 5), with a concentration range from below detection to 37 and 68 ng/L for alkaloids and phytoestrogens, respectively. In contrast, the herbicides were ubiquitously detected at substantially higher concentrations (atrazine: 99% and metolachlor: 83%; the concentrations range from below detection to 150 and 410 ng/L, respectively). There was an apparent seasonal pattern for phytotoxins, where occurrence prior to and during harvest season (September to November) and during the snow melt season (March) was higher than that in December-January. Runoff events increased phytotoxin and herbicide concentrations compared to those in base-flow conditions. Phytotoxin plant concentrations were orders of magnitude higher compared to those measured in soil and streams. These results demonstrate the potential exposure of aquatic and terrestrial organisms to soybean-derived phytotoxins.
Collapse
Affiliation(s)
- Jawameer R Hama
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Dana W Kolpin
- U.S. Geological Survey, Central Midwest Water Science Center, 400 South Clinton Street, Iowa City, Iowa 52240, United States
| | - Gregory H LeFevre
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
| | - Laura E Hubbard
- U.S. Geological Survey, Upper Midwest Water Science Center, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Megan M Powers
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
| | - Bjarne W Strobel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| |
Collapse
|
39
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
40
|
[Effects of the use of 17 β-estradiol and genistein in Alzheimer's disease in women with menopause]. Rev Esp Geriatr Gerontol 2021; 56:236-240. [PMID: 34112537 DOI: 10.1016/j.regg.2021.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/28/2021] [Accepted: 04/12/2021] [Indexed: 12/18/2022]
Abstract
The use of 17 β-estradiol and genistein in women with menopause helps in the reduction of vasomotor symptoms and cognitive improvement. There is evidence on the use of certain flavonoids such as genistein, which has a potentially neuroprotective role in neurodegenerative diseases such as Alzheimer's. Scientific evidence on the effects of phytoestrogens and genistein during menopause and their effect on cognition are scarce, however, in the present review it was found that the intervention with 17 β-estradiol has positive effects on cognition in women with Alzheimer's disease. In addition, the use of genistein, daidzein or any supplement based on isoflavones may influence vasomotor symptoms. 17 β-estradiol supplements in women in early menopause and with some degree of cognitive impairment may have beneficial effects.
Collapse
|
41
|
Does Mediterranean diet could have a role on age at menopause and in the management of vasomotor menopausal symptoms? The viewpoint of the endocrinological nutritionist. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Bernatoniene J, Kazlauskaite JA, Kopustinskiene DM. Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases. Int J Mol Sci 2021; 22:ijms22115656. [PMID: 34073381 PMCID: PMC8197878 DOI: 10.3390/ijms22115656] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
- Correspondence:
| | - Jurga Andreja Kazlauskaite
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.A.K.); (D.M.K.)
| |
Collapse
|
43
|
Sirotkin AV, Alwasel SH, Harrath AH. The Influence of Plant Isoflavones Daidzein and Equol on Female Reproductive Processes. Pharmaceuticals (Basel) 2021; 14:ph14040373. [PMID: 33920641 PMCID: PMC8073550 DOI: 10.3390/ph14040373] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
In this review, we explore the current literature on the influence of the plant isoflavone daidzein and its metabolite equol on animal and human physiological processes, with an emphasis on female reproduction including ovarian functions (the ovarian cycle; follicullo- and oogenesis), fundamental ovarian-cell functions (viability, proliferation, and apoptosis), the pituitary and ovarian endocrine regulators of these functions, and the possible intracellular mechanisms of daidzein action. Furthermore, we discuss the applicability of daidzein for the control of animal and human female reproductive processes, and how to make this application more efficient. The existing literature demonstrates the influence of daidzein and its metabolite equol on various nonreproductive and reproductive processes and their disorders. Daidzein and equol can both up- and downregulate the ovarian reception of gonadotropins, healthy and cancerous ovarian-cell proliferation, apoptosis, viability, ovarian growth, follicullo- and oogenesis, and follicular atresia. These effects could be mediated by daidzein and equol on hormone production and reception, reactive oxygen species, and intracellular regulators of proliferation and apoptosis. Both the stimulatory and the inhibitory effects of daidzein and equol could be useful for reproductive stimulation, the prevention and mitigation of cancer development, and the adverse effects of environmental stressors in reproductive biology and medicine.
Collapse
Affiliation(s)
- Alexander V. Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
- Correspondence: ; Tel.: +421-903561120
| | - Saleh Hamad Alwasel
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 12372, Saudi Arabia; (S.H.A.); (A.H.H.)
| |
Collapse
|
44
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
45
|
Green MP, Harvey AJ, Finger BJ, Tarulli GA. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. ENVIRONMENTAL RESEARCH 2021; 194:110694. [PMID: 33385395 DOI: 10.1016/j.envres.2020.110694] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/24/2020] [Accepted: 12/25/2020] [Indexed: 05/08/2023]
Abstract
It is becoming increasingly difficult to avoid exposure to man-made endocrine disrupting chemicals (EDCs) and environmental toxicants. This escalating yet constant exposure is postulated to partially explain the concurrent decline in human fertility that has occurred over the last 50 years. Controversy however remains as to whether associations exist, with conflicting findings commonly reported for all major EDC classes. The primary aim of this extensive work was to identify and review strong peer-reviewed evidence regarding the effects of environmentally-relevant EDC concentrations on adult male and female fertility during the critical periconception period on reproductive hormone concentrations, gamete and embryo characteristics, as well as the time to pregnancy in the general population. Secondly, to ascertain whether individuals or couples diagnosed as sub-fertile exhibit higher EDC or toxicant concentrations. Lastly, to highlight where little or no data exists that prevents strong associations being identified. From the greater than 1480 known EDCs, substantial evidence supports a negative association between exposure to phthalates, PCBs, PBDEs, pyrethroids, organochloride pesticides and male fertility and fecundity. Only moderate evidence exists for a negative association between BPA, PCBs, organochloride pesticides and female fertility and fecundity. Overall fewer studies were reported in women than men, with knowledge gaps generally evident for both sexes for all the major EDC classes, as well as a paucity of female fertility studies following exposure to parabens, triclosans, dioxins, PFAS, organophosphates and pyrethroids. Generally, sub-fertile individuals or couples exhibit higher EDC concentrations, endorsing a positive association between EDC exposure and sub-fertility. This review also discusses confounding and limiting factors that hamper our understanding of EDC exposures on fertility and fecundity. Finally, it highlights future research areas, as well as government, industry and social awareness strategies required to mitigate the negative effects of EDC and environmental toxicant exposure on human fertility and fecundity.
Collapse
Affiliation(s)
- Mark P Green
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Alexandra J Harvey
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Bethany J Finger
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Gerard A Tarulli
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
46
|
Effects of soy intake on circulating levels of TNF-α and interleukin-6: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 60:581-601. [PMID: 33399974 DOI: 10.1007/s00394-020-02458-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 12/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Pro-inflammatory mediators, including serum tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), can be used as biomarkers to indicate or monitor disease. This study was designed to ascertain the effects of soy products on TNF-α and IL-6 levels. METHODS PubMed, EMBASE, Science Direct, Web of Science, Google Scholar and the Cochrane Central Register of Controlled Trials were searched to November 2019 for RCTs around the effects of soy-based products on TNF-α and IL-6. A random effects model was used to calculate overall effect size. RESULTS In total, 29 eligible publications were considered in the present systematic review, of which 25 were included in this meta-analysis. The overall effect of soy products on TNF-α and IL-6 levels failed to reach statistical significance (MD = - 0.07; 95% CI - 0.22-0.09; I2 50.9; MD = 0.03; 95% CI - 0.07-0.14; I2 42.1, respectively). According to a subgroup analysis, natural soy products led to a reduction in TNF-α concentration compared with processed soy products (MD = - 0.32; 95% CI - 0.45 to - 0.19; I2 0.0). Moreover, IL-6 reduction was stronger in participants who were affected by different diseases (MD = - 0.04; 95% CI - 0.07 to - 0.02; I2 0.0). CONCLUSIONS A review of RCTs published to November 2019 found that natural soy products are effective in lowering TNF-α levels. While the beneficial effects on reduction of IL-6 appeared stronger in individuals affected by different diseases, this finding cannot be generalized to all individuals affected by different diseases.
Collapse
|
47
|
The effect of Fennel seed powder on estradiol levels, menopausal symptoms, and sexual desire in postmenopausal women. ACTA ACUST UNITED AC 2020; 27:1281-1286. [DOI: 10.1097/gme.0000000000001604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Angelotti JAF, Dias FFG, Sato HH, Fernandes P, Nakajima VM, Macedo J. Improvement of Aglycone Content in Soy Isoflavones Extract by Free and Immobilized Β-Glucosidase and their Effects in Lipid Accumulation. Appl Biochem Biotechnol 2020; 192:734-750. [PMID: 32535816 DOI: 10.1007/s12010-020-03351-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Abstract
Soybean is one of the most important commodities in the world, being applied in feed crops and food, pharmaceutical industries in different ways. Soy is rich in isoflavones that in aglycone forms have exhibited significant anti-obesity and anti-lipogenic effects. Obesity is a global problem as several diseases have been related to this worldwide epidemic. The aim of this work was to verify the effect of free and immobilized β-glucosidase, testing Lentikats, and sol-gel as carriers. Moreover, we wanted to examine if the different types of hydrolysis would generate extracts with distinct biological activity concerning lipid accumulation, PPAR-α regulation, and TNF-α, IL-6, and IL-10 concentrations using in vitro assays. Our results show that all formulations of β-glucosidase could hydrolyze soy isoflavones. Thus, after 24 h of incubation, daidzein content increased 2.6-, 10.8-, and 12.2-fold; and genistein content increased 11.7, 11.4, and 11.4 times with the use of free enzyme, Lentikats®, and sol-gel immobilized enzyme, respectively. Moreover, both methodologies for enzyme immobilization led to promising forms of biocatalysts for application in the production of soy extracts rich in isoflavones aglycones, which are expected to bring about health benefits. A mild lipogenic effect was observed for some concentrations of extracts, as well as a slight inhibition in PPAR-α expression, although no significant differences were noticeable in the cytokines TNF-α, IL-10, and IL-6 as compared with the control.
Collapse
Affiliation(s)
- Joelise A F Angelotti
- Institute of Chemistry, Federal University of Alfenas, R. Gabriel Monteiro da Silva, 700, Centro, Alfenas, Minas Gerais, Brazil.
| | - Fernanda F G Dias
- Department of Food Science and Technology, University of California, 2212 Robert Mondavi Institute-South, Davis, CA, 95616, USA
| | - Hélia H Sato
- Department of Food Science, Faculty of Food Engineering, State University of Campinas-UNICAMP, Monteiro Lobato, 80, Cidade Universitária, CEP, Campinas, SP, 13083-862, Brazil
| | - Pedro Fernandes
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- DREAMS e Faculdade de Engenharia, Universidade Lusófona de Humanidades e Tecnologias, Av. Campo Grande 376, 1749-024, Lisbon, Portugal
| | - Vânia M Nakajima
- Department of Nutrition and Dietetics, Faculty of Nutrition, Fluminense Federal University-UFVF, rua Mários Santos Braga 30, CEP, Niterói, RJ, 24020-140, Brazil
| | - Juliana Macedo
- Department of Food and Nutrition, Faculty of Food Engineering, State University of Campinas-UNICAMP, Rua Monteiro Lobato, 80, Cidade Universitária Zeferino Vaz, CP 6121, CEP, Campinas, SP, 13083-862, Brazil
| |
Collapse
|
49
|
Sirotkin A, Záhoranska Z, Tarko A, Fabova Z, Alwasel S, Halim Harrath A. Plant polyphenols can directly affect ovarian cell functions and modify toluene effects. J Anim Physiol Anim Nutr (Berl) 2020; 105:80-89. [PMID: 33058312 DOI: 10.1111/jpn.13461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/25/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
The influence of toluene alone and in combination with plant polyphenols apigenin, daidzein or rutin on viability, proliferation (proliferating cell nuclear antigen accumulation), apoptosis (Bax accumulation) and release of progesterone (P), testosterone (T) and estradiol (E) in cultured porcine ovarian granulosa cells was evaluated. Toluene reduced ovarian cell viability, proliferation and E release; it promoted P release, demonstrating no effect on apoptosis or T output. Apigenin alone failed to affect cell viability, proliferation, apoptosis and P and T release, but stimulated E release, promoting the inhibitory action of toluene on proliferation, preventing and even reversing the stimulatory effect of toluene on apoptosis and P. Daidzein alone reduced cell viability and promoted T release, preventing and reversing the stimulatory effect of toluene on cell proliferation. Rutin administration reduced cell viability and E output, promoting the inhibitory action of toluene on cell viability and stimulatory effect on P release, and preventing the inhibitory action of toluene on E release. Toluene reduced apigenin- and rutin-induced E release, promoting action of daidzein on cell viability. These observations suggest the action of toluene and plant polyphenols on ovarian cell functions and the functional interrelationships between these molecules in the ovary.
Collapse
Affiliation(s)
| | | | - Adam Tarko
- Constantine the Philosopher University, Nitra, Slovak Republic
| | - Zuzana Fabova
- Constantine the Philosopher University, Nitra, Slovak Republic
| | - Saleh Alwasel
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdel Halim Harrath
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Sirotkin A, Záhoranska Z, Tarko A, Popovska-Percinic F, Alwasel S, Harrath AH. Plant isoflavones can prevent adverse effects of benzene on porcine ovarian activity: an in vitro study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:29589-29598. [PMID: 32445151 DOI: 10.1007/s11356-020-09260-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
We evaluated the influence of the oil-related environmental contaminant benzene (0, 10, 100, or 1000 ng/mL) alone and in combination with apigenin, daidzein, or rutin (10 μg/mL each) on viability; proliferation (accumulation of proliferating cell nuclear antigen); apoptosis (accumulation of Bax); and release of progesterone (P), testosterone (T), and estradiol (E) in cultured porcine ovarian granulosa cells. Cell viability; proliferation; apoptosis; and release of P, T, and E have been analyzed by the trypan blue test, quantitative immunocytochemistry, and ELISA, respectively. Benzene did not affect apoptosis, but reduced ovarian cell viability and P and E release, and promoted proliferation and T output. Apigenin did not affect cell viability, but stimulated proliferation and T and E release, and inhibited apoptosis and P secretion. It prevented and reversed the action of benzene on proliferation and P and T release, and induced the inhibitory action of benzene on apoptosis. Daidzein promoted cell viability, proliferation, P release, but not apoptosis and T or E release. Daidzein induced the stimulatory effect of benzene on T, without modifying other effects. Rutin administered alone reduced cell viability and apoptosis, and promoted cell proliferation. Furthermore, rutin prevented and reversed the effect of benzene on proliferation and P and E release. These observations suggest the direct action of benzene and plant polyphenols on basic ovarian cell functions, and the ability of apigenin and rutin, but not of daidzein, to prevent benzene effects on the ovary.
Collapse
Affiliation(s)
- Alexander Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic.
| | - Zuzana Záhoranska
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic
| | - Adam Tarko
- Department of Zoology and Anthropology, Constantine the Philosopher University, Tr. A. Hlinku, 949 74, Nitra, Slovak Republic
| | | | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
| | - Abdel Halim Harrath
- King Saud University, Department of Zoology, College of Science, Riyadh, 11451, Saudi Arabia
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| |
Collapse
|