1
|
Guallar-Garrido S, Soldati T. Exploring host-pathogen interactions in the Dictyostelium discoideum-Mycobacterium marinum infection model of tuberculosis. Dis Model Mech 2024; 17:dmm050698. [PMID: 39037280 PMCID: PMC11552500 DOI: 10.1242/dmm.050698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
Mycobacterium tuberculosis is a pathogenic mycobacterium that causes tuberculosis. Tuberculosis is a significant global health concern that poses numerous clinical challenges, particularly in terms of finding effective treatments for patients. Throughout evolution, host immune cells have developed cell-autonomous defence strategies to restrain and eliminate mycobacteria. Concurrently, mycobacteria have evolved an array of virulence factors to counteract these host defences, resulting in a dynamic interaction between host and pathogen. Here, we review recent findings, including those arising from the use of the amoeba Dictyostelium discoideum as a model to investigate key mycobacterial infection pathways. D. discoideum serves as a scalable and genetically tractable model for human phagocytes, providing valuable insights into the intricate mechanisms of host-pathogen interactions. We also highlight certain similarities between M. tuberculosis and Mycobacterium marinum, and the use of M. marinum to more safely investigate mycobacteria in D. discoideum.
Collapse
Affiliation(s)
- Sandra Guallar-Garrido
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, 30 quai Ernest-Ansermet, Science II, 1211 Geneva-4, Switzerland
| |
Collapse
|
2
|
Hoffmann MH, Griffiths HR. The dual role of Reactive Oxygen Species in autoimmune and inflammatory diseases: evidence from preclinical models. Free Radic Biol Med 2018; 125:62-71. [PMID: 29550327 DOI: 10.1016/j.freeradbiomed.2018.03.016] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/05/2018] [Accepted: 03/11/2018] [Indexed: 12/15/2022]
Abstract
Reactive oxygen species (ROS) are created in cells during oxidative phosphorylation by the respiratory chain in the mitochondria or by the family of NADPH oxidase (NOX) complexes. The first discovered and most studied of these complexes, NOX2, mediates the oxidative burst in phagocytes. ROS generated by NOX2 are dreadful weapons: while being essential to kill ingested pathogens they can also cause degenerative changes on tissue if production and release are not balanced by sufficient detoxification. In the last fifteen years evidence has been accumulating that ROS are also integral signaling molecules and are important for regulating autoimmunity and immune-mediated inflammatory diseases. It seems that an accurate redox balance is necessary to sustain an immune state that both prevents the development of overt autoimmunity (the bright side of ROS) and minimizes collateral tissue damage (the dark side of ROS). Herein, we review studies from rodent models of arthritis, lupus, and neurodegenerative diseases that show that low NOX2-derived ROS production is linked to disease and elaborate on the underlying cellular and molecular mechanisms and the translation of these results to disease in humans.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Department of Medicine 3, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsklinikum Erlangen, Germany.
| | | |
Collapse
|
3
|
Ewanchuk BW, Yates RM. The phagosome and redox control of antigen processing. Free Radic Biol Med 2018; 125:53-61. [PMID: 29578071 DOI: 10.1016/j.freeradbiomed.2018.03.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 11/22/2022]
Abstract
In addition to debris clearance and antimicrobial function, versatile organelles known as phagosomes play an essential role in the processing of exogenous antigen in antigen presenting cells. While there has been much attention on human leukocyte antigen haplotypes in the determination of antigenic peptide repertoires, the lumenal biochemistries within phagosomes and endosomes are emerging as equally-important determinants of peptide epitope composition and immunodominance. Recently, the lumenal redox microenvironment within these degradative compartments has been shown to impact two key antigenic processing chemistries: proteolysis by lysosomal cysteine proteases and disulfide reduction of protein antigens. Through manipulation of the balance between oxidative and reductive capacities in the phagosome-principally by modulating NADPH oxidase (NOX2) and γ-interferon-inducible lysosomal thiol reductase (GILT) activities-studies have demonstrated changes to antigen processing patterns leading to modified repertoires of antigenic peptides available for presentation, and subsequently, altered disease progression in T cell-driven autoimmunity. This review focuses on the mechanisms and consequences of redox-mediated phagosomal antigen processing, and the potential downstream implications to tolerance and autoimmunity.
Collapse
Affiliation(s)
- Benjamin W Ewanchuk
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1; Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
4
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
5
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
6
|
Abstract
Hv1 is a voltage-gated proton-selective channel that plays critical parts in host defense, sperm motility, and cancer progression. Hv1 contains a conserved voltage-sensor domain (VSD) that is shared by a large family of voltage-gated ion channels, but it lacks a pore domain. Voltage sensitivity and proton conductivity are conferred by a unitary VSD that consists of four transmembrane helices. The architecture of Hv1 differs from that of cation channels that form a pore in the center among multiple subunits (as in most cation channels) or homologous repeats (as in voltage-gated sodium and calcium channels). Hv1 forms a dimer in which a cytoplasmic coiled coil underpins the two protomers and forms a single, long helix that is contiguous with S4, the transmembrane voltage-sensing segment. The closed-state structure of Hv1 was recently solved using X-ray crystallography. In this article, we discuss the gating mechanism of Hv1 and focus on cooperativity within dimers and their sensitivity to metal ions.
Collapse
Affiliation(s)
- Yasushi Okamura
- Department of Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan; , ,
| | | | | |
Collapse
|
7
|
Abstract
Phagocytosis is a fundamental process through which innate immune cells engulf bacteria, apoptotic cells or other foreign particles in order to kill or neutralize the ingested material, or to present it as antigens and initiate adaptive immune responses. The pH of phagosomes is a critical parameter regulating fission or fusion with endomembranes and activation of proteolytic enzymes, events that allow the phagocytic vacuole to mature into a degradative organelle. In addition, translocation of H(+) is required for the production of high levels of reactive oxygen species (ROS), which are essential for efficient killing and signaling to other host tissues. Many intracellular pathogens subvert phagocytic killing by limiting phagosomal acidification, highlighting the importance of pH in phagosome biology. Here we describe a ratiometric method for measuring phagosomal pH in neutrophils using fluorescein isothiocyanate (FITC)-labeled zymosan as phagocytic targets, and live-cell imaging. The assay is based on the fluorescence properties of FITC, which is quenched by acidic pH when excited at 490 nm but not when excited at 440 nm, allowing quantification of a pH-dependent ratio, rather than absolute fluorescence, of a single dye. A detailed protocol for performing in situ dye calibration and conversion of ratio to real pH values is also provided. Single-dye ratiometric methods are generally considered superior to single wavelength or dual-dye pseudo-ratiometric protocols, as they are less sensitive to perturbations such as bleaching, focus changes, laser variations, and uneven labeling, which distort the measured signal. This method can be easily modified to measure pH in other phagocytic cell types, and zymosan can be replaced by any other amine-containing particle, from inert beads to living microorganisms. Finally, this method can be adapted to make use of other fluorescent probes sensitive to different pH ranges or other phagosomal activities, making it a generalized protocol for the functional imaging of phagosomes.
Collapse
Affiliation(s)
- Paula Nunes
- Department of Cellular Physiology and Metabolism, University of Geneva;
| | - Daniele Guido
- Department of Cellular Physiology and Metabolism, University of Geneva
| | - Nicolas Demaurex
- Department of Cellular Physiology and Metabolism, University of Geneva
| |
Collapse
|
8
|
Xu H, Martinoia E, Szabo I. Organellar channels and transporters. Cell Calcium 2015; 58:1-10. [PMID: 25795199 DOI: 10.1016/j.ceca.2015.02.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/20/2015] [Indexed: 12/22/2022]
Abstract
Decades of intensive research have led to the discovery of most plasma membrane ion channels and transporters and the characterization of their physiological functions. In contrast, although over 80% of transport processes occur inside the cells, the ion flux mechanisms across intracellular membranes (the endoplasmic reticulum, Golgi apparatus, endosomes, lysosomes, mitochondria, chloroplasts, and vacuoles) are difficult to investigate and remain poorly understood. Recent technical advances in super-resolution microscopy, organellar electrophysiology, organelle-targeted fluorescence imaging, and organelle proteomics have pushed a large step forward in the research of intracellular ion transport. Many new organellar channels are molecularly identified and electrophysiologically characterized. Additionally, molecular identification of many of these ion channels/transporters has made it possible to study their physiological functions by genetic and pharmacological means. For example, organellar channels have been shown to regulate important cellular processes such as programmed cell death and photosynthesis, and are involved in many different pathologies. This special issue (SI) on organellar channels and transporters aims to provide a forum to discuss the recent advances and to define the standard and open questions in this exciting and rapidly developing field. Along this line, a new Gordon Research Conference dedicated to the multidisciplinary study of intracellular membrane transport proteins will be launched this coming summer.
Collapse
Affiliation(s)
- Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, 3089 Natural Science Building (Kraus), 830 North University Avenue, Ann Arbor, MI 48109-1048, USA.
| | - Enrico Martinoia
- Institute of Plant Biology, University of Zürich, Zollikerstr. 107, CH-8008 Zürich, Switzerland.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy; CNR Neuroscience Institute, Viale G. Colombo 3, 35121 Padova, Italy.
| |
Collapse
|
9
|
Kovács I, Horváth M, Kovács T, Somogyi K, Tretter L, Geiszt M, Petheő GL. Comparison of proton channel, phagocyte oxidase, and respiratory burst levels between human eosinophil and neutrophil granulocytes. Free Radic Res 2014; 48:1190-9. [DOI: 10.3109/10715762.2014.938234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Abstract
SIGNIFICANCE Adhesion and migration induced by cytokines or growth factors are well-organized processes in cellular motility. Reactive oxygen species (ROS) are specifically produced by the Nox family of NADPH oxidases. RECENT ADVANCES The signal transduction of migration and adhesion depends on ROS produced by Nox enzymes and factors that initiate migration and adhesion and stimulate cellular ROS formation. CRITICAL ISSUES The identification of molecular targets of ROS formation in the signal transduction of adhesion and migration is still in its beginnings, but a site and isoform-specific contribution of Nox enzymes to this process becomes apparent. Nox-derived ROS, therefore, act as second messengers that are specifically modifying signaling proteins involved in adhesion and migration. FUTURE DIRECTIONS Individual protein targets of Nox-mediated redox signaling in different cell types and tissues will be identified. Isoform-specific Nox inhibitors will be developed to modulate the ROS-dependent component of migration and adhesion. These compounds might be suited to elicit differential effects between pathophysiologic and physiologic adhesion and migration.
Collapse
Affiliation(s)
- Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Fachbereich Medizin der Goethe-Universität , Frankfurt am Main, Germany
| |
Collapse
|
11
|
Moving gating charges through the gating pore in a Kv channel voltage sensor. Proc Natl Acad Sci U S A 2014; 111:E1950-9. [PMID: 24782544 DOI: 10.1073/pnas.1406161111] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage sensor domains (VSDs) regulate ion channels and enzymes by transporting electrically charged residues across a hydrophobic VSD constriction called the gating pore or hydrophobic plug. How the gating pore controls the gating charge movement presently remains debated. Here, using saturation mutagenesis and detailed analysis of gating currents from gating pore mutations in the Shaker Kv channel, we identified statistically highly significant correlations between VSD function and physicochemical properties of gating pore residues. A necessary small residue at position S240 in S1 creates a "steric gap" that enables an intracellular access pathway for the transport of the S4 Arg residues. In addition, the stabilization of the depolarized VSD conformation, a hallmark for most Kv channels, requires large side chains at positions F290 in S2 and F244 in S1 acting as "molecular clamps," and a hydrophobic side chain at position I237 in S1 acting as a local intracellular hydrophobic barrier. Finally, both size and hydrophobicity of I287 are important to control the main VSD energy barrier underlying transitions between resting and active states. Taken together, our study emphasizes the contribution of several gating pore residues to catalyze the gating charge transfer. This work paves the way toward understanding physicochemical principles underlying conformational dynamics in voltage sensors.
Collapse
|
12
|
El Chemaly A, Nunes P, Jimaja W, Castelbou C, Demaurex N. Hv1 proton channels differentially regulate the pH of neutrophil and macrophage phagosomes by sustaining the production of phagosomal ROS that inhibit the delivery of vacuolar ATPases. J Leukoc Biol 2014; 95:827-839. [PMID: 24415791 DOI: 10.1189/jlb.0513251] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 12/23/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022] Open
Abstract
Production of ROS and maintenance of an appropriate pH within the lumen of neutrophil and macrophage phagosomes are important for an effective immune response. Hv1 proton channels sustain ROS production at the plasma membrane, but their role in phagosomes is not known. Here, we tested whether Hv1 channels regulate the pHp and sustain phagosomal ROS production in neutrophils and macrophages. The presence of Hv1 channels on phagosomes of human neutrophils and mouse macrophages was confirmed by Western blot and immunostaining. Phagosomal ROS production, measured with OxyBurst-coupled targets, was reduced in neutrophils and macrophages isolated from Hv1-deficient mice. Ratiometric imaging of FITC-coupled targets showed that phagosomes acidified more slowly in Hv1-deficient macrophages and transiently alkalinized when the V-ATPase was inhibited. In WT neutrophils, 97% of phagosomes remained neutral 30 min after particle ingestion, whereas 37% of Hv1-deficient phagosomes were alkaline (pH>8.3) and 14% acidic (pH<6.3). The subpopulation of acidic phagosomes was eliminated by V-ATPase inhibition, whereas NOX inhibition caused a rapid acidification, independently of Hv1 expression. Finally, V-ATPase accumulation on phagosomes was inversely correlated to intraphagosomal ROS production in neutrophils. These data indicate that Hvcn1 ablation deregulates neutrophil pHp, leading to alkalinization in phagosomes with residual ROS production or to the early accumulation of V-ATPase on phagosomes that fail to mount an oxidative response. Hv1 channels therefore differentially regulate the pHp in neutrophils and macrophages, sustaining rapid acidification in macrophage phagosomes and maintaining a neutral pH in neutrophil phagosomes.
Collapse
Affiliation(s)
- Antoun El Chemaly
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Paula Nunes
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Wedali Jimaja
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Cyril Castelbou
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Sakai H, Li G, Hino Y, Moriura Y, Kawawaki J, Sawada M, Kuno M. Increases in intracellular pH facilitate endocytosis and decrease availability of voltage-gated proton channels in osteoclasts and microglia. J Physiol 2013; 591:5851-66. [PMID: 24081153 DOI: 10.1113/jphysiol.2013.263558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Voltage-gated proton channels (H(+) channels) are highly proton-selective transmembrane pathways. Although the primary determinants for activation are the pH and voltage gradients across the membrane, the current amplitudes fluctuate often when these gradients are constant. The aim of this study was to investigate the role of the intracellular pH (pHi) in regulating the availability of H(+) channels in osteoclasts and microglia. In whole-cell clamp recordings, the pHi was elevated after exposure to NH4Cl and returned to the control level after washout. However, the H(+) channel conductance did not recover fully when the exposure was prolonged (>5 min). Similar results were observed in osteoclasts and microglia, but not in COS7 cells expressing a murine H(+) channel gene (mVSOP). As other electrophysiological properties, like the gating kinetics and voltage dependence for activation, were unchanged, the decreases in the H(+) channel conductance were probably due to the decreases in H(+) channels available at the plasma membrane. The decreases in the H(+) channel conductances were accompanied by reductions in the cell capacitance. Exposure to NH4Cl increased the uptake of the endocytosis marker FM1-43, substantiating the idea that pHi increases facilitated endocytosis. In osteoclasts, whose plasma membrane expresses V-ATPases and H(+) channels, pHi increases by these H(+)-transferring molecules in part facilitated endocytosis. The endocytosis and decreases in the H(+) channel conductance were reduced by dynasore, a dynamin blocker. These results suggest that pHi increases in osteoclasts and microglia decrease the numbers of H(+) channels available at the plasma membrane through facilitation of dynamin-dependent endocytosis.
Collapse
Affiliation(s)
- Hiromu Sakai
- M. Kuno: Department of Physiology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fujiwara Y, Takeshita K, Nakagawa A, Okamura Y. Structural characteristics of the redox-sensing coiled coil in the voltage-gated H+ channel. J Biol Chem 2013; 288:17968-75. [PMID: 23667254 DOI: 10.1074/jbc.m113.459024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidation is an important biochemical defense mechanism, but it also elicits toxicity; therefore, oxidation must be under strict control. In phagocytotic events in neutrophils, the voltage-gated H(+) (Hv) channel is a key regulator of the production of reactive oxygen species against invading bacteria. The cytoplasmic domain of the Hv channel forms a dimeric coiled coil underpinning a dimerized functional unit. Importantly, in the alignment of the coiled-coil core, a conserved cysteine residue forms a potential intersubunit disulfide bond. In this study, we solved the crystal structures of the coiled-coil domain in reduced, oxidized, and mutated (Cys → Ser) states. The crystal structures indicate that a pair of Cys residues forms an intersubunit disulfide bond dependent on the redox conditions. CD spectroscopy revealed that the disulfide bond increases the thermal stability of the coiled-coil protein. We also reveal that two thiol modifier molecules are able to bind to Cys in a redox-dependent manner without disruption of the dimeric coiled-coil assembly. Thus, the biochemical properties of the cytoplasmic coiled-coil domain in the Hv channel depend on the redox condition, which may play a role in redox sensing in the phagosome.
Collapse
Affiliation(s)
- Yuichiro Fujiwara
- Department of Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
15
|
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev 2013; 93:599-652. [PMID: 23589829 PMCID: PMC3677779 DOI: 10.1152/physrev.00011.2012] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Voltage-gated proton channels (H(V)) are unique, in part because the ion they conduct is unique. H(V) channels are perfectly selective for protons and have a very small unitary conductance, both arguably manifestations of the extremely low H(+) concentration in physiological solutions. They open with membrane depolarization, but their voltage dependence is strongly regulated by the pH gradient across the membrane (ΔpH), with the result that in most species they normally conduct only outward current. The H(V) channel protein is strikingly similar to the voltage-sensing domain (VSD, the first four membrane-spanning segments) of voltage-gated K(+) and Na(+) channels. In higher species, H(V) channels exist as dimers in which each protomer has its own conduction pathway, yet gating is cooperative. H(V) channels are phylogenetically diverse, distributed from humans to unicellular marine life, and perhaps even plants. Correspondingly, H(V) functions vary widely as well, from promoting calcification in coccolithophores and triggering bioluminescent flashes in dinoflagellates to facilitating killing bacteria, airway pH regulation, basophil histamine release, sperm maturation, and B lymphocyte responses in humans. Recent evidence that hH(V)1 may exacerbate breast cancer metastasis and cerebral damage from ischemic stroke highlights the rapidly expanding recognition of the clinical importance of hH(V)1.
Collapse
Affiliation(s)
- Thomas E DeCoursey
- Dept. of Molecular Biophysics and Physiology, Rush University Medical Center HOS-036, 1750 West Harrison, Chicago, IL 60612, USA.
| |
Collapse
|
16
|
Bréchard S, Plançon S, Tschirhart EJ. New insights into the regulation of neutrophil NADPH oxidase activity in the phagosome: a focus on the role of lipid and Ca(2+) signaling. Antioxid Redox Signal 2013; 18:661-76. [PMID: 22867131 PMCID: PMC3549206 DOI: 10.1089/ars.2012.4773] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
SIGNIFICANCE Reactive oxygen species, produced by the phagosomal NADPH oxidase of neutrophils, play a significant physiological role during normal defense. Their role is not only to kill invading pathogens, but also to act as modulators of global physiological functions of phagosomes. Given the importance of NADPH oxidase in the immune system, its activity has to be decisively controlled by distinctive mechanisms to ensure appropriate regulation at the phagosome. RECENT ADVANCES Here, we describe the signal transduction pathways that regulate phagosomal NADPH oxidase in neutrophils, with an emphasis on the role of lipid metabolism and intracellular Ca(2+) mobilization. CRITICAL ISSUES The potential involvement of Ca(2+)-binding S100A8 and S100A9 proteins, known to interact with the plasma membrane NADPH oxidase, is also considered. FUTURE DIRECTIONS Recent technical progress in advanced live imaging microscopy will permit to focus more accurately on phagosomal rather than plasma membrane NADPH oxidase regulation during neutrophil phagocytosis.
Collapse
Affiliation(s)
- Sabrina Bréchard
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | | | | |
Collapse
|
17
|
Aiken ML, Painter RG, Zhou Y, Wang G. Chloride transport in functionally active phagosomes isolated from Human neutrophils. Free Radic Biol Med 2012; 53:2308-17. [PMID: 23089227 PMCID: PMC3672382 DOI: 10.1016/j.freeradbiomed.2012.10.542] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 10/01/2012] [Accepted: 10/11/2012] [Indexed: 01/05/2023]
Abstract
Chloride anion is critical for hypochlorous acid (HOCl) production and microbial killing in neutrophil phagosomes. However, the molecular mechanism by which this anion is transported to the organelle is poorly understood. In this report, membrane-enclosed and functionally active phagosomes were isolated from human neutrophils by using opsonized paramagnetic latex microspheres and a rapid magnetic separation method. The phagosomes recovered were highly enriched for specific protein markers associated with this organelle such as lysosomal-associated membrane protein-1, myeloperoxidase (MPO), lactoferrin, and NADPH oxidase. When FITC-dextran was included in the phagocytosis medium, the majority of the isolated phagosomes retained the fluorescent label after isolation, indicative of intact membrane structure. Flow cytometric measurement of acridine orange, a fluorescent pH indicator, in the purified phagosomes demonstrated that the organelle in its isolated state was capable of transporting protons to the phagosomal lumen via the vacuolar-type ATPase proton pump (V-ATPase). When NADPH was supplied, the isolated phagosomes constitutively oxidized dihydrorhodamine 123, indicating their ability to produce hydrogen peroxide. The preparations also showed a robust production of HOCl within the phagosomal lumen when assayed with the HOCl-specific fluorescent probe R19-S by flow cytometry. MPO-mediated iodination of the proteins covalently conjugated to the phagocytosed beads was quantitatively measured. Phagosomal uptake of iodide and protein iodination were significantly blocked by chloride channel inhibitors, including CFTRinh-172 and NPPB. Further experiments determined that the V-ATPase-driving proton flux into the isolated phagosomes required chloride cotransport, and the cAMP-activated CFTR chloride channel was a major contributor to the chloride transport. Taken together, the data suggest that the phagosomal preparation described herein retains ion transport properties, and multiple chloride channels including CFTR are responsible for chloride supply to neutrophil phagosomes.
Collapse
Affiliation(s)
- Martha L Aiken
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Richard G Painter
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yun Zhou
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Guoshun Wang
- Department of Microbiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
18
|
Soldati T, Neyrolles O. Mycobacteria and the intraphagosomal environment: take it with a pinch of salt(s)! Traffic 2012; 13:1042-52. [PMID: 22462580 DOI: 10.1111/j.1600-0854.2012.01358.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/27/2012] [Accepted: 03/30/2012] [Indexed: 01/13/2023]
Abstract
Ancient protozoan phagocytes and modern professional phagocytes of metazoans, such as macrophages, employ evolutionarily conserved mechanisms to kill microbes. These mechanisms rely on microbial ingestion, followed by maturation of the phagocytic vacuole, or so-called phagosome. Phagosome maturation includes a series of fusion and fission events with the host cell endosomes and lysosomes, leading to a rapid increase of the degradative properties of the vacuole and to the destruction of the ingested microbe within a very hostile intracellular compartment, the phagolysosome. Historically, the mechanisms and weapons used by phagocytes to kill microbes have been separated into different classes. Phagosomal acidification, together with the production of reactive oxygen and nitrogen species, the selective manipulation of various ions in the phagosomal lumen, and finally the engagement of a battery of acidic hydrolases, are well-recognized players in this process. However, it is relatively recently that interconnections among these mechanisms have become apparent. In this review, we will focus on some emerging concepts about these interconnected aspects of the warfare at the host-pathogen interface, using mostly Mycobacterium tuberculosis as an example of intracellular pathogen. In particular, recent discoveries on the role of phagosomal ions and other chemicals in the control of pathogens, as well as mechanisms evolved by intracellular pathogens to circumvent or even exploit the weapons of the host cell will be discussed.
Collapse
Affiliation(s)
- Thierry Soldati
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Sciences II, 30 quai Ernest Ansermet, CH-1211, Genève-4, Switzerland.
| | | |
Collapse
|