1
|
Wang H, Wang X, Zhong H, Cai L, Fu W, Chai X, Liao J, Sheng R, Shan L, Xu X, Xu L, Pan P, Hou T, Li D. Discovery of 5-Nitro- N-(3-(trifluoromethyl)phenyl) Pyridin-2-amine as a Novel Pure Androgen Receptor Antagonist against Antiandrogen Resistance. J Med Chem 2024; 67:20514-20530. [PMID: 39508817 DOI: 10.1021/acs.jmedchem.4c01970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The transformation of clinical androgen receptor (AR) antagonists into agonists driven by AR mutations poses a significant challenge in treating prostate cancer (PCa). Novel anti-AR therapeutics combating mutation-induced resistance are required. Herein, by combining structure-based virtual screening and biological evaluation, a high-affinity agonist E10 was first discovered. Then guided by the representative conformation of State 1 at the free energy landscape, the structural optimization of E10 was performed, and pure AR antagonists EL15 (IC50 = 0.94 μM) and EF2 (IC50 = 0.30 μM) were successfully identified. Both can antagonize wild-type and variant drug-resistant ARs. Therein, EF2 demonstrated potent inhibition of the AR pathway and effectively suppressed tumor growth in a C4-2B xenograft mouse model following oral administration. Further molecular dynamics simulation and mutagenesis studies revealed atomic insights into the mode of action of EF2 which may serve as a novel lead compound for developing therapeutics against AR-driven PCa.
Collapse
Affiliation(s)
- Huating Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xuwen Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Haiyang Zhong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Lvtao Cai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weitao Fu
- Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, Anhui, China
| | - Xin Chai
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jianing Liao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Rong Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| | - Luhu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Xiaohong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, Zhejiang, China
| | - Lei Xu
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou 213001, Jiangsu, China
| | - Peichen Pan
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Jinhua Institute of Zhejiang University, Jinhua 321000, Zhejiang, China
| |
Collapse
|
2
|
Huang Y, Cen Y, Wu H, Zeng G, Su Z, Zhang Z, Feng S, Jiang X, Wei A. Nodularin-R Synergistically Enhances Abiraterone Against Castrate- Resistant Prostate Cancer via PPP1CA Inhibition. J Cell Mol Med 2024; 28:e70210. [PMID: 39550701 PMCID: PMC11569623 DOI: 10.1111/jcmm.70210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
Clinically, most prostate cancer (PCa) patients inevitably progress to castration-resistant prostate cancer (CRPC) with poor prognosis after androgen deprivation therapy (ADT), including abiraterone, the drug of choice for ADT. Therefore, it is necessary to explore the resistance mechanism of abiraterone in depth. Genome-wide CRISPR/Cas9 knockout technology was used to screen CRPC cell line 22Rv1 for abiraterone-resistant genes. Combined with bioinformatics, a key gene with high expression and poor prognosis in CRPC patients was screened. Then, the effects of target gene on abiraterone-resistant 22Rv1 cell function were explored by silencing and overexpression. Further, a natural product with potential targeting effect was identified and validated by molecular docking and protein expression. Molecular dynamics simulations revealed potential mechanism for the natural product affecting target protein expression. Finally, the combined anti-CRPC effects of the natural product and abiraterone were validated by cellular and in vivo experiments. Five common resistance genes (KCNJ3, COL2A1, PPP1CA, MDH2 and EXOSC5) were identified successfully, among which high PPP1CA expression had the worst prognosis for disease-free survival. Moreover, PPP1CA was highly expressed in abiraterone-resistant 22Rv1 cells. Silencing PPP1CA increased cell sensitivity to abiraterone while promoting apoptosis and inhibiting clone formation. Overexpressing PPP1CA exerted the opposite effects. Molecular docking revealed the binding mode of the natural product nodularin-R to PPP1CA with a dose-dependent manner for inhibition. Mechanistically, nodularin-R attenuates the interaction between PPP1CA and USP11 (deubiquitinating enzyme), potentially promoting PPP1CA degradation. Additionally, combination of 2.72 μM nodularin-R and 54.5 μM abiraterone synergistically inhibited the resistant 22Rv1 cell function. In vivo experiments also revealed that combination therapy significantly inhibited tumour growth and reduced inducible expression of PPP1CA. PPP1CA is a key driver for abiraterone resistance, and nodularin-R enhances the anti-CRPC effects of abiraterone by inhibiting PPP1CA.
Collapse
Affiliation(s)
- Yiqiao Huang
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Yi Cen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Hualing Wu
- Department of Gynecology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Guohao Zeng
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhengming Su
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Zhiming Zhang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Shourui Feng
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
| | - Xianhan Jiang
- Department of Urology, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education InstitutesThe Fifth Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Anyang Wei
- Department of Urology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
3
|
Patke R, Harris AE, Woodcock CL, Thompson R, Santos R, Kumari A, Allegrucci C, Archer N, Gudas LJ, Robinson BD, Persson JL, Fray R, Jeyapalan J, Rutland CS, Rakha E, Madhusudan S, Emes RD, Muyangwa-Semenova M, Alsaleem M, de Brot S, Green W, Ratan H, Mongan NP, Lothion-Roy J. Epitranscriptomic mechanisms of androgen signalling and prostate cancer. Neoplasia 2024; 56:101032. [PMID: 39033689 PMCID: PMC11295630 DOI: 10.1016/j.neo.2024.101032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer diagnosed in men. While radical prostatectomy and radiotherapy are often successful in treating localised disease, post-treatment recurrence is common. As the androgen receptor (AR) and androgen hormones play an essential role in prostate carcinogenesis and progression, androgen deprivation therapy (ADT) is often used to deprive PCa cells of the pro-proliferative effect of androgens. ADTs act by either blocking androgen biosynthesis (e.g. abiraterone) or blocking AR function (e.g. bicalutamide, enzalutamide, apalutamide, darolutamide). ADT is often effective in initially suppressing PCa growth and progression, yet emergence of castrate-resistant PCa and progression to neuroendocrine-like PCa following ADT are major clinical challenges. For this reason, there is an urgent need to identify novel approaches to modulate androgen signalling to impede PCa progression whilst also preventing or delaying therapy resistance. The mechanistic convergence of androgen and epitranscriptomic signalling offers a potential novel approach to treat PCa. The epitranscriptome involves covalent modifications of mRNA, notably, in the context of this review, the N(6)-methyladenosine (m6A) modification. m6A is involved in the regulation of mRNA splicing, stability, and translation, and has recently been shown to play a role in PCa and androgen signalling. The m6A modification is dynamically regulated by the METTL3-containing methyltransferase complex, and the FTO and ALKBH5 RNA demethylases. Given the need for novel approaches to treat PCa, there is significant interest in new therapies that target m6A that modulate AR expression and androgen signalling. This review critically summarises the potential benefit of such epitranscriptomic therapies for PCa patients.
Collapse
Affiliation(s)
- Rodhan Patke
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Anna E Harris
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Corinne L Woodcock
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rachel Thompson
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Rute Santos
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Amber Kumari
- Biodiscovery Institute, University of Nottingham, UK
| | - Cinzia Allegrucci
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Nathan Archer
- School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Lorraine J Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D Robinson
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Jenny L Persson
- Department of Molecular Biology, Umea University, Umea, Sweden
| | - Rupert Fray
- School of Biosciences, University of Nottingham, UK
| | - Jennie Jeyapalan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Catrin S Rutland
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK
| | - Emad Rakha
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Srinivasan Madhusudan
- School of Medicine, University of Nottingham, UK; Nottingham University NHS Trust, Nottingham, UK
| | - Richard D Emes
- Research and Innovation, Nottingham Trent University, UK
| | | | - Mansour Alsaleem
- Biodiscovery Institute, University of Nottingham, UK; Unit of Scientific Research, Applied College, Qassim University, Qassim, Saudi Arabia
| | - Simone de Brot
- Institute of Animal Pathology, University of Bern, Switzerland
| | - William Green
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Hari Ratan
- Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Nigel P Mongan
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK; Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA.
| | - Jennifer Lothion-Roy
- Biodiscovery Institute, University of Nottingham, UK; School of Veterinary Medicine and Science, University of Nottingham, UK.
| |
Collapse
|
4
|
Wei G, Zhang X, Liu S, Hou W, Dai Z. Comprehensive data mining reveals RTK/RAS signaling pathway as a promoter of prostate cancer lineage plasticity through transcription factors and CNV. Sci Rep 2024; 14:11688. [PMID: 38778150 PMCID: PMC11111877 DOI: 10.1038/s41598-024-62256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Prostate cancer lineage plasticity is a key driver in the transition to neuroendocrine prostate cancer (NEPC), and the RTK/RAS signaling pathway is a well-established cancer pathway. Nevertheless, the comprehensive link between the RTK/RAS signaling pathway and lineage plasticity has received limited investigation. In particular, the intricate regulatory network governing the interplay between RTK/RAS and lineage plasticity remains largely unexplored. The multi-omics data were clustered with the coefficient of argument and neighbor joining algorithm. Subsequently, the clustered results were analyzed utilizing the GSEA, gene sets related to stemness, multi-lineage state datasets, and canonical cancer pathway gene sets. Finally, a comprehensive exploration of the data based on the ssGSEA, WGCNA, GSEA, VIPER, prostate cancer scRNA-seq data, and the GPSAdb database was conducted. Among the six modules in the clustering results, there are 300 overlapping genes, including 3 previously unreported prostate cancer genes that were validated to be upregulated in prostate cancer through RT-qPCR. Function Module 6 shows a positive correlation with prostate cancer cell stemness, multi-lineage states, and the RTK/RAS signaling pathway. Additionally, the 19 leading-edge genes of the RTK/RAS signaling pathway promote prostate cancer lineage plasticity through a complex network of transcriptional regulation and copy number variations. In the transcriptional regulation network, TP63 and FOXO1 act as suppressors of prostate cancer lineage plasticity, whereas RORC exerts a promoting effect. This study provides a comprehensive perspective on the role of the RTK/RAS pathway in prostate cancer lineage plasticity and offers new clues for the treatment of NEPC.
Collapse
Affiliation(s)
- Guanyun Wei
- Co-Innovation Center of Neuroregeneration, School of Life Sciences, Nantong Laboratory of Development and Diseases, Nantong University, Nantong, China
| | - Xu Zhang
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi No.2 People's Hospital, Affiliated Wuxi Clinical College of Nantong University, Wuxi, China
| | - Siyuan Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Wanxin Hou
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China
| | - Zao Dai
- Research Center for Intelligent Information Technology, Nantong University, Nantong, China.
| |
Collapse
|
5
|
Xiao M, Ha S, Zhu J, Tao W, Fu Z, Wei H, Hou Q, Luo G, Xiang H. Structure-Activity Relationship (SAR) Studies of Novel Monovalent AR/AR-V7 Dual Degraders with Potent Efficacy against Advanced Prostate Cancer. J Med Chem 2024; 67:5567-5590. [PMID: 38512060 DOI: 10.1021/acs.jmedchem.3c02177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Androgen receptor (AR) has been extensively established as a potential therapeutic target for nearly all stages of prostate cancer (PCa). However, acquired resistance to AR-targeted drugs inevitably develops and severely limits their clinical efficacy. Particularly, there currently exists no efficient treatment for patients expressing the constitutively active AR splice variants, such as AR-V7. Herein, we report the structure-activity relationship studies of 55 N-heterocycle-substituted hydantoins, which identified the structural motifs required for AR/AR-V7 degradation. Among them, the most potent compound 27c exhibited selective AR/AR-V7 degradation over other hormone receptors and excellent antiproliferative activities in LNCaP and 22RV1 cells. RNA sequence analysis confirmed that 27c effectively suppressed transcriptional activity of the AR signaling pathway. Importantly, 27c demonstrated potent antitumor efficacy in an enzalutamide-resistant 22RV1 xenograft model. These results highlight the potential of 27c as a promising dual AR/AR-V7 degrader for overcoming drug resistance in advanced PCa expressing AR splice variants.
Collapse
Affiliation(s)
- Maoxu Xiao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Si Ha
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jiacheng Zhu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wenxiang Tao
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zixuan Fu
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hanlin Wei
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Guoshun Luo
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Hua Xiang
- State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Champagne A, Chebra I, Jain P, Ringuette Goulet C, Lauzier A, Guyon A, Neveu B, Pouliot F. An Extracellular Matrix Overlay Model for Bioluminescence Microscopy to Measure Single-Cell Heterogeneous Responses to Antiandrogens in Prostate Cancer Cells. BIOSENSORS 2024; 14:175. [PMID: 38667168 PMCID: PMC11048191 DOI: 10.3390/bios14040175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Prostate cancer (PCa) displays diverse intra-tumoral traits, impacting its progression and treatment outcomes. This study aimed to refine PCa cell culture conditions for dynamic monitoring of androgen receptor (AR) activity at the single-cell level. We introduced an extracellular matrix-Matrigel (ECM-M) culture model, enhancing cellular tracking during bioluminescence single-cell imaging while improving cell viability. ECM-M notably tripled the traceability of poorly adherent PCa cells, facilitating robust single-cell tracking, without impeding substrate permeability or AR response. This model effectively monitored AR modulation by antiandrogens across various PCa cell lines. Single-cell imaging unveiled heterogeneous antiandrogen responses within populations, correlating non-responsive cell proportions with drug IC50 values. Integrating ECM-M culture with the PSEBC-TSTA biosensor enabled precise characterization of ARi responsiveness within diverse cell populations. Our ECM-M model stands as a promising tool to assess heterogeneous single-cell treatment responses in cancer, offering insights to link drug responses to intracellular signaling dynamics. This approach enhances our comprehension of the nuanced and dynamic nature of PCa treatment responses.
Collapse
Affiliation(s)
- Audrey Champagne
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Imene Chebra
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Pallavi Jain
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Cassandra Ringuette Goulet
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Annie Lauzier
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Antoine Guyon
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Bertrand Neveu
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| | - Frédéric Pouliot
- Centre de Recherche du CHU de Québec, Université Laval, Quebec, QC G1V 4G2, Canada (I.C.); (P.J.); (C.R.G.); (A.L.); (A.G.)
- Department of Surgery (Urology), Faculty of Medicine, Laval University, Quebec, QC G1R 2J6, Canada
| |
Collapse
|
7
|
Panja S, Truica MI, Yu CY, Saggurthi V, Craige MW, Whitehead K, Tuiche MV, Al-Saadi A, Vyas R, Ganesan S, Gohel S, Coffman F, Parrott JS, Quan S, Jha S, Kim I, Schaeffer E, Kothari V, Abdulkadir SA, Mitrofanova A. Mechanism-centric regulatory network identifies NME2 and MYC programs as markers of Enzalutamide resistance in CRPC. Nat Commun 2024; 15:352. [PMID: 38191557 PMCID: PMC10774320 DOI: 10.1038/s41467-024-44686-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/22/2023] [Indexed: 01/10/2024] Open
Abstract
Heterogeneous response to Enzalutamide, a second-generation androgen receptor signaling inhibitor, is a central problem in castration-resistant prostate cancer (CRPC) management. Genome-wide systems investigation of mechanisms that govern Enzalutamide resistance promise to elucidate markers of heterogeneous treatment response and salvage therapies for CRPC patients. Focusing on the de novo role of MYC as a marker of Enzalutamide resistance, here we reconstruct a CRPC-specific mechanism-centric regulatory network, connecting molecular pathways with their upstream transcriptional regulatory programs. Mining this network with signatures of Enzalutamide response identifies NME2 as an upstream regulatory partner of MYC in CRPC and demonstrates that NME2-MYC increased activities can predict patients at risk of resistance to Enzalutamide, independent of co-variates. Furthermore, our experimental investigations demonstrate that targeting MYC and its partner NME2 is beneficial in Enzalutamide-resistant conditions and could provide an effective strategy for patients at risk of Enzalutamide resistance and/or for patients who failed Enzalutamide treatment.
Collapse
Affiliation(s)
- Sukanya Panja
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mihai Ioan Truica
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Christina Y Yu
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Vamshi Saggurthi
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Michael W Craige
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Katie Whitehead
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Mayra V Tuiche
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
- Rutgers Biomedical and Health Sciences, Rutgers School of Graduate Studies, Newark, NJ, 07039, USA
| | - Aymen Al-Saadi
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Riddhi Vyas
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Suril Gohel
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Frederick Coffman
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - James S Parrott
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA
| | - Songhua Quan
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Shantenu Jha
- Department of Electrical and Computer Engineering, Rutgers School of Engineering, New Brunswick, NJ, 08854, USA
| | - Isaac Kim
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Urology, Yale School of Medicine, New Heaven, CT, 06510, USA
| | - Edward Schaeffer
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Vishal Kothari
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Chicago, IL, 60611, USA.
| | - Antonina Mitrofanova
- Department of Health Informatics, Rutgers School of Health Professions, Newark, NJ, 07107, USA.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
8
|
Lee SS, Oudjedi F, Kirk AG, Paliouras M, Trifiro MA. Photothermal therapy of papillary thyroid cancer tumor xenografts with targeted thyroid stimulating hormone receptor antibody functionalized multiwalled carbon nanotubes. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-023-00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
AbstractMultiwalled carbon nanotubes (MWCNTs) are being widely investigated in multiple biomedical applications including, and not limited to, drug delivery, gene therapy, imaging, biosensing, and tissue engineering. Their large surface area and aspect ratio in addition to their unique structural, optical properties, and thermal conductivity also make them potent candidates for novel hyperthermia therapy. Here we introduce thyroid hormone stimulating receptor (TSHR) antibody–conjugate–MWCNT formulation as an enhanced tumor targeting and light-absorbing device for the photoablation of xenografted BCPAP papillary thyroid cancer tumors. To ensure successful photothermal tumor ablation, we determined three key criteria that needed to be addressed: (1) predictive pre-operational modeling; (2) real-time monitoring of the tumor ablation process; and (3) post-operational follow-up to assess the efficacy and ensure complete response with minimal side effects. A COMSOL-based model of spatial temperature distributions of MWCNTs upon selected laser irradiation of the tumor was prepared to accurately predict the internal tumor temperature. This modeling ensured that 4.5W of total laser power delivered over 2 min, would cause an increase of tumor temperature above 45 ℃, and be needed to completely ablate the tumor while minimizing the damage to neighboring tissues. Experimentally, our temperature monitoring results were in line with our predictive modeling, with effective tumor photoablation leading to a significantly reduced post 5-week tumor recurrence using the TSHR-targeted MWCNTs. Ultimately, the results from this study support a utility for photosensitive biologically modified MWCNTs as a cancer therapeutic modality. Further studies will assist with the transition of photothermal therapy from preclinical studies to clinical evaluations.
Collapse
|
9
|
Riley CM, Elwood JML, Henry MC, Hunter I, Daniel Lopez-Fernandez J, McEwan IJ, Jamieson C. Current and emerging approaches to noncompetitive AR inhibition. Med Res Rev 2023; 43:1701-1747. [PMID: 37062876 DOI: 10.1002/med.21961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/18/2023]
Abstract
The androgen receptor (AR) has been shown to be a key determinant in the pathogenesis of castration-resistant prostate cancer (CRPC). The current standard of care therapies targets the ligand-binding domain of the receptor and can afford improvements to life expectancy often only in the order of months before resistance occurs. Emerging preclinical and clinical compounds that inhibit receptor activity via differentiated mechanisms of action which are orthogonal to current antiandrogens show promise for overcoming treatment resistance. In this review, we present an authoritative summary of molecules that noncompetitively target the AR. Emerging small molecule strategies for targeting alternative domains of the AR represent a promising area of research that shows significant potential for future therapies. The overall quality of lead candidates in the area of noncompetitive AR inhibition is discussed, and it identifies the key chemotypes and associated properties which are likely to be, or are currently, positioned to be first in human applications.
Collapse
Affiliation(s)
- Christopher M Riley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Jessica M L Elwood
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Martyn C Henry
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | - Irene Hunter
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Iain J McEwan
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Craig Jamieson
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| |
Collapse
|
10
|
Chai X, Hu XP, Wang XY, Wang HT, Pang JP, Zhou WF, Liao JN, Shan LH, Xu XH, Xu L, Xia HG, Hou TJ, Li D. Computationally guided discovery of novel non-steroidal AR-GR dual antagonists demonstrating potency against antiandrogen resistance. Acta Pharmacol Sin 2023; 44:1500-1518. [PMID: 36639570 PMCID: PMC10310723 DOI: 10.1038/s41401-022-01038-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/01/2022] [Indexed: 01/14/2023]
Abstract
As a major class of medicine for treating the lethal type of castration-resistant prostate cancer (PCa), long-term use of androgen receptor (AR) antagonists commonly leads to antiandrogen resistance. When AR signaling pathway is blocked by AR-targeted therapy, glucocorticoid receptor (GR) could compensate for AR function especially at the late stage of PCa. AR-GR dual antagonist is expected to be a good solution for this situation. Nevertheless, no effective non-steroidal AR-GR dual antagonist has been reported so far. In this study, an AR-GR dual binder H18 was first discovered by combining structure-based virtual screening and biological evaluation. Then with the aid of computationally guided design, the AR-GR dual antagonist HD57 was finally identified with antagonistic activity towards both AR (IC50 = 0.394 μM) and GR (IC50 = 17.81 μM). Moreover, HD57 could effectively antagonize various clinically relevant AR mutants. Further molecular dynamics simulation provided more atomic insights into the mode of action of HD57. Our research presents an efficient and rational strategy for discovering novel AR-GR dual antagonists, and the new scaffold provides important clues for the development of novel therapeutics for castration-resistant PCa.
Collapse
Affiliation(s)
- Xin Chai
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, Zhejiang, China
| | - Xue-Ping Hu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, Shandong, China
| | - Xin-Yue Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hua-Ting Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jin-Ping Pang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Wen-Fang Zhou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jia-Ning Liao
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Lu-Hu Shan
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Xiao-Hong Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, 310022, Zhejiang, China
| | - Lei Xu
- Department of Biochemistry & Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Hong-Guang Xia
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, Zhejiang, China.
- Institute of Bioinformatics and Medical Engineering, School of Electrical and Information Engineering, Jiangsu University of Technology, Changzhou, 213001, Jiangsu, China.
| | - Ting-Jun Hou
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| | - Dan Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Jinhua Institute of Zhejiang University, Jinhua, 321099, Zhejiang, China.
| |
Collapse
|
11
|
Preclinical models of prostate cancer - modelling androgen dependency and castration resistance in vitro, ex vivo and in vivo. Nat Rev Urol 2023:10.1038/s41585-023-00726-1. [PMID: 36788359 DOI: 10.1038/s41585-023-00726-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Prostate cancer is well known to be dependent on the androgen receptor (AR) for growth and survival. Thus, AR is the main pharmacological target to treat this disease. However, after an initially positive response to AR-targeting therapies, prostate cancer will eventually evolve to castration-resistant prostate cancer, which is often lethal. Tumour growth was initially thought to become androgen-independent following treatments; however, results from molecular studies have shown that most resistance mechanisms involve the reactivation of AR. Consequently, tumour cells become resistant to castration - the blockade of testicular androgens - and not independent of AR per se. However, confusion still remains on how to properly define preclinical models of prostate cancer, including cell lines. Most cell lines were isolated from patients for cell culture after evolution of the tumour to castration-resistant prostate cancer, but not all of these cell lines are described as castration resistant. Moreover, castration refers to the blockade of testosterone production by the testes; thus, even the concept of "castration" in vitro is questionable. To ensure maximal transfer of knowledge from scientific research to the clinic, understanding the limitations and advantages of preclinical models, as well as how these models recapitulate cancer cell androgen dependency and can be used to study castration resistance mechanisms, is essential.
Collapse
|
12
|
Ji Y, Zhang R, Han X, Zhou J. Targeting the N-terminal domain of the androgen receptor: The effective approach in therapy of CRPC. Eur J Med Chem 2023; 247:115077. [PMID: 36587421 DOI: 10.1016/j.ejmech.2022.115077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR) is dominant in prostate cancer (PCa) pathology. Current therapeutic agents for advanced PCa include androgen synthesis inhibitors and AR antagonists that bind to the hormone binding pocket (HBP) at the ligand binding domain (LBD). However, AR amplification, AR splice variants (AR-Vs) expression, and intra-tumoral de novo synthesis of androgens result in the reactivation of AR signalling. The AR N-terminal domain (NTD) plays an essential role in AR transcriptional activity. The AR inhibitor targeting NTD could potentially block the activation of both full-length AR and AR-Vs, thus overcoming major resistance mechanisms to current treatments. This review discusses the progress of research in various NTD inhibitors and provides new insight into the development of AR-NTD inhibitors.
Collapse
Affiliation(s)
- Yang Ji
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Rongyu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Xiaoli Han
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China; Drug Development and Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, 321004, PR China.
| |
Collapse
|
13
|
Claudin-3 Loss of Expression Is a Prognostic Marker in Castration-Resistant Prostate Cancer. Int J Mol Sci 2023; 24:ijms24010803. [PMID: 36614243 PMCID: PMC9820886 DOI: 10.3390/ijms24010803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Castration-resistant prostate cancer (CRPC) development is the foremost concern after treatment of patients with high risk with locally advanced or metastatic prostate cancer. Androgen receptor (AR) is the main driver of CRPC development, through its interaction with epigenetic modifier genes, placing epigenetics modifications in the forefront of CRPC development. Comparing the DNA methylation and expression profile of androgen-sensitive and -refractory prostate cancer cells, we describe the epigenetic silencing of claudin-3 (CLDN3) in AR positive cells resistant to androgen deprivation (LNCaP-abl). CLDN3 silencing was associated with DNA methylation, loss of histone acetylation and H3K27 methylation, and was re-expressed by the combined treatment with the epigenetic modulators Aza and SAHA. From a functional point of view, CLDN3 loss was associated with increased cellular invasion. Immunohistochemical analysis showed decreased CLDN3 expression in samples from CRPC patients. Interestingly, CLDN3 expression was significantly decreased in samples from patients with high total Gleason score (≥8) and locally advanced tumors. Finally, CLDN3 loss of expression was associated with worse disease-free survival and time to clinical progression. In conclusion, our findings strongly indicate that epigenetic silencing of CLDN3 is a common event in CRPC that could be useful as a molecular marker for the prognosis of prostate cancer patients and to discriminate aggressive from indolent prostate tumors.
Collapse
|
14
|
Kim W, Yeo DY, Choi SK, Kim HY, Lee SW, Ashim J, Han JE, Yu W, Jeong H, Park JK, Park S. NOLC1 knockdown suppresses prostate cancer progressions by reducing AKT phosphorylation and β-catenin accumulation. Biochem Biophys Res Commun 2022; 635:99-107. [DOI: 10.1016/j.bbrc.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
15
|
Zhang H, Zhou Y, Xing Z, Sah RK, Hu J, Hu H. Androgen Metabolism and Response in Prostate Cancer Anti-Androgen Therapy Resistance. Int J Mol Sci 2022; 23:ijms232113521. [PMID: 36362304 PMCID: PMC9655897 DOI: 10.3390/ijms232113521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
All aspects of prostate cancer evolution are closely related to androgen levels and the status of the androgen receptor (AR). Almost all treatments target androgen metabolism pathways and AR, from castration-sensitive prostate cancer (CSPC) to castration-resistant prostate cancer (CRPC). Alterations in androgen metabolism and its response are one of the main reasons for prostate cancer drug resistance. In this review, we will introduce androgen metabolism, including how the androgen was synthesized, consumed, and responded to in healthy people and prostate cancer patients, and discuss how these alterations in androgen metabolism contribute to the resistance to anti-androgen therapy.
Collapse
Affiliation(s)
- Haozhe Zhang
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi Zhou
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengzhen Xing
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rajiv Kumar Sah
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junqi Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hailiang Hu
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
- Correspondence: ; Tel.: +86-0755-88018249
| |
Collapse
|
16
|
Kotamarti S, Armstrong AJ, Polascik TJ, Moul JW. Molecular Mechanisms of Castrate-Resistant Prostate Cancer. Urol Clin North Am 2022; 49:615-626. [DOI: 10.1016/j.ucl.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
17
|
Shiota M, Akamatsu S, Tsukahara S, Nagakawa S, Matsumoto T, Eto M. Androgen receptor mutations for precision medicine in prostate cancer. Endocr Relat Cancer 2022; 29:R143-R155. [PMID: 35900853 DOI: 10.1530/erc-22-0140] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
Hormonal therapies including androgen deprivation therapy and androgen receptor (AR) pathway inhibitors such as abiraterone and enzalutamide have been widely used to treat advanced prostate cancer. However, treatment resistance emerges after hormonal manipulation in most prostate cancers, and it is attributable to a number of mechanisms, including AR amplification and overexpression, AR mutations, the expression of constitutively active AR variants, intra-tumor androgen synthesis, and promiscuous AR activation by other factors. Although various AR mutations have been reported in prostate cancer, specific AR mutations (L702H, W742L/C, H875Y, F877L, and T878A/S) were frequently identified after treatment resistance emerged. Intriguingly, these hot spot mutations were also revealed to change the binding affinity of ligands including steroids and antiandrogens and potentially result in altered responses to AR pathway inhibitors. Currently, precision medicine utilizing genetic and genomic data to choose suitable treatment for the patient is becoming to play an increasingly important role in clinical practice for prostate cancer management. Since clinical data between AR mutations and the efficacy of AR pathway inhibitors are accumulating, monitoring the AR mutation status is a promising approach for providing precision medicine in prostate cancer, which would be implemented through the development of clinically available testing modalities for AR mutations using liquid biopsy. However, there are few reviews on clinical significance of AR hot spot mutations in prostate cancer. Then, this review summarized the clinical landscape of AR mutations and discussed their potential implication for clinical utilization.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehiro Tsukahara
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shohei Nagakawa
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takashi Matsumoto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
18
|
Wang A, Luo X, Wang Y, Meng X, Lu Z, Yang Y. Design, Synthesis, and Biological Evaluation of Androgen Receptor Degrading and Antagonizing Bifunctional Steroidal Analogs for the Treatment of Advanced Prostate Cancer. J Med Chem 2022; 65:12460-12481. [PMID: 36070471 DOI: 10.1021/acs.jmedchem.2c01164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) with high mortality has seriously threatened men's health. Bifunctional agents simultaneously degrade and antagonize androgen receptor (AR), display robust AR signaling pathway blockade, and show the therapeutic prospect for mCRPC. Herein, systemic structural modifications on the C-3, C-6, and C-17 positions of galeterone led to the discovery of 67-b with the dual functions of AR antagonism and degradation. In vitro, 67-b exhibited excellent antiproliferative activity and potent AR degradation activity in different PCa cells (LNCaP and 22RV1), as well as outstanding antagonistic activity against wild-type and mutant (W741L, T877A, and F876L) ARs. In vivo, 67-b effectively inhibited the growth of hormone-sensitive organs in the Hershberger assay and exhibited tumor regression in the enzalutamide-resistant (c4-2b-ENZ) xenograft model. These results confirmed 67-b to be a promising AR degrader and antagonist for the treatment of mCRPC patients.
Collapse
Affiliation(s)
- Ao Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Xianggang Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yawan Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Nanjing 210023, China
| | - Xin Meng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhengyu Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yushe Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
19
|
Advances in the Current Understanding of the Mechanisms Governing the Acquisition of Castration-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14153744. [PMID: 35954408 PMCID: PMC9367587 DOI: 10.3390/cancers14153744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022] Open
Abstract
Despite aggressive treatment and androgen-deprivation therapy, most prostate cancer patients ultimately develop castration-resistant prostate cancer (CRPC), which is associated with high mortality rates. However, the mechanisms governing the development of CRPC are poorly understood, and androgen receptor (AR) signaling has been shown to be important in CRPC through AR gene mutations, gene overexpression, co-regulatory factors, AR shear variants, and androgen resynthesis. A growing number of non-AR pathways have also been shown to influence the CRPC progression, including the Wnt and Hh pathways. Moreover, non-coding RNAs have been identified as important regulators of the CRPC pathogenesis. The present review provides an overview of the relevant literature pertaining to the mechanisms governing the molecular acquisition of castration resistance in prostate cancer, providing a foundation for future, targeted therapeutic efforts.
Collapse
|
20
|
Khan A, Mao Y, Tahreem S, Wei DQ, Wang Y. Structural and molecular insights into the mechanism of resistance to enzalutamide by the clinical mutants in androgen receptor (AR) in castration-resistant prostate cancer (CRPC) patients. Int J Biol Macromol 2022; 218:856-865. [PMID: 35905763 DOI: 10.1016/j.ijbiomac.2022.07.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/26/2022] [Accepted: 07/08/2022] [Indexed: 11/05/2022]
Abstract
Androgen receptor (AR) is a key contributing element in the prostate cancer (PCa) instigation, progression and it is among the vastly discovered target for prostate cancer. Numerous mechanisms trigger the expansion of CRPC among which the aberrant AR gene is considered as the prime factor. Recently three essential substitutions H875Y, F877L, and T878A are reported to cause resistance to Enzalutamide. However, no detailed study is available to explore the key events that contribute to the resistance. Hence, considering the applicability of structural bioinformatics and molecular simulation-based methods in the current study, we assessed the impact of these mutations on the binding of Enzalutamide. Using a long-run simulation approach the binding stability, residues flexibility, hydrogen bonding, and protein compactness for each complex were determined to reveal the dynamic variations induced by these mutations. We discovered that the binding mode of Enzalutamide is altered by these mutations which misstarget the key residues required for the antagonistic activity. Molecular simulation of each complex revealed that the wild type H11 and H12 are more flexible moving outside and provides more volume for the ligand optimization. In the mutant complexes, the H12 remained tighter pushing out enzalutamide from the key residues which then essentially misstarget the correct orientation for the antagonist activity. The binding free energy (BFE) for the wild type was computed to be -59.92 ± 0.18 kcal/mol, for H875Y the BFE was -55.92 ± 0.18 kcal/mol, -54.82 ± 0.15 kcal/mol for F877L and -53.87 ± 0.18 kcal/mol for T878A, which further demonstrate that these mutations have destabilized the binding of enzalutamide. The proteins' motion and FEL further validated the aforementioned findings where the wild type reported different dynamic features than the mutant complexes. In conclusion, this study provides a structural basis for the resistance to Enzalutamide, which can be used to design novel effective drugs using structure-based and rationale approaches.
Collapse
Affiliation(s)
- Abbas Khan
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yuanshen Mao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200240, PR China
| | - Sana Tahreem
- Sharif Medical and Dental College Lahore, Pakistan
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China; State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Joint Laboratory of International Laboratory of Metabolic and Developmental Sciences, Ministry of Education and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
21
|
Mori JO, Shafran JS, Stojanova M, Katz MH, Gignac GA, Wisco JJ, Heaphy CM, Denis GV. Novel forms of prostate cancer chemoresistance to successful androgen deprivation therapy demand new approaches: Rationale for targeting BET proteins. Prostate 2022; 82:1005-1015. [PMID: 35403746 PMCID: PMC11134172 DOI: 10.1002/pros.24351] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022]
Abstract
In patients with prostate cancer, the duration of remission after treatment with androgen deprivation therapies (ADTs) varies dramatically. Clinical experience has demonstrated difficulties in predicting individual risk for progression due to chemoresistance. Drug combinations that inhibit androgen biosynthesis (e.g., abiraterone acetate) and androgen signaling (e.g., enzalutamide or apalutamide) have proven so effective that new forms of ADT resistance are emerging. In particular, prostate cancers with a neuroendocrine transcriptional signature, which demonstrate greater plasticity, and potentially, increased predisposition to metastasize, are becoming more prevalent. Notably, these subtypes had in fact been relatively rare before the widespread success of novel ADT regimens. Therefore, better understanding of these resistance mechanisms and potential alternative treatments are necessary to improve progression-free survival for patients treated with ADT. Targeting the bromodomain and extra-terminal (BET) protein family, specifically BRD4, with newer investigational agents may represent one such option. Several families of chromatin modifiers appear to be involved in ADT resistance and targeting these pathways could also offer novel approaches. However, the limited transcriptional and genomic information on ADT resistance mechanisms, and a serious lack of patient diversity in clinical trials, demand profiling of a much broader clinical and demographic range of patients, before robust conclusions can be drawn and a clear direction established.
Collapse
Affiliation(s)
- Joakin O. Mori
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jordan S. Shafran
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Marija Stojanova
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Mark H. Katz
- Department of Urology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gretchen A. Gignac
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| | - Jonathan J. Wisco
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Christopher M. Heaphy
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gerald V. Denis
- Section of Hematology and Medical Oncology, Boston University School of Medicine and Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Mao F, Kong Y, Liu J, Rao X, Li C, Donahue K, Zhang Y, Jones K, Zhang Q, Xu W, Liu X. Diptoindonesin G antagonizes AR signaling and enhances the efficacy of antiandrogen therapy in prostate cancer. Prostate 2022; 82:917-932. [PMID: 35322879 PMCID: PMC9035130 DOI: 10.1002/pros.24336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023]
Abstract
BACKGROUND The androgen receptor (AR) signaling pathway has been well demonstrated to play a crucial role in the development, progression, and drug resistance of prostate cancer. Although the current anti-androgen therapy could significantly benefit prostate cancer patients initially, the efficacy of the single drug usually lasts for a relatively short period, as drug resistance quickly emerges. METHODS We have performed an unbiased bioinformatics analysis using the RNA-seq results in 22Rv1 cells to identify the cell response toward Dip G treatment. The RNA-seq results were validated by qRT-PCR. Protein levels were detected by western blot or staining. Cell viability was measured by Aquabluer and colony formation assay. RESULTS Here, we identified that Diptoindonesin G (Dip G), a natural extracted compound, could promote the proteasome degradation of AR and polo-like kinase 1 (PLK1) through modulating the activation of CHIP E3 ligase. Administration of Dip G has shown a profound efficiency in the suppression of AR and PLK1, not only in androgen-dependent LNCaP cells but also in castration-resistant and enzalutamide-resistant cells in a CHIP-dependent manner. Through co-targeting the AR signaling, Dip G robustly improved the efficacy of HSP90 inhibitors and enzalutamide in both human prostate cancer cells and in vivo xenograft mouse model. CONCLUSIONS Our results revealed that Dip G-mediated AR degradation would be a promising and valuable therapeutic strategy in the clinic.
Collapse
Affiliation(s)
- Fengyi Mao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Yifan Kong
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Jinghui Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Xiongjian Rao
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Chaohao Li
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Kristine Donahue
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yanquan Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Katelyn Jones
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Qiongsi Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Wei Xu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaoqi Liu
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA
- Markey Cancer Center, University of Kentucky, Lexington, KY 40506, USA
- To whom correspondence should be addressed: Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40506, USA. Tel: (859) 562-2006;
| |
Collapse
|
23
|
Osman N, Shawky AEM, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure. BMC Genom Data 2022; 23:13. [PMID: 35176995 PMCID: PMC8851830 DOI: 10.1186/s12863-021-01021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022] Open
Abstract
Background Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. Results In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Conclusions Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-01021-x.
Collapse
Affiliation(s)
- Noha Osman
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.,Department of Cell Biology, National Research Centre, Giza, 12622, Egypt.,Department of Medicine, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Abd-El-Monsif Shawky
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Michal Brylinski
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA. .,Center for Computation and Technology, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
24
|
Ju G, Liu B, Ji M, Jin R, Xu X, Xiao Y, Li J, Xu D, Huang Y, Hou J. Folic Acid-Modified miR-491-5p-Loaded ZIF-8 Nanoparticles Inhibit Castration-Resistant Prostate Cancer by Regulating the Expression of EPHX1. Front Bioeng Biotechnol 2021; 9:706536. [PMID: 34881229 PMCID: PMC8645958 DOI: 10.3389/fbioe.2021.706536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022] Open
Abstract
Epoxide hydrolase 1 (EPHX1) has been reported to be related to the development of several tumors. However, the regulation of castration-resistant prostate cancer (CRPC) development by EPHX1 has not been reported. We used proteomic technology and found that the EPHX1 protein was highly expressed in CRPC tissues and the CRPC cell line C4-2. We performed screening and found that EPHX1 is a direct target of miR-491-5p. High miR-491-5p expression significantly reduced the EPHX1 level in C4-2 cells and inhibited C4-2 cell proliferation and migration. Zeolite imidazolate framework-8 (ZIF-8) has good thermal stability, a simple synthesis method, tumor site stability, and specific acid responsiveness. We synthesized ZIF-8 nanodrug vectors to deliver miR-491-5p into C4-2 cells. After loading miR-491-5p into ZIF-8, we modified the ZIF-8 surface with folic acid (FA) as the target group (FA@ZIF-8). Our synthesized nanodrug carrier showed less cytotoxicity to C4-2 cells even at 200 μg/ml. Modified FA could increase the efficiency of nanomaterial entry into C4-2 cells. FA@miR-491-5p@ZIF-8 could stably release miR-491-5p for a long period in both phosphate-buffered saline (pH 7.4) and acetate buffer (pH 4.8), and miR-491-5p was released faster at the beginning of the experiment in acetate buffer (pH 4.8). FA@miR-491-5p@ZIF-8 significantly reduced C4-2 cell proliferation and migration, and FA@miR-491-5p@ZIF-8 had a better effect than miR-491-5p alone. In vivo, FA@miR-491-5p@ZIF-8 significantly inhibited CRPC growth in nude mice. Overall, we verified that miR-491-4p regulated CRPC development by targeting EPHX1. The drug nanocarrier FA@miR-491-5p@ZIF-8 not only significantly reduced C4-2 CRPC cell proliferation and migration but also significantly inhibited CRPC growth. Our research provides a theoretical basis for treatment and treatment strategies for CRPC.
Collapse
Affiliation(s)
- Guanqun Ju
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Bing Liu
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingfei Ji
- Department of Urology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Rui Jin
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaojian Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yongshuang Xiao
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongliang Xu
- Urology Centre, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Urology, Dushuhu Public Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
25
|
Liu J, Zhang Y, Li S, Sun F, Wang G, Wei D, Yang T, Gu S. Androgen deprivation‑induced OPHN1 amplification promotes castration‑resistant prostate cancer. Oncol Rep 2021; 47:3. [PMID: 34738630 PMCID: PMC8600397 DOI: 10.3892/or.2021.8214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022] Open
Abstract
Androgen deprivation therapy (ADT) is used to treat prostate cancer (PCa). However, ADT may increase the expression of androgen receptor (AR) through the amplification of chromosome X. The gene oligophrenin 1 (OPHN1) is located in the same region as the AR gene, which could be amplified by ADT. Thus, the role of OPHN1 in PCa pathology was investigated. The expression status of OPHN1 in PCa was searched in The Cancer Genome Atlas (TCGA) database. Androgen-sensitive cells LNCaP and 22RV1 were cultured under ADT conditions, and then the expression of OPHN1 was evaluated by northern blotting. The expression of OPHN1 was enhanced or knocked down in LNCaP and 22RV1 cells by transfection. Subsequently, the LNCaP and 22RV1 cells were cultured under ADT, and the viability rate, apoptosis, and migration of cells were assessed by MTT, flow cytometry, and Transwell assay respectively. The expression of OPHN1 was also enhanced or knocked down in androgen-insensitive PC3 cells, and then the effects of OPHN1 on the viability, apoptosis, and migration of PC3 cells were assessed. A mouse xenograft model was created by injecting LNCaP cells with OPHN1 overexpression subcutaneously, and the tumor growth rates were monitored. In TCGA database, amplification of the OPHN1 gene was observed in the PCa tumors. ADT increased the expression of OPHN1 in LNCaP and 22RV1 cells (P<0.05). OPHN1 could promote resistance of LNCaP and 22RV1 cells to ADT by promoting cell survival and preventing their apoptosis (P<0.05). In addition, OPHN1 contributed to cell viability (P<0.05) and enhanced the migration ability in LNCaP, 22RV1 and PC3 cells (P<0.05). In the mouse model, the PCa xenograft with OPHN1 overexpression had a higher growth rate and was more resistant to the ADT condition (P<0.05). In summary, ADT induced the overexpression of OPHN1 in PCa, which facilitated PCa cell survival and promoted PCa progression.
Collapse
Affiliation(s)
- Junjiang Liu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yunxia Zhang
- Department of Obstetrics and Gynecology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shoubin Li
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Fuzhen Sun
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Gang Wang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Dong Wei
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Tao Yang
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shouyi Gu
- Department of Urology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
26
|
Hamid ARAH, Luna-Velez MV, Dudek AM, Jansen CFJ, Smit F, Aalders TW, Verhaegh GW, Schaafsma E, Sedelaar JPM, Schalken JA. Molecular Phenotyping of AR Signaling for Predicting Targeted Therapy in Castration Resistant Prostate Cancer. Front Oncol 2021; 11:721659. [PMID: 34490120 PMCID: PMC8417043 DOI: 10.3389/fonc.2021.721659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/31/2021] [Indexed: 11/13/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is defined by resistance of the tumor to androgen deprivation therapy (ADT). Several molecular changes, particularly in the AR signaling cascade, have been described that may explain ADT resistance. The variety of changes may also explain why the response to novel therapies varies between patients. Testing the specific molecular changes may be a major step towards personalized treatment of CRPC patients. The aim of our study was to evaluate the molecular changes in the AR signaling cascade in CRPC patients. We have developed and validated several methods which are easy to use, and require little tissue material, for exploring AR signaling pathway changes simultaneously. We found that the AR signaling pathway is still active in the majority of our CRPC patients, due to molecular changes in AR signaling components. There was heterogeneity in the molecular changes observed, but we could classify the patients into 4 major subgroups which are: AR mutation, AR amplification, active intratumoral steroidogenesis, and combination of AR amplification and active intratumoral steroidogenesis. We suggest characterizing the AR signaling pathway in CRPC patients before beginning any new treatment, and a recent fresh tissue sample from the prostate or a metastatic site should be obtained for the purpose of this characterization.
Collapse
Affiliation(s)
- Agus Rizal A H Hamid
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Urology, Ciptomangunkusumo Hospital, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Maria V Luna-Velez
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Aleksandra M Dudek
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | | | | | - Tilly W Aalders
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerald W Verhaegh
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ewout Schaafsma
- Department of Pathology, Radboud University Medical Center, Nijmegen, Netherlands
| | - John P M Sedelaar
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jack A Schalken
- Department of Urology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
27
|
van de Haar J, Hoes LR, Roepman P, Lolkema MP, Verheul HMW, Gelderblom H, de Langen AJ, Smit EF, Cuppen E, Wessels LFA, Voest EE. Limited evolution of the actionable metastatic cancer genome under therapeutic pressure. Nat Med 2021; 27:1553-1563. [PMID: 34373653 DOI: 10.1038/s41591-021-01448-w] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 11/08/2022]
Abstract
Genomic profiling is critical for the identification of treatment options for patients with metastatic cancer, but it remains unclear how frequently this procedure should be repeated during the course of the disease. To address this, we analyzed whole-genome sequencing (WGS) data of 250 biopsy pairs, longitudinally collected over the treatment course of 231 adult patients with a representative variety of metastatic solid malignancies. Within the biopsy interval (median, 6.4 months), patients received one or multiple lines of (mostly) standard-of-care (SOC) treatments, with all major treatment modalities being broadly represented. SOC biomarkers and biomarkers for clinical trial enrollment could be identified in 23% and 72% of biopsies, respectively. For SOC genomic biomarkers, we observed full concordance between the first and the second biopsy in 99% of pairs. Of the 219 biomarkers for clinical trial enrollment that were identified in the first biopsies, we recovered 94% in the follow-up biopsies. Furthermore, a second WGS analysis did not identify additional biomarkers for clinical trial enrollment in 91% of patients. More-frequent genomic evolution was observed when considering specific genes targeted by small-molecule inhibitors or hormonal therapies (21% and 22% of cases, respectively). Together, our data demonstrate that there is limited evolution of the actionable genome of treated metastases. A single WGS analysis of a metastatic biopsy is generally sufficient to identify SOC genomic biomarkers and to identify investigational treatment opportunities.
Collapse
Affiliation(s)
- Joris van de Haar
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Louisa R Hoes
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
| | - Paul Roepman
- Hartwig Medical Foundation, Amsterdam, the Netherlands
| | - Martijn P Lolkema
- Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Egbert F Smit
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Amsterdam, the Netherlands
- Hartwig Medical Foundation, Amsterdam, the Netherlands
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, the Netherlands
- Faculty of EEMCS, Delft University of Technology, Delft, the Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Oncode Institute, Amsterdam, the Netherlands.
- Center for Personalized Cancer Treatment, Rotterdam, the Netherlands.
| |
Collapse
|
28
|
Lokeshwar SD, Klaassen Z, Saad F. Treatment and trials in non-metastatic castration-resistant prostate cancer. Nat Rev Urol 2021; 18:433-442. [PMID: 34002069 DOI: 10.1038/s41585-021-00470-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
Metastatic prostate cancer is associated with considerable morbidity and mortality. Standard treatment for non-metastatic prostate cancer, to prevent metastatic progression, is androgen deprivation therapy (ADT); however, many patients will eventually develop castration-resistant prostate cancer (CRPC), which can prove challenging to treat. Between the stages of non-metastatic androgen-sensitive disease and metastatic CRPC is an intermediate disease state that has been termed non-metastatic CRPC (nmCRPC), which is a heterogeneous, man-made disease stage that occurs after a patient who has no radiological evidence of metastasis shows evidence of cancer progression even after ADT. Awareness of nmCRPC has risen owing to an increased use of ADT and its eventual failure. Men with nmCRPC are at a high risk of progression to mCRPC, with historically few options to halt this process. However, in the past two decades, multiple therapies have been investigated for the treatment of nmCRPC, including endothelin receptor antagonists and bone-targeted therapies, but none has changed the standard of care. In the past decade, the efficacy of androgen receptor pathway-targeting modalities has been investigated. Three novel nonsteroidal antiandrogen agents for treating high-risk nmCRPC have been investigated; the PROSPER, SPARTAN and ARAMIS trials were phase III, randomized, placebo-controlled clinical trials that investigated the efficacy and safety of enzalutamide, apalutamide and darolutamide, respectively. All three therapeutics showed statistically significant improvements in metastasis-free survival, progression to antineoplastic therapy was lengthened and at final analysis, overall survival was significantly improved. The comparative efficacy and safety of all three agents has not yet been investigated in a comprehensive clinical trial, but approval of these medications by the FDA and other regulatory agencies means that providers now have three effective therapeutic options to augment ADT for patients with nmCRPC.
Collapse
Affiliation(s)
| | - Zachary Klaassen
- Division of Urology, Department of Surgery, Augusta University - Medical College of Georgia, Augusta, GA, USA.,Georgia Cancer Center, Augusta, GA, USA
| | - Fred Saad
- Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada.
| |
Collapse
|
29
|
Jillson LK, Yette GA, Laajala TD, Tilley WD, Costello JC, Cramer SD. Androgen Receptor Signaling in Prostate Cancer Genomic Subtypes. Cancers (Basel) 2021; 13:3272. [PMID: 34208794 PMCID: PMC8269091 DOI: 10.3390/cancers13133272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
While many prostate cancer (PCa) cases remain indolent and treatable, others are aggressive and progress to the metastatic stage where there are limited curative therapies. Androgen receptor (AR) signaling remains an important pathway for proliferative and survival programs in PCa, making disruption of AR signaling a viable therapy option. However, most patients develop resistance to AR-targeted therapies or inherently never respond. The field has turned to PCa genomics to aid in stratifying high risk patients, and to better understand the mechanisms driving aggressive PCa and therapy resistance. While alterations to the AR gene itself occur at later stages, genomic changes at the primary stage can affect the AR axis and impact response to AR-directed therapies. Here, we review common genomic alterations in primary PCa and their influence on AR function and activity. Through a meta-analysis of multiple independent primary PCa databases, we also identified subtypes of significantly co-occurring alterations and examined their combinatorial effects on the AR axis. Further, we discussed the subsequent implications for response to AR-targeted therapies and other treatments. We identified multiple primary PCa genomic subtypes, and given their differing effects on AR activity, patient tumor genetics may be an important stratifying factor for AR therapy resistance.
Collapse
Affiliation(s)
- Lauren K. Jillson
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Gabriel A. Yette
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
- Department of Mathematics and Statistics, University of Turku, 20500 Turku, Finland
| | - Wayne D. Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia;
- Freemason’s Foundation Centre for Men’s Health, University of Adelaide, Adelaide, SA 5005, Australia
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| | - Scott D. Cramer
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (J.K.L.); (G.A.Y.); (T.D.L.); (J.C.C.)
| |
Collapse
|
30
|
Alhawas L, Amin KS, Salla B, Banerjee PP. T-LAK cell-originated protein kinase (TOPK) enhances androgen receptor splice variant (ARv7) and drives androgen-independent growth in prostate cancer. Carcinogenesis 2021; 42:423-435. [PMID: 33185682 DOI: 10.1093/carcin/bgaa120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022] Open
Abstract
Despite impressive advances in the treatment of prostate cancer with various efficacious inhibitors along the androgen/androgen receptor axis, eventual development of incurable metastatic Castration-Resistant Prostate Cancer (mCRPC) is inevitable and remains a major clinical challenge. Constitutively active androgen receptor (AR) spliced variants have emerged as primary means of resistance to anti-androgens and androgen synthesis inhibitors. The alternatively spliced AR variant, ARv7, has attracted significant interest due to its constitutively active status in CRPC that drives androgen-independence. Factors that are involved in regulating ARv7 levels in CRPC are not clearly known. We recently demonstrated that a protein kinase, T-LAK cell-originated protein kinase (TOPK) level correlates with the aggressiveness of prostate cancer and its invasive behavior. In this study, we investigated whether TOPK plays a role in driving androgen-independence in prostate cancer cells. Our data demonstrate that TOPK overexpression in androgen-dependent LNCaP and VCaP induces ARv7 and drives androgen-independent growth. On the other hand, pharmacological inhibition of TOPK in androgen-independent LNCaP95 and 22Rv1 represses AR transactivation, and AR stability. In summary, this study illustrates a direct role of TOPK in regulating ARv7 and driving androgen-independence in prostate cancer cells.
Collapse
MESH Headings
- Alternative Splicing
- Androgen Antagonists/pharmacology
- Androgen Antagonists/therapeutic use
- Androgens/metabolism
- Antineoplastic Agents, Hormonal/pharmacology
- Antineoplastic Agents, Hormonal/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Disease-Free Survival
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Humans
- Inhibitory Concentration 50
- Male
- Mitogen-Activated Protein Kinase Kinases/analysis
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/prevention & control
- Prognosis
- Prostate/pathology
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/mortality
- Prostatic Neoplasms, Castration-Resistant/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Quinolones/pharmacology
- Quinolones/therapeutic use
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
- Thiophenes/pharmacology
- Thiophenes/therapeutic use
- Transcriptional Activation/drug effects
Collapse
Affiliation(s)
| | | | | | - Partha P Banerjee
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
31
|
Undesirable Status of Prostate Cancer Cells after Intensive Inhibition of AR Signaling: Post-AR Era of CRPC Treatment. Biomedicines 2021; 9:biomedicines9040414. [PMID: 33921329 PMCID: PMC8069212 DOI: 10.3390/biomedicines9040414] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Recent advances in prostate cancer (PC) research unveiled real androgen receptor (AR) functions in castration-resistant PC (CRPC). Moreover, AR still accelerates PC cell proliferation via the activation of several mechanisms (e.g., mutation, variants, and amplifications in CRPC). New-generation AR signaling-targeted agents, inhibiting extremely the activity of AR, were developed based on these incontrovertible mechanisms of AR-induced CRPC progression. However, long-term administration of AR signaling-targeted agents subsequently induces the major problem that AR (complete)-independent CRPC cells present neither AR nor prostate-specific antigen, including neuroendocrine differentiation as a subtype of AR-independent CRPC. Moreover, there are few treatments effective for AR-independent CRPC with solid evidence. This study focuses on the transformation mechanisms of AR-independent from AR-dependent CRPC cells and potential treatment strategy for AR-independent CRPC and discusses them based on a review of basic and clinical literature.
Collapse
|
32
|
Simon I, Perales S, Casado-Medina L, Rodríguez-Martínez A, Garrido-Navas MDC, Puche-Sanz I, Diaz-Mochon JJ, Alaminos C, Lupiañez P, Lorente JA, Serrano MJ, Real PJ. Cross-Resistance to Abiraterone and Enzalutamide in Castration Resistance Prostate Cancer Cellular Models Is Mediated by AR Transcriptional Reactivation. Cancers (Basel) 2021; 13:1483. [PMID: 33807106 PMCID: PMC8004828 DOI: 10.3390/cancers13061483] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) and novel hormonal agents (NHAs) (Abiraterone and Enzalutamide) are the goal standard for metastatic prostate cancer (PCa) treatment. Although ADT is initially effective, a subsequent castration resistance status (CRPC) is commonly developed. The expression of androgen receptor (AR) alternative splicing isoforms (AR-V7 and AR-V9) has been associated to CRPC. However, resistance mechanisms to novel NHAs are not yet well understood. Androgen-dependent PCa cell lines were used to generate resistant models to ADT only or in combination with Abiraterone and/or Enzalutamide (concomitant models). Functional and genetic analyses were performed for each resistance model by real-time cell monitoring assays, flow cytometry and RT-qPCR. In androgen-dependent PCa cells, the administration of Abiraterone and/or Enzalutamide as first-line treatment involved a critical inhibition of AR activity associated with a significant cell growth inhibition. Genetic analyses on ADT-resistant PCa cell lines showed that the CRPC phenotype was accompanied by overexpression of AR full-length and AR target genes, but not necessarily AR-V7 and/or AR-V9 isoforms. These ADT resistant cell lines showed higher proliferation rates, migration and invasion abilities. Importantly, ADT resistance induced cross-resistance to Abiraterone and/or Enzalutamide. Similarly, concomitant models possessed an elevated expression of AR full-length and proliferation rates and acquired cross-resistance to its alternative NHA as second-line treatment.
Collapse
Affiliation(s)
- Iris Simon
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Sonia Perales
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Laura Casado-Medina
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
| | - Alba Rodríguez-Martínez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Laboratory of Genetic Identification, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Maria del Carmen Garrido-Navas
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Universidad Internacional de la Rioja, Avenida de la Paz, 137, 26006 Logroño, Spain
| | - Ignacio Puche-Sanz
- Department of Urology, Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs.GRANADA), Hospital Universitario Virgen de las Nieves, University of Granada, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain;
| | - Juan J. Diaz-Mochon
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Nanochembio Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain;
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, Campus de Cartuja, University of Granada, 18071 Granada, Spain
| | - Clara Alaminos
- Department of Urology, University Hospital of Jaen, Avenida del Ejercito Español 10, 23007 Jaen, Spain;
| | - Pablo Lupiañez
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Jose A. Lorente
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Legal Medicine and Toxicology Department, Faculty of Medicine, University of Granada, Laboratory of Genetic Identification, Avenida de la Investigación 11, 18016 Granada, Spain
| | - María J. Serrano
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Liquid Biopsy and Cancer Interception Group, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (A.R.-M.); (M.d.C.G.-N.); (J.A.L.)
- Comprehensive Oncology Division, Clinical University Hospital, Virgen de las Nieves-IBS, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Pathological Anatomy, Faculty of Medicine, University of Granada, Avenida de la Investigación 11, 18016 Granada, Spain
| | - Pedro J. Real
- GENyO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Gene Regulation, Stem Cells & Development Lab, PTS Granada, Avenida de la Ilustracion 114, 18016 Granada, Spain; (I.S.); (S.P.); (L.C.-M.); (P.L.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs.GRANADA), Personalized Oncology Group, Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
33
|
Conteduca V, Mosca A, Brighi N, de Giorgi U, Rescigno P. New Prognostic Biomarkers in Metastatic Castration-Resistant Prostate Cancer. Cells 2021; 10:193. [PMID: 33478015 PMCID: PMC7835961 DOI: 10.3390/cells10010193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is one of the most frequent cancers in men and is a common cause of cancer-related death. Despite significant progress in the diagnosis and treatment of this tumor, patients who relapse after radical treatments inevitably develop metastatic disease. Patient stratification is therefore key in this type of cancer, and there is an urgent need for prognostic biomarkers that can define patients' risk of cancer-related death. In the last 10 years, multiple prognostic factors have been identified and studied. Here, we review the literature available and discuss the most common aberrant genomic pathways in metastatic castration-resistant prostate cancer shown to have a prognostic relevance in this setting.
Collapse
Affiliation(s)
- Vincenza Conteduca
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Alessandra Mosca
- Multidisciplinary Outpatient Oncology Clinic, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy;
| | - Nicole Brighi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Ugo de Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy; (V.C.); (N.B.); (U.d.G.)
| | - Pasquale Rescigno
- Interdisciplinary Group for Translational Research and Clinical Trials, Urological Cancers (GIRT-Uro), Candiolo Cancer Institute, FPO-IRCCS, Candiolo, 10060 Turin, Italy
| |
Collapse
|
34
|
Yuan M, Cheng P, Zhang S. Structure–activity relationship analysis of a series of nonsteroidal analogues as androgen receptor antagonists. NEW J CHEM 2021. [DOI: 10.1039/d0nj04204h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computer-aided drug design technology was used to screen drugs in large-scale and to accelerate the progress of drug design of nonsteroidal compounds deriving from the hybridization of FDA-approved Enzalutamide and Abiraterone.
Collapse
Affiliation(s)
- Miao Yuan
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Ping Cheng
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| | - Shuping Zhang
- College of Science
- University of Shanghai for Science and Technology
- Shanghai
- P. R. China
| |
Collapse
|
35
|
Verma S, Shankar E, Chan ER, Gupta S. Metabolic Reprogramming and Predominance of Solute Carrier Genes during Acquired Enzalutamide Resistance in Prostate Cancer. Cells 2020; 9:cells9122535. [PMID: 33255236 PMCID: PMC7759897 DOI: 10.3390/cells9122535] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/13/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Androgen deprivation therapy (ADT) is standard-of-care for advanced-stage prostate cancer, and enzalutamide (Xtandi®, Astellas, Northbrook, IL, USA), a second generation antiandrogen, is prescribed in this clinical setting. The response to this medication is usually temporary with the rapid emergence of drug resistance. A better understanding of gene expression changes associated with enzalutamide resistance will facilitate circumventing this problem. We compared the transcriptomic profile of paired enzalutamide-sensitive and resistant LNCaP and C4-2B prostate cancer cells for identification of genes involved in drug resistance by performing an unbiased bioinformatics analysis and further validation. Next-Gen sequencing detected 9409 and 7757 genes differentially expressed in LNCaP and C4-2B cells, compared to their parental counterparts. A subset of differentially expressed genes were validated by qRT-PCR. Analysis by the i-pathway revealed membrane transporters including solute carrier proteins, ATP-binding cassette transporters, and drug metabolizing enzymes as the most prominent genes dysregulated in resistant cell lines. RNA-Seq data demonstrated predominance of solute carrier genes SLC12A5, SLC25A17, and SLC27A6 during metabolic reprogramming and development of drug resistance. Upregulation of these genes were associated with higher uptake of lactic/citric acid and lower glucose intake in resistant cells. Our data suggest the predominance of solute carrier genes during metabolic reprogramming of prostate cancer cells in an androgen-deprived environment, thus signifying them as potentially attractive therapeutic targets.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (E.S.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Eswar Shankar
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (E.S.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - E. Ricky Chan
- Institute of Computational Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (E.S.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-368-6162; Fax: +1-216-368-0213
| |
Collapse
|
36
|
Wang Y, Gao W, Li Y, Chow ST, Xie W, Zhang X, Zhou J, Chan FL. Interplay between orphan nuclear receptors and androgen receptor-dependent or-independent growth signalings in prostate cancer. Mol Aspects Med 2020; 78:100921. [PMID: 33121737 DOI: 10.1016/j.mam.2020.100921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/14/2022]
Abstract
It is well-established that both the initial and advanced growth of prostate cancer depends critically on androgens and thus on the activated androgen receptor (AR) -mediated signaling pathway. The unique hormone-dependent feature of prostate cancer forms the biological basis of hormone or androgen-deprivation therapy (ADT) that aims to suppress the AR signaling by androgen depletion or AR antagonists. ADT still remains the mainstay treatment option for locally advanced or metastatic prostate cancer. However, most patients upon ADT will inevitably develop therapy-resistance and progress to relapse in the form of castration-resistant disease (castration-resistant prostate cancer or CRPC) or even a more aggressive androgen-independent subtype (therapy-related neuroendocrine prostate cancer or NEPC). Recent advances show that besides AR, some ligand-independent members of nuclear receptor superfamily-designated as orphan nuclear receptors (ONRs), as their endogenous physiological ligands are either absent or not yet identified to date, also play significant roles in the growth regulation of prostate cancer via multiple AR-dependent or -independent (AR-bypass) pathways or mechanisms. In this review, we summarize the recent progress in the newly elucidated roles of ONRs in prostate cancer, with a focus on their interplay in the AR-dependent pathways (intratumoral androgen biosynthesis and suppression of AR signaling) and AR-independent pathways or cellular processes (hypoxia, oncogene- or tumor suppressor-induced senescence, apoptosis and regulation of prostate cancer stem cells). These ONRs with their newly characterized roles not only can serve as novel biomarkers but also as potential therapeutic targets for management of advanced prostate cancer.
Collapse
Affiliation(s)
- Yuliang Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| | - Weijie Gao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Youjia Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin Ting Chow
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenjuan Xie
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xingxing Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianfu Zhou
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Urology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510370, China
| | - Franky Leung Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
37
|
Osman N, Shawky A, Brylinski M. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure.. [DOI: 10.1101/2020.10.06.328567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
AbstractNumerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome. The functional characterization of these non-coding variants and the identification of their target genes remain challenging. In this communication, we explore the potential functional mechanisms of non-coding SNPs by integrating GWAS with the high-resolution chromosome conformation capture (Hi-C) data for breast and prostate cancers. We show that more genetic variants map to regulatory elements through the 3D genome structure than the 1D linear genome lacking physical chromatin interactions. Importantly, the association of enhancers, transcription factors, and their target genes with breast and prostate cancers tends to be higher when these regulatory elements are mapped to high-risk SNPs through spatial interactions compared to simply using a linear proximity. Finally, we demonstrate that topologically associating domains (TADs) carrying high-risk SNPs also contain gene regulatory elements whose association with cancer is generally higher than those belonging to control TADs containing no high-risk variants. Our results suggest that many SNPs may contribute to the cancer development by affecting the expression of certain tumor-related genes through long-range chromatin interactions with gene regulatory elements. Integrating large-scale genetic datasets with the 3D genome structure offers an attractive and unique approach to systematically investigate the functional mechanisms of genetic variants in disease risk and progression.
Collapse
|
38
|
Bungaro M, Buttigliero C, Tucci M. Overcoming the mechanisms of primary and acquired resistance to new generation hormonal therapies in advanced prostate cancer: focus on androgen receptor independent pathways. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:726-741. [PMID: 35582226 PMCID: PMC8992570 DOI: 10.20517/cdr.2020.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/28/2020] [Accepted: 08/18/2020] [Indexed: 11/25/2022]
Abstract
In recent years, many therapeutic advances have been made in the management of castration-resistant prostate cancer, with the development and approval of many new drugs. The androgen receptor (AR) is the main driver in prostate cancer growth and progression and the most effective therapeutic agents are still directed against this pathway. Among these, new generation hormonal agents (NHA) including enzalutamide, abiraterone acetate, apalutamide, and darolutamide have shown to improve overall survival and quality of life of prostate cancer patients. Unfortunately, despite the demonstrated benefit, not all patients respond to treatment and almost all are destined to develop a resistant phenotype. Although the resistance mechanisms are not fully understood, the most studied ones include the activation of both dependent and independent AR signalling pathways. Recent findings about multiple growth-promoting and survival pathways in advanced prostate cancer suggest the presence of alternative mechanisms involved in disease progression, and an interplay between these pathways and AR signalling. In this review we discuss the possible mechanisms of primary and acquired resistance to NHA with a focus on AR independent pathways.
Collapse
Affiliation(s)
- Maristella Bungaro
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Consuelo Buttigliero
- Medical Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Marcello Tucci
- Medical Oncology, Cardinal Massaia Hospital, Asti 14100, Italy
| |
Collapse
|
39
|
Lin YW, Wen YC, Chu CY, Tung MC, Yang YC, Hua KT, Pan KF, Hsiao M, Lee WJ, Chien MH. Stabilization of ADAM9 by N-α-acetyltransferase 10 protein contributes to promoting progression of androgen-independent prostate cancer. Cell Death Dis 2020; 11:591. [PMID: 32719332 PMCID: PMC7385149 DOI: 10.1038/s41419-020-02786-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/28/2022]
Abstract
N-α-Acetyltransferase 10 protein (Naa10p) was reported to be an oncoprotein in androgen-dependent prostate cancer (PCa; ADPC) through binding and increasing transcriptional activity of the androgen receptor (AR). PCa usually progresses from an androgen-dependent to an androgen-independent stage, leading to an increase in the metastatic potential and an incurable malignancy. At present, the role of Naa10p in androgen-independent prostate cancer (AIPC) remains unclear. In this study, in silico and immunohistochemistry analyses showed that Naa10 transcripts or the Naa10p protein were more highly expressed in primary and metastatic PCa cancer tissues compared to adjacent normal tissues and non-metastatic cancer tissues, respectively. Knockdown and overexpression of Naa10p in AIPC cells (DU145 and PC-3M), respectively, led to decreased and increased cell clonogenic and invasive abilities in vitro as well as tumor growth and metastasis in AIPC xenografts. From the protease array screening, we identified a disintegrin and metalloprotease 9 (ADAM9) as a potential target of Naa10p, which was responsible for the Naa10p-induced invasion of AIPC cells. Naa10p can form a complex with ADAM9 to maintain ADAM9 protein stability and promote AIPC's invasive ability which were independent of its acetyltransferase activity. In contrast to the Naa10p-ADAM9 axis, ADAM9 exerted positive feedback regulation on Naa10p to modulate progression of AIPC in vitro and in vivo. Taken together, for the first time, our results reveal a novel cross-talk between Naa10p and ADAM9 in regulating the progression of AIPC. Disruption of Naa10p-ADAM9 interactions may be a potential intervention for AIPC therapy.
Collapse
Affiliation(s)
- Yung-Wei Lin
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,International Master/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Ying Chu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Che Tung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ke-Fan Pan
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Jiunn Lee
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei, Taiwan. .,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
40
|
Hao L, Li H, Zhang S, Yang Y, Xu Z, Zhang Y, Liu Z. Integrative Exome Sequencing Analysis in Castration-Resistant Prostate Cancer in Chinese Population. Curr Pharm Biotechnol 2020; 21:140-148. [PMID: 31580249 DOI: 10.2174/1389201019666191003142119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/21/2019] [Accepted: 09/02/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Castration-resistant Prostate Cancer (CRPC) is a fatal disease with rapid growth. The malignancy usually presents with metastasis and poor prognosis, and causes 100% mortality. Therefore, the treatment of CRPC is extremely challenging, and its pathogenesis need to be elucidated urgently. OBJECTIVE The high throughput sequencing technology was used to sequence the whole exome associated with CRPC, to explore the molecular mechanism of CRPC, and to find the potential therapeutic targets. METHODS We performed whole-exome sequencing of FFPE tissue from 11 Chinese adult male patients. Genomic DNA was fragmented and enriched for whole-exome sequencing using the QiAamp DNA FFPE Tissue KIT, sequenced on an Illumina HiSeq2000 platform, and the relevant genes were analyzed using biological information. Finally, immunohistochemistry method was used to detect the phosphorylation level of LATS1 in CRPC tissues of MST1 mutant and non-mutant patients. RESULTS We have screened 85 significant mutant genes with relatively high mutation rates of TP53, AR, KMT2, DMAPK1, PIK3R1, SH2B3, WHSC1, KMT2D, MST1 and MAPK1. We first found that MST1 has multiple mutations in CRPC patients, and the MST1 plays an important role in the Hippo pathway. Immunohistochemistry results showed that the phosphorylation level of LATS1 in the mutant patients was significantly lower than that in the non-mutant patients. CONCLUSION We speculate that MST1 would be a new potential target for the treatment of CRPC by regulating Hippo signaling pathway. The results provided an important clue to the molecular mechanism of CRPC.
Collapse
Affiliation(s)
- Lifang Hao
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Hui Li
- Department of Urology, Peking University International Hospital, Beijing 102206, China
| | - Su Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanlei Yang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhenzhen Xu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Yanfen Zhang
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| | - Zhongcheng Liu
- College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.,Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Baoding 071002, China
| |
Collapse
|
41
|
Regression of castration-resistant prostate cancer by a novel compound QW07 targeting androgen receptor N-terminal domain. Cell Biol Toxicol 2020; 36:399-416. [PMID: 32002708 DOI: 10.1007/s10565-020-09511-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/24/2022]
Abstract
Androgen deprivation therapy (ADT) via surgical or chemical castration frequently fails to halt lethal castration-resistant prostate cancer (CRPC), which is induced by multiple mechanisms involving constitutive androgen receptor (AR) splice variants, AR mutation, and/or de novo androgen synthesis. The AR N-terminal domain (NTD) possesses most transcriptional activity and is proposed as a potential target for CRPC drug development. We constructed a screening system targeting AR-NTD transcription activity to screening a compound library and identified a novel small molecule compound named QW07. The function evaluation and mechanism investigation of QW07 were carried out in vitro and in vivo. QW07 bound to AR-NTD directly, blocked the transactivation of AR-NTD, blocked interactions between co-regulatory proteins and androgen response elements (AREs), inhibited the expression of genes downstream of AR, and inhibited prostate cancer growth in vitro and in vivo. QW07 was demonstrated as an AR-NTD-specific antagonist with the potential to inhibit both canonical and variant-mediated AR signaling to regress the CRPC xenografts and is proposed as a lead compound for a specific antagonist targeting AR-NTD.
Collapse
|
42
|
Chen M, Yang Y, Xu K, Li L, Huang J, Qiu F. Androgen Receptor in Breast Cancer: From Bench to Bedside. Front Endocrinol (Lausanne) 2020; 11:573. [PMID: 32982970 PMCID: PMC7492540 DOI: 10.3389/fendo.2020.00573] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignancies and the leading cause of cancer-related mortality in women. Androgen receptor (AR) is frequently expressed in diverse BC subtypes. Accumulating evidence has revealed that AR might be a predictive or prognostic factor and a drug target in BC. AR expression and AR pathways differ in various BC subtypes, thereby resulting in controversial inferences on the predictive and prognostic value of AR. Herein, we summarized the roles of AR in different BC subtypes and AR-targeting therapies based on preclinical and clinical studies. Moreover, we highlighted the possible efficacy of a combination therapy via exploiting the AR-related mechanisms and the research on therapeutic resistance.
Collapse
Affiliation(s)
- Mengyao Chen
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunben Yang
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kai Xu
- Department of Orthopedics Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Li
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Breast Surgery and Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fuming Qiu
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Fuming Qiu
| |
Collapse
|
43
|
ODM-204, a Novel Dual Inhibitor of CYP17A1 and Androgen Receptor: Early Results from Phase I Dose Escalation in Men with Castration-resistant Prostate Cancer. Eur Urol Focus 2020; 6:63-70. [DOI: 10.1016/j.euf.2018.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/17/2018] [Accepted: 08/27/2018] [Indexed: 11/18/2022]
|
44
|
Ferroni C, Varchi G. Non-Steroidal Androgen Receptor Antagonists and Prostate Cancer: A Survey on Chemical Structures Binding this Fast-Mutating Target. Curr Med Chem 2019; 26:6053-6073. [PMID: 30209993 DOI: 10.2174/0929867325666180913095239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/01/2023]
Abstract
The Androgen Receptor (AR) pathway plays a major role in both the pathogenesis and progression of prostate cancer. In particular, AR is chiefly involved in the development of Castration-Resistant Prostate Cancer (CRPC) as well as in the resistance to the secondgeneration AR antagonist enzalutamide, and to the selective inhibitor of cytochrome P450 17A1 (CYP17A1) abiraterone. Several small molecules acting as AR antagonists have been designed and developed so far, also as a result of the ability of cells expressing this molecular target to rapidly develop resistance and turn pure receptor antagonists into ineffective or event detrimental molecules. This review covers a survey of most promising classes of non-steroidal androgen receptor antagonists, also providing insights into their mechanism of action and efficacy in treating prostate cancer.
Collapse
Affiliation(s)
- Claudia Ferroni
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| | - Greta Varchi
- Institute of Organic Synthesis and Photoreactivity - ISOF, Italian National Research Council, Bologna, Italy
| |
Collapse
|
45
|
Porter BA, Ortiz MA, Bratslavsky G, Kotula L. Structure and Function of the Nuclear Receptor Superfamily and Current Targeted Therapies of Prostate Cancer. Cancers (Basel) 2019; 11:cancers11121852. [PMID: 31771198 PMCID: PMC6966469 DOI: 10.3390/cancers11121852] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/14/2019] [Accepted: 11/20/2019] [Indexed: 12/26/2022] Open
Abstract
The nuclear receptor superfamily comprises a large group of proteins with functions essential for cell signaling, survival, and proliferation. There are multiple distinctions between nuclear superfamily classes defined by hallmark differences in function, ligand binding, tissue specificity, and DNA binding. In this review, we utilize the initial classification system, which defines subfamilies based on structure and functional difference. The defining feature of the nuclear receptor superfamily is that these proteins function as transcription factors. The loss of transcriptional regulation or gain of functioning of these receptors is a hallmark in numerous diseases. For example, in prostate cancer, the androgen receptor is a primary target for current prostate cancer therapies. Targeted cancer therapies for nuclear hormone receptors have been more feasible to develop than others due to the ligand availability and cell permeability of hormones. To better target these receptors, it is critical to understand their structural and functional regulation. Given that late-stage cancers often develop hormone insensitivity, we will explore the strengths and pitfalls of targeting other transcription factors outside of the nuclear receptor superfamily such as the signal transducer and activator of transcription (STAT).
Collapse
Affiliation(s)
- Baylee A. Porter
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A. Ortiz
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Gennady Bratslavsky
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (B.A.P.); (M.A.O.); (G.B.)
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Correspondence: ; Tel.: +1-315-464-1690
| |
Collapse
|
46
|
Eich ML, Chandrashekar DS, Rodriguez Pen A MDC, Robinson AD, Siddiqui J, Daignault-Newton S, Chakravarthi BVSK, Kunju LP, Netto GJ, Varambally S. Characterization of glycine-N-acyltransferase like 1 (GLYATL1) in prostate cancer. Prostate 2019; 79:1629-1639. [PMID: 31376196 DOI: 10.1002/pros.23887] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent microarray and sequencing studies of prostate cancer showed multiple molecular alterations during cancer progression. It is critical to evaluate these molecular changes to identify new biomarkers and targets. We performed analysis of glycine-N-acyltransferase like 1 (GLYATL1) expression in various stages of prostate cancer in this study and evaluated the regulation of GLYATL1 by androgen. METHOD We performed in silico analysis of cancer gene expression profiling and transcriptome sequencing to evaluate GLYATL1 expression in prostate cancer. Furthermore, we performed immunohistochemistry using specific GLYATL1 antibody using high-density prostate cancer tissue microarray containing primary and metastatic prostate cancer. We also tested the regulation of GLYATL1 expression by androgen and ETS transcription factor ETV1. In addition, we performed RNA-sequencing of GLYATL1 modulated prostate cancer cells to evaluate the gene expression and changes in molecular pathways. RESULTS Our in silico analysis of cancer gene expression profiling and transcriptome sequencing we revealed an overexpression of GLYATL1 in primary prostate cancer. Confirming these findings by immunohistochemistry, we show that GLYATL1 is overexpressed in primary prostate cancer compared with metastatic prostate cancer and benign prostatic tissue. Low-grade cancers had higher GLYATL1 expression compared to high-grade prostate tumors. Our studies showed that GLYATL1 is upregulated upon androgen treatment in LNCaP prostate cancer cells which harbors ETV1 gene rearrangement. Furthermore, ETV1 knockdown in LNCaP cells showed downregulation of GLYATL1 suggesting potential regulation of GLYATL1 by ETS transcription factor ETV1. Transcriptome sequencing using the GLYATL1 knockdown prostate cancer cell lines LNCaP showed regulation of multiple metabolic pathways. CONCLUSIONS In summary, our study characterizes the expression of GLYATL1 in prostate cancer and explores the regulation of its regulation in prostate cancer showing role for androgen and ETS transcription factor ETV1. Future studies are needed to decipher the biological significance of these findings.
Collapse
Affiliation(s)
- Marie-Lisa Eich
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Alyncia D Robinson
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Javed Siddiqui
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | | | | | | | - George J Netto
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Sooryanarayana Varambally
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
47
|
Fancher AT, Hua Y, Strock CJ, Johnston PA. Assays to Interrogate the Ability of Compounds to Inhibit the AF-2 or AF-1 Transactivation Domains of the Androgen Receptor. Assay Drug Dev Technol 2019; 17:364-386. [PMID: 31502857 DOI: 10.1089/adt.2019.940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer is the leading cause of cancer and second leading cause of cancer-related death in men in the United States. Twenty percent of patients receiving the standard of care androgen deprivation therapy (ADT) eventually progress to metastatic and incurable castration-resistant prostate cancer (CRPC). Current FDA-approved drugs for CRPC target androgen receptor (AR) binding or androgen production, but only provide a 2- to 5-month survival benefit due to the emergence of resistance. Overexpression of AR coactivators and the emergence of AR splice variants, both promote continued transcriptional activation under androgen-depleted conditions and represent drug resistance mechanisms that contribute to CRPC progression. The AR contains two transactivation domains, activation function 2 (AF-2) and activation function 1 (AF-1), which serve as binding surfaces for coactivators involved in the transcriptional activation of AR target genes. Full-length AR contains both AF-2 and AF-1 surfaces, whereas AR splice variants only have an AF-1 surface. We have recently prosecuted a high-content screening campaign to identify hit compounds that can inhibit or disrupt the protein-protein interactions (PPIs) between AR and transcriptional intermediary factor 2 (TIF2), one of the coactivators implicated in CRPC disease progression. Since an ideal inhibitor/disruptor of AR-coactivator PPIs would target both the AF-2 and AF-1 surfaces, we describe here the development and validation of five AF-2- and three AF-1-focused assays to interrogate and prioritize hits that disrupt both transactivation surfaces. The assays were validated using a test set of seven known AR modulator compounds, including three AR antagonists and one androgen synthesis inhibitor that are FDA-approved ADTs, two investigational molecules that target the N-terminal domain of AR, and an inhibitor of the Hsp90 (heat shock protein) molecular chaperone.
Collapse
Affiliation(s)
- Ashley T Fancher
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Paul A Johnston
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Head and Neck Cancer, and Skin Cancer Specialized Programs of Research Excellence, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
48
|
Oksala R, Moilanen A, Riikonen R, Rummakko P, Karjalainen A, Passiniemi M, Wohlfahrt G, Taavitsainen P, Malmström C, Ramela M, Metsänkylä HM, Huhtaniemi R, Kallio PJ, Mustonen MV. Discovery and development of ODM-204: A Novel nonsteroidal compound for the treatment of castration-resistant prostate cancer by blocking the androgen receptor and inhibiting CYP17A1. J Steroid Biochem Mol Biol 2019; 192:105115. [PMID: 29438723 DOI: 10.1016/j.jsbmb.2018.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/31/2022]
Abstract
We report the discovery of a novel nonsteroidal dual-action compound, ODM-204, that holds promise for treating patients with castration-resistant prostate cancer (CRPC), an advanced form of prostate cancer characterised by high androgen receptor (AR) expression and persistent activation of the AR signaling axis by residual tissue androgens. For ODM-204, has a dual mechanism of action. The compound is anticipated to efficiently dampen androgenic stimuli in the body by inhibiting CYP17A1, the prerequisite enzyme for the formation of dihydrotestosterone (DHT) and testosterone (T), and by blocking AR with high affinity and specificity. In our study, ODM-204 inhibited the proliferation of androgen-dependent VCaP and LNCaP cells in vitro and reduced significantly tumour growth in a murine VCaP xenograft model in vivo. Intriguingly, after a single oral dose of 10-30 mg/kg, ODM-204 dose-dependently inhibited adrenal and testicular steroid production in sexually mature male cynomolgus monkeys. Similar results were obtained in human chorionic gonadotropin-treated male rats. In rats, leuprolide acetate-mediated (LHRH agonist) suppression of the circulating testosterone levels and decrease in weights of androgen-sensitive organs was significantly and dose-dependently potentiated by the co-administration of ODM-204. ODM-204 was well tolerated in both rodents and primates. Based on our data, ODM-204 could provide an effective therapeutic option for men with CRPC.
Collapse
Affiliation(s)
- Riikka Oksala
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland.
| | - Anu Moilanen
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Reetta Riikonen
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Petteri Rummakko
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Arja Karjalainen
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Mikko Passiniemi
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Gerd Wohlfahrt
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | | | - Chira Malmström
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Meri Ramela
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | | | - Riikka Huhtaniemi
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Pekka J Kallio
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland
| | - Mika Vj Mustonen
- Orion Corporation Orion Pharma, Orionintie 1, FIN-02200, Espoo, Finland.
| |
Collapse
|
49
|
Discovery and biological evaluation of darolutamide derivatives as inhibitors and down-regulators of wild-type AR and the mutants. Eur J Med Chem 2019; 182:111608. [PMID: 31437779 DOI: 10.1016/j.ejmech.2019.111608] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/05/2023]
Abstract
Androgen receptor (AR) has been a target of prostate cancer (PC) for nearly six decades. Recently, downregulating or degrading AR and the mutants especially the splice variant 7 (AR-V7) lacking ligand binding domain (LBD) emerged as an advantageous therapeutic approach to overcome drug resistance. Here, the structural modification of darolutamide resulted in the discovery of dual-action AR inhibitors and down-regulators. Unlike other traditional AR antagonists targeting the AR-LBD, compounds 4k and 4b not only inhibit the activities of wt-AR and AR-F876L mutant but also downregulate the protein expression of full-length (AR-full) and AR variant 7 (AR-V7) at mRNA level. In cell proliferation assays, compounds 4k and 4b exhibited better antiproliferative activities than darolutamide and enzalutamide against AR-V7-positive 22Rv1 cells and VCaP cells. In addition, 4k demonstrated better antitumor activity than clinically used enzalutamide in castration-resistant VCaP xenograft model. Collectively, combining the activities of AR inhibition and downregulation, compound 4k is proposed as an advantageous lead compound to disrupt AR signaling and overcome resistance.
Collapse
|
50
|
He Y, Lu J, Ye Z, Hao S, Wang L, Kohli M, Tindall DJ, Li B, Zhu R, Wang L, Huang H. Androgen receptor splice variants bind to constitutively open chromatin and promote abiraterone-resistant growth of prostate cancer. Nucleic Acids Res 2019; 46:1895-1911. [PMID: 29309643 PMCID: PMC5829742 DOI: 10.1093/nar/gkx1306] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 11/13/2022] Open
Abstract
Androgen receptor (AR) splice variants (ARVs) are implicated in development of castration-resistant prostate cancer (CRPC). Upregulation of ARVs often correlates with persistent AR activity after androgen deprivation therapy (ADT). However, the genomic and epigenomic characteristics of ARV-dependent cistrome and the disease relevance of ARV-mediated transcriptome remain elusive. Through integrated chromatin immunoprecipitation coupled sequencing (ChIP-seq) and RNA sequencing (RNA-seq) analysis, we identified ARV-preferential-binding sites (ARV-PBS) and a set of genes preferentially transactivated by ARVs in CRPC cells. ARVs preferentially bind to enhancers located in nucleosome-depleted regions harboring the full AR-response element (AREfull), while full-length AR (ARFL)-PBS are enhancers resided in closed chromatin regions containing the composite FOXA1-nnnn-AREhalf motif. ARV-PBS exclusively overlapped with AR binding sites in castration-resistant (CR) tumors in patients and ARV-preferentially activated genes were up-regulated in abiraterone-resistant patient specimens. Expression of ARV-PBS target genes, such as oncogene RAP2A and cell cycle gene E2F7, were significantly associated with castration resistance, poor survival and tumor progression. We uncover distinct genomic and epigenomic features of ARV-PBS, highlighting that ARVs are useful tools to depict AR-regulated oncogenic genome and epigenome landscapes in prostate cancer. Our data also suggest that the ARV-preferentially activated transcriptional program could be targeted for effective treatment of CRPC.
Collapse
Affiliation(s)
- Yundong He
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Ji Lu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhenqing Ye
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Siyuan Hao
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Manish Kohli
- Department of Oncology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Donald J Tindall
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Benyi Li
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Runzhi Zhu
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA.,Center for Cell Therapy, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, China
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|