1
|
Zheng G, Wu D, Wei X, Xu D, Mao T, Yan D, Han W, Shang X, Chen Z, Qiu J, Tang K, Cao Z, Qiu T. PbsNRs: predict the potential binders and scaffolds for nuclear receptors. Brief Bioinform 2024; 26:bbae710. [PMID: 39798999 PMCID: PMC11724720 DOI: 10.1093/bib/bbae710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/09/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
Nuclear receptors (NRs) are a class of essential proteins that regulate the expression of specific genes and are associated with multiple diseases. In silico methods for prescreening potential NR binders with predictive binding ability are highly desired for NR-related drug development but are rarely reported. Here, we present the PbsNRs (Predicting binders and scaffolds for Nuclear Receptors), a user-friendly web server designed to predict the potential NR binders and scaffolds through proteochemometric modeling. The utility of PbsNRs was systemically evaluated using both chemical compounds and natural products. Results indicated that PbsNRs achieved a good prediction performance for chemical compounds on internal (ROC-AUC = 0.906, where ROC is Receiver-Operating Characteristic curve and AUC is the Area Under the Curve) and external (ROC-AUC = 0.783) datasets, outperforming both compound-ligand interaction tools and NR-specific predictors. PbsNRs also successfully identified bioactive chemical scaffolds for NRs by screening massive natural products. Moreover, the predicted bioactive and inactive natural products for NR2B1 were experimentally validated using biosensors. PbsNRs not only aids in screening potential therapeutic NR binders but also helps discover the essential molecular scaffold and guide the drug discovery for multiple NR-related diseases. The PbsNRs web server is available at http://pbsnrs.badd-cao.net.
Collapse
Affiliation(s)
- Genhui Zheng
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
- Oden Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, No. 201 East 24th Street, Austin 78712, TX, United States
| | - Dingfeng Wu
- National Center, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Hangzhou 310052, China
| | - Xiuxia Wei
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Dongpo Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Tiantian Mao
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Deyu Yan
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Wenhao Han
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Xiaoxiao Shang
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
- Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal H3A 0B9, Quebec, Canada
| | - Zikun Chen
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Jingxuan Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Yangpu District, Shanghai 200093, China
| | - Kailin Tang
- School of Life Sciences and Technology, Tongji University, No. 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Cao
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical College, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, School of Life Sciences, Fudan University, No. 180 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
2
|
Ileal Bile Acid Transporter Blockers for Cholestatic Liver Disease in Pediatric Patients with Alagille Syndrome: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11247526. [PMID: 36556142 PMCID: PMC9784790 DOI: 10.3390/jcm11247526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Alagille syndrome (ALGS) is a rare, debilitating inheritable disease that is associated with refractory pruritus due to chronic cholestasis. The following systemic review and meta-analysis presents the latest evidence for ileal bile acid transport (IBAT) blockers in AGLS patients in order to improve their efficacy. This study adhered to PRISMA 2020 Statement guidelines. A systematic search of PubMed/MEDLINE, Web of Science, Scopus, and the Cochrane library was conducted from inception until 23 October 2022. A combination of the following keywords was used: Alagille syndrome, therapeutics, treatment, therapy. Meta-analytical outcomes included effect directions of end-line changes in serum bile acids (sBAs), Itch Scale scores (ItchRO), Multidimensional Fatigue Scale scores, pediatric quality of life (QL), alanine aminotransferase (ALT), and total bilirubin. A total of 94 patients across four trials were enrolled and received maralixibat, odevixibat, or a placebo. There was a significant reduction in ItchRO scores by 1.8 points, as well as in sBAs by 75.8 μmol/L. Both the Multidimensional Fatigue Scale and Pediatric QL scale were also improved by 11.4 and 8.3 points, respectively. However, ALT levels were raised by 40 U/L. The efficacy of IBAT inhibitors across current trials was noted. Future trials may focus on the optimization of dosing regimens, considering gastrointestinal side effects and drug-induced ALT elevation in AGLS patients.
Collapse
|
3
|
Laue T, Baumann U. Odevixibat: an investigational inhibitor of the ileal bile acid transporter (IBAT) for the treatment of biliary atresia. Expert Opin Investig Drugs 2022; 31:1143-1150. [PMID: 36440482 DOI: 10.1080/13543784.2022.2151890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Biliary atresia (BA) is a rare, non-curable cholestasis-causing disease in infancy, due to progressive ascending bile duct sclerosis. Even after restoration of bile flow following Kasai portoenterostomy, about half of these children need a liver transplant by their 2nd birthday, due to progressive fibrosis. Toxicity of bile acids may play a central role in disease progression, but drug therapies are not yet available. With ileal bile acid transporter (IBAT) inhibitors, there is a potential novel drug option that inhibits the absorption of bile acids in the small intestine. As a result of reduced bile acid accumulation in the cholestatic liver, it may be possible to delay hepatic remodeling. AREAS COVERED This review summarizes the dataset on bile acids and the potential effects of odevixibat, an IBAT inhibitor, in children with BA. EXPERT OPINION Systemic reduction of bile acids with the aim of preventing inflammation, and thus liver remodeling, is a novel, promising, therapeutic concept. In principle, however, the time until diagnosis and surgical treatment of BA should still be kept as short as possible in order to minimize liver remodeling before medical intervention can be initiated. IBAT inhibitors may add to the medical options in limiting disease progression in BA.
Collapse
Affiliation(s)
- Tobias Laue
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ulrich Baumann
- Division of Paediatric Gastroenterology and Hepatology, Department of Paediatric Liver, Kidney and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Leslie J, Geh D, Elsharkawy AM, Mann DA, Vacca M. Metabolic dysfunction and cancer in HCV: Shared pathways and mutual interactions. J Hepatol 2022; 77:219-236. [PMID: 35157957 DOI: 10.1016/j.jhep.2022.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/12/2022] [Accepted: 01/31/2022] [Indexed: 12/16/2022]
Abstract
HCV hijacks many host metabolic processes in an effort to aid viral replication. The resulting hepatic metabolic dysfunction underpins many of the hepatic and extrahepatic manifestations of chronic hepatitis C (CHC). However, the natural history of CHC is also substantially influenced by the host metabolic status: obesity, insulin resistance and hepatic steatosis are major determinants of CHC progression toward hepatocellular carcinoma (HCC). Direct-acting antivirals (DAAs) have transformed the treatment and natural history of CHC. While DAA therapy effectively eradicates the virus, the long-lasting overlapping metabolic disease can persist, especially in the presence of obesity, increasing the risk of liver disease progression. This review covers the mechanisms by which HCV tunes hepatic and systemic metabolism, highlighting how systemic metabolic disturbance, lipotoxicity and chronic inflammation favour disease progression and a precancerous niche. We also highlight the therapeutic implications of sustained metabolic dysfunction following sustained virologic response as well as considerations for patients who develop HCC on the background of metabolic dysfunction.
Collapse
Affiliation(s)
- Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Geh
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Ahmed M Elsharkawy
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital, Queen Elizabeth Medical Centre, Birmingham, B15 2TH UK; National Institute for Health Research, Birmingham Biomedical Research Centre at University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Gastroenterology and Hepatology, School of Medicine, Koç University, Istanbul, Turkey.
| | - Michele Vacca
- Interdisciplinary Department of Medicine, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
| |
Collapse
|
5
|
Zhao P, Fan S, Gao Y, Huang M, Bi H. Nuclear Receptor-Mediated Hepatomegaly and Liver Regeneration: An Update. Drug Metab Dispos 2022; 50:636-645. [PMID: 35078806 DOI: 10.1124/dmd.121.000454] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/04/2022] [Indexed: 02/13/2025] Open
Abstract
Nuclear receptors (NRs), a superfamily of ligand-activated transcription factors, are critical in cell growth, proliferation, differentiation, metabolism, and numerous biologic events. NRs have been reported to play important roles in hepatomegaly (liver enlargement) and liver regeneration by regulating target genes or interacting with other signals. In this review, the roles and involved molecular mechanisms of NRs in hepatomegaly and liver regeneration are summarized and the future perspectives of NRs in the treatment of liver diseases are discussed. SIGNIFICANCE STATEMENT: NRs play critical roles in hepatomegaly and liver regeneration, indicating the potential of NRs as targets to promote liver repair after liver injury. This paper reviews the characteristics and molecular mechanisms of NRs in regulating hepatomegaly and liver regeneration, providing more evidence for NRs in the treatment of related liver diseases.
Collapse
Affiliation(s)
- Pengfei Zhao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Shicheng Fan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Yue Gao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Min Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| | - Huichang Bi
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China (P.Z., S.F., Y.G., M.H., H.B.); and NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (H.B.)
| |
Collapse
|
6
|
Li Z, Kwon SM, Li D, Li L, Peng X, Zhang J, Sueyoshi T, Raufman JP, Negishi M, Wang XW, Wang H. Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. J Biol Chem 2022; 298:101885. [PMID: 35367211 PMCID: PMC9052153 DOI: 10.1016/j.jbc.2022.101885] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
The constitutive androstane receptor (CAR) is a nuclear receptor that plays a crucial role in regulating xenobiotic metabolism and detoxification, energy homeostasis, and cell proliferation by modulating the transcription of numerous target genes. CAR activation has been established as the mode of action by which phenobarbital-like nongenotoxic carcinogens promote liver tumor formation in rodents. This paradigm, however, appears to be unrelated to the function of human CAR (hCAR) in hepatocellular carcinoma (HCC), which remains poorly understood. Here, we show that hCAR expression is significantly lower in HCC than that in adjacent nontumor tissues and, importantly, reduced hCAR expression is associated with a worse HCC prognosis. We also show overexpression of hCAR in human hepatoma cells (HepG2 and Hep3B) profoundly suppressed cell proliferation, cell cycle progression, soft-agar colony formation, and the growth of xenografts in nude mice. RNA-Seq analysis revealed that the expression of erythropoietin (EPO), a pleiotropic growth factor, was markedly repressed by hCAR in hepatoma cells. Addition of recombinant EPO in HepG2 cells partially rescued hCAR-suppressed cell viability. Mechanistically, we showed that overexpressing hCAR repressed mitogenic EPO-EPO receptor signaling through dephosphorylation of signal transducer and activator of transcription 3, AKT, and extracellular signal-regulated kinase 1/2. Furthermore, we found that hCAR downregulates EPO expression by repressing the expression and activity of hepatocyte nuclear factor 4 alpha, a key transcription factor regulating EPO expression. Collectively, our results suggest that hCAR plays a tumor suppressive role in HCC development, which differs from that of rodent CAR and offers insight into the hCAR-hepatocyte nuclear factor 4 alpha-EPO axis in human liver tumorigenesis.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - So Mee Kwon
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daochuan Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Xiwei Peng
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Junran Zhang
- Department of Radiation Oncology, The Ohio State University James Comprehensive Cancer Center and College of Medicine, Ohio, USA
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Office of Research and Development, Biomedical Laboratory Research and Development, VA Maryland Healthcare System, Baltimore, Maryland, USA
| | - Masahiko Negishi
- Pharmacogenetics Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, and Liver Cancer Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland, USA.
| |
Collapse
|
7
|
Sun G, Sun K, Shen C. Human nuclear receptors (NRs) genes have prognostic significance in hepatocellular carcinoma patients. World J Surg Oncol 2021; 19:137. [PMID: 33941198 PMCID: PMC8091722 DOI: 10.1186/s12957-021-02246-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related mortality in the world. Method We downloaded the mRNA profiles and clinical information of 371 HCC patients from The Cancer Genome Atlas (TCGA) database. The consensus clustering analysis with the mRNA levels of 48 nuclear receptors (NRs) was performed by the “ConsensusClusterPlus.” The univariate Cox regression analysis was performed to predict the prognostic significance of NRs on HCC. The risk score was calculated by the prognostic model constructed based on eight optimal NRs. Then multivariate Cox regression analysis was performed to determine whether the risk score is an independent prognostic signature. Finally, the nomogram based on multiple independent prognostic factors was used to predict the long-term survival of HCC patients. Results The prognostic model constructed based on the eight optimal NRs (NR1H3, ESR1, NR1I2, NR2C1, NR6A1, PPARD, PPARG, and VDR) could effectively predict the prognosis of HCC patients as an independent prognostic signature. Moreover, the nomogram was constructed based on multiple independent prognostic factors including risk score and tumor node metastasis (TNM) stage and could better predict the long-term survival for 3- and 5-year of HCC patients. Conclusion Our results provided novel evidences that NRs could act as the potential prognostic signatures for HCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12957-021-02246-x.
Collapse
Affiliation(s)
- Guangtao Sun
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China
| | - Kejian Sun
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China
| | - Chao Shen
- Department of Hepatobiliary Surgery, ZiBo Central Hospital, No. 54, Gongqingtuanxi Road, Zibo, Shandong, 255036, People's Republic of China.
| |
Collapse
|
8
|
Azzu V, Vacca M, Kamzolas I, Hall Z, Leslie J, Carobbio S, Virtue S, Davies SE, Lukasik A, Dale M, Bohlooly-Y M, Acharjee A, Lindén D, Bidault G, Petsalaki E, Griffin JL, Oakley F, Allison MED, Vidal-Puig A. Suppression of insulin-induced gene 1 (INSIG1) function promotes hepatic lipid remodelling and restrains NASH progression. Mol Metab 2021; 48:101210. [PMID: 33722690 PMCID: PMC8094910 DOI: 10.1016/j.molmet.2021.101210] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objective Non-alcoholic fatty liver disease (NAFLD) is a silent pandemic associated with obesity and the metabolic syndrome, and also increases cardiovascular- and cirrhosis-related morbidity and mortality. A complete understanding of adaptive compensatory metabolic programmes that modulate non-alcoholic steatohepatitis (NASH) progression is lacking. Methods and results Transcriptomic analysis of liver biopsies in patients with NASH revealed that NASH progression is associated with rewiring of metabolic pathways, including upregulation of de novo lipid/cholesterol synthesis and fatty acid remodelling. The modulation of these metabolic programmes was achieved by activating sterol regulatory element-binding protein (SREBP) transcriptional networks; however, it is still debated whether, in the context of NASH, activation of SREBPs acts as a pathogenic driver of lipotoxicity, or rather promotes the biosynthesis of protective lipids that buffer excessive lipid accumulation, preventing inflammation and fibrosis. To elucidate the pathophysiological role of SCAP/SREBP in NASH and wound-healing response, we used an Insig1 deficient (with hyper-efficient SREBPs) murine model challenged with a NASH-inducing diet. Despite enhanced lipid and cholesterol biosynthesis, Insig1 KO mice had similar systemic metabolism and insulin sensitivity to Het/WT littermates. Moreover, activating SREBPs resulted in remodelling the lipidome, decreased hepatocellular damage, and improved wound-healing responses. Conclusions Our study provides actionable knowledge about the pathways and mechanisms involved in NAFLD pathogenesis, which may prove useful for developing new therapeutic strategies. Our results also suggest that the SCAP/SREBP/INSIG1 trio governs transcriptional programmes aimed at protecting the liver from lipotoxic insults in NASH. Human NASH biopsies’ transcriptomics analysis features metabolic pathway rewiring. SCAP/SREBP/INSIG1 modulation promotes lipid/cholesterol synthesis/remodelling in NASH. Loss of Insig1 promotes lipid remodelling, preventing hepatic lipotoxicity in NASH. Loss of Insig1 improves liver damage and wound healing and restrains NASH progression.
Collapse
Affiliation(s)
- Vian Azzu
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Gastroenterology and Hepatology, Norfolk and Norwich University Hospitals, Norwich, UK
| | - Michele Vacca
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Clinica Medica Cesare Frugoni, Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Ioannis Kamzolas
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Stefania Carobbio
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Susan E Davies
- Department of Pathology, Cambridge University Hospitals, Cambridge, UK
| | - Agnes Lukasik
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Martin Dale
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Animesh Acharjee
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences, Centre for Computational Biology, University of Birmingham, UK
| | - Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Guillaume Bidault
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, 5 Newcastle University, Newcastle upon Tyne, UK
| | - Michael E D Allison
- Liver Unit, Cambridge NIHR Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - Antonio Vidal-Puig
- Wellcome Trust/MRC Institute of Metabolic Science, Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Wellcome Trust Sanger Institute, Hinxton, UK; Cambridge University Nanjing Centre of Technology and Innovation, Jiangbei, Nanjing, China.
| |
Collapse
|
9
|
Zhang G, Yan G, Fu Z, Wu Y, Wu F, Zheng Z, Fang S, Gao Y, Bao X, Liu Y, Wang X, Zhu S. Loss of retinoic acid receptor-related receptor alpha (Rorα) promotes the progression of UV-induced cSCC. Cell Death Dis 2021; 12:247. [PMID: 33664254 PMCID: PMC7933246 DOI: 10.1038/s41419-021-03525-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is prevalent in the world, accounting for a huge part of non-melanoma skin cancer. Most cSCCs are associated with a distinct pre-cancerous lesion, the actinic keratosis (AK). However, the progression trajectory from normal skin to AK and cSCC has not been fully demonstrated yet. To identify genes involved in this progression trajectory and possible therapeutic targets for cSCC, here we constructed a UV-induced cSCC mouse model covering the progression from normal skin to AK to cSCC, which mimicked the solar UV radiation perfectly using the solar-like ratio of UVA and UVB, firstly. Then, transcriptome analysis and a series of bioinformatics analyses and cell experiments proved that Rorα is a key transcript factor during cSCC progression. Rorα could downregulate the expressions of S100a9 and Sprr2f in cSCC cells, which can inhibit the proliferation and migration in cSCC cells, but not the normal keratinocyte. Finally, further animal experiments confirmed the inhibitory effect of cSCC growth by Rorα in vivo. Our findings showed that Rorα would serve as a potential novel target for cSCC, which will facilitate the treatment of cSCC in the future.
Collapse
MESH Headings
- Animals
- Calgranulin B/genetics
- Calgranulin B/metabolism
- Carcinoma, Squamous Cell/etiology
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cornified Envelope Proline-Rich Proteins/genetics
- Cornified Envelope Proline-Rich Proteins/metabolism
- Disease Models, Animal
- Disease Progression
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Keratosis, Actinic/etiology
- Keratosis, Actinic/genetics
- Keratosis, Actinic/metabolism
- Keratosis, Actinic/pathology
- Mice, Hairless
- Neoplasm Invasiveness
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Nuclear Receptor Subfamily 1, Group F, Member 1/deficiency
- Nuclear Receptor Subfamily 1, Group F, Member 1/genetics
- Octamer Transcription Factors/genetics
- Octamer Transcription Factors/metabolism
- Skin Neoplasms/etiology
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Transcriptome
- Ultraviolet Rays
- Mice
Collapse
Affiliation(s)
- Guolong Zhang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Guorong Yan
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhiliang Fu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China
| | - Yuhao Wu
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Fei Wu
- Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Zhe Zheng
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Ying Gao
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China
| | - Xunxia Bao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China
| | - Yeqiang Liu
- Department of Pathology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| | - Sibo Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
10
|
Hall Z, Chiarugi D, Charidemou E, Leslie J, Scott E, Pellegrinet L, Allison M, Mocciaro G, Anstee QM, Evan GI, Hoare M, Vidal-Puig A, Oakley F, Vacca M, Griffin JL. Lipid Remodeling in Hepatocyte Proliferation and Hepatocellular Carcinoma. Hepatology 2021; 73:1028-1044. [PMID: 32460431 DOI: 10.1002/hep.31391] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/08/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Hepatocytes undergo profound metabolic rewiring when primed to proliferate during compensatory regeneration and in hepatocellular carcinoma (HCC). However, the metabolic control of these processes is not fully understood. In order to capture the metabolic signature of proliferating hepatocytes, we applied state-of-the-art systems biology approaches to models of liver regeneration, pharmacologically and genetically activated cell proliferation, and HCC. APPROACH AND RESULTS Integrating metabolomics, lipidomics, and transcriptomics, we link changes in the lipidome of proliferating hepatocytes to altered metabolic pathways including lipogenesis, fatty acid desaturation, and generation of phosphatidylcholine (PC). We confirm this altered lipid signature in human HCC and show a positive correlation of monounsaturated PC with hallmarks of cell proliferation and hepatic carcinogenesis. CONCLUSIONS Overall, we demonstrate that specific lipid metabolic pathways are coherently altered when hepatocytes switch to proliferation. These represent a source of targets for the development of therapeutic strategies and prognostic biomarkers of HCC.
Collapse
Affiliation(s)
- Zoe Hall
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| | - Davide Chiarugi
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Evelina Charidemou
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Jack Leslie
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Emma Scott
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Luca Pellegrinet
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Michael Allison
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
| | - Gabriele Mocciaro
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Quentin M Anstee
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
- Newcastle NIHR Biomedical Research CentreNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUnited Kingdom
| | - Gerard I Evan
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
| | - Matthew Hoare
- Department of MedicineAddenbrooke's HospitalCambridge Biomedical Research CentreCambridgeUnited Kingdom
- CRUK Cambridge InstituteRobinson WayCambridgeUnited Kingdom
| | - Antonio Vidal-Puig
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Fiona Oakley
- Institute of Cellular MedicineFaculty of Medical SciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Michele Vacca
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Metabolic Research LaboratoriesWellcome Trust-MRC Institute of Metabolic ScienceCambridgeUnited Kingdom
| | - Julian L Griffin
- Department of Biochemistry and Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUnited Kingdom
- Biomolecular MedicineDivision of Systems MedicineDepartment of Metabolism, Digestion and ReproductionImperial College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Szücs A, Paku S, Sebestyén E, Nagy P, Dezső K. Postnatal, ontogenic liver growth accomplished by biliary/oval cell proliferation and differentiation. PLoS One 2020; 15:e0233736. [PMID: 32470002 PMCID: PMC7259787 DOI: 10.1371/journal.pone.0233736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION The liver is well known for its enormous regenerative capacity. If the hepatocytes are compromised the reserve stem cells can regrow the lost tissue by means of oval cells differentiating into hepatocytes. We were curious whether this standby system was able to compensate for ontogenic liver growth arrested by 2-acetylaminofluorene (AAF) treatment or if it can be influenced by cholic acid, known to promote liver growth in several reactions. METHODS (i) Four weeks-old (60-70g) male F344 rats were kept on standard chow and treated with solvent only, (ii) others were kept on 0,2% cholic acid (CA) enriched diet, (iii) treated with AAF, or (iiii) given a combination of CA diet and AAF treatment (AAF/CA). The proliferative response of epithelial cells was characterized by pulse bromodeoxyuridine labelling. The relative gene expression levels of senescence-related factors and bile acid receptors were determined by quantitative real-time polymerase chain reaction analysis. RESULTS AAF administration efficiently inhibited the physiological proliferation of hepatocytes in young, male F344 rats after weaning. The activation of stem cells was indicated by the increased proliferation of periportal biliary/oval cells (B/OC). If the rats were fed additionally by cholic acid enriched diet, typical oval cell reaction emerged, subsequently the oval cells differentiated into hepatocytes restituting liver growth. This reaction was mediated by increased production of HGF, IL-6 and SCF by the damaged liver. Moreover, upregulation of FXR expression on B/OC made them competent for bile acids. Our results indicate that endogenous, autocrine mechanisms involved in liver ontogeny are also able to activate the backup regenerative machinery of stem cells.
Collapse
Affiliation(s)
- Armanda Szücs
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sándor Paku
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Endre Sebestyén
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Péter Nagy
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Katalin Dezső
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
12
|
Shizu R, Yoshinari K. Nuclear receptor CAR-mediated liver cancer and its species differences. Expert Opin Drug Metab Toxicol 2020; 16:343-351. [PMID: 32202166 DOI: 10.1080/17425255.2020.1746268] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: The nuclear receptor CAR plays an important role in the regulation of hepatic responses to xenobiotic exposure, including the induction of hepatocyte proliferation and chemical carcinogenesis. Phenobarbital, a well-known liver cancer promoter, has been found to promote hepatocyte proliferation via CAR activation. However, the molecular mechanisms by which CAR induces liver carcinogenesis remain unknown. In addition, it is believed that CAR-mediated liver carcinogenesis shows a species difference; phenobarbital treatment induces hepatocyte proliferation and liver cancer in rodents but not in humans. However, the mechanisms are also unknown.Areas covered: Several reports indicate that the key oncogenic signaling pathways Wnt/β-catenin and Hippo/YAP are involved in CAR-mediated liver carcinogenesis. We introduce current data about the possible molecular mechanisms involved in CAR-mediated liver carcinogenesis and species differences by focusing on these two signaling pathways.Expert opinion: CAR may activate both the Wnt/β-catenin and Hippo/YAP signaling pathways. The synergistic activation of both signaling pathways seems to be important for CAR-mediated liver cancer development. Low homology between the ligand binding domains of human CAR and rodent CAR might cause species differences in the interactions with proteins that control the Wnt/β-catenin and Hippo/YAP pathways as well as liver cancer induction.
Collapse
Affiliation(s)
- Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
13
|
Fujino C, Sanoh S, Tateno C, Ohta S, Kotake Y. Coordinated cytochrome P450 expression in mouse liver and intestine under different dietary conditions during liver regeneration after partial hepatectomy. Toxicol Appl Pharmacol 2019; 370:133-144. [PMID: 30880217 DOI: 10.1016/j.taap.2019.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
Liver resection is performed to remove tumors in patients with liver cancer, but the procedure's suitability depends on the regenerative ability of the liver. It is important to consider the effects of exogenous factors, such as diets, on liver regeneration for the recovery of function. The evaluation of drug metabolism during liver regeneration is also necessary because liver dysfunction is generally observed after the operation. Here, we investigated the influence of a purified diet (AIN-93G) on liver regeneration and changes in the mRNA expression of several cytochrome P450 (CYP) isoforms in the liver and small intestine using a two-thirds partial hepatectomy (PH) mouse model fed with a standard diet (MF) and a purified diet. Liver regeneration was significantly delayed in the purified diet group relative to that in the standard diet group. The liver Cyp2c55 and Cyp3a11 expression was increased at 3 day after PH especially in the purified diet group. Bile acid may partly cause the differences in liver regeneration and CYP expression between two types of diets. On the other hand, Cyp3a13 expression in the small intestine was transiently increased at day 1 after PH in both diet groups. The findings suggest that compensatory induction of the CYP expression occurred in the small intestine after attenuation of drug metabolism potential in the liver. The present results highlight the importance of the relationship between liver regeneration, drug metabolism, and exogenous factors for the effective treatment, including surgery and medication, in patients after liver resection or transplantation.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Japan.
| | - Chise Tateno
- R&D Dept., PhoenixBio, Co., Ltd., 739-0046, Japan; Research Center for Hepatology and Gastroenterology, Hiroshima University, 739-8511, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Japan; Wakayama Medical University, 641-8509, Japan
| | - Yaichiro Kotake
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 734-8553, Japan
| |
Collapse
|
14
|
Fan J, Lv Z, Yang G, Liao TT, Xu J, Wu F, Huang Q, Guo M, Hu G, Zhou M, Duan L, Liu S, Jin Y. Retinoic Acid Receptor-Related Orphan Receptors: Critical Roles in Tumorigenesis. Front Immunol 2018; 9:1187. [PMID: 29904382 PMCID: PMC5990620 DOI: 10.3389/fimmu.2018.01187] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022] Open
Abstract
Retinoic acid receptor-related orphan receptors (RORs) include RORα (NR1F1), RORβ (NR1F2), and RORγ (NR1F3). These receptors are reported to activate transcription through ligand-dependent interactions with co-regulators and are involved in the development of secondary lymphoid tissues, autoimmune diseases, inflammatory diseases, the circadian rhythm, and metabolism homeostasis. Researches on RORs contributing to cancer-related processes have been growing, and they provide evidence that RORs are likely to be considered as potential therapeutic targets in many cancers. RORα has been identified as a potential therapeutic target for breast cancer and has been investigated in melanoma, colorectal colon cancer, and gastric cancer. RORβ is mainly expressed in the central nervous system, but it has also been studied in pharyngeal cancer, uterine leiomyosarcoma, and colorectal cancer, in addition to neuroblastoma, and recent studies suggest that RORγ is involved in various cancers, including lymphoma, melanoma, and lung cancer. Some studies found RORγ to be upregulated in cancer tissues compared with normal tissues, while others indicated the opposite results. With respect to the mechanisms of RORs in cancer, previous studies on the regulatory mechanisms of RORs in cancer were mostly focused on immune cells and cytokines, but lately there have been investigations concentrating on RORs themselves. Thus, this review summarizes reports on the regulation of RORs in cancer and highlights potential therapeutic targets in cancer.
Collapse
Affiliation(s)
- Jinshuo Fan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhilei Lv
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guanghai Yang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Ting Liao
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Xu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Huang
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guorong Hu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mei Zhou
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuqing Liu
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Jin
- Key Laboratory of Respiratory Diseases of the Ministry of Health, Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Cuomo D, Porreca I, Cobellis G, Tarallo R, Nassa G, Falco G, Nardone A, Rizzo F, Mallardo M, Ambrosino C. Carcinogenic risk and Bisphenol A exposure: A focus on molecular aspects in endoderm derived glands. Mol Cell Endocrinol 2017; 457:20-34. [PMID: 28111205 DOI: 10.1016/j.mce.2017.01.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Epidemiological and experimental evidence associates the exposure to Bisphenol A with the increase of cancer risk in several organs, including prostate. BPA targets different pathways involved in carcinogenicity including the Nuclear Receptors (i.e. estrogen and androgen receptors), stress regulated proteins and, finally, epigenetic changes. Here, we analyse BPA-dependent carcinogenesis in endoderm-derived glands, thyroid, liver, pancreas and prostate focusing on cell signalling, DNA damage repair pathways and epigenetic modifications. Mainly, we gather molecular data evidencing harmful effects at doses relevant for human risk (low-doses). Since few molecular data are available, above all for the pancreas, we analysed transcriptomic data generated in our laboratory to suggest possible mechanisms of BPA carcinogenicity in endoderm-derived glands, discussing the role of nuclear receptors and stress/NF-kB pathways. We evidence that an in vitro toxicogenomic approach might suggest mechanisms of toxicity applicable to cells having the same developmental origin. Although we cannot draw firm conclusions, published data summarized in this review suggest that exposure to BPA, primarily during the developmental stages, represents a risk for carcinogenesis of endoderm-derived glands.
Collapse
Affiliation(s)
- Danila Cuomo
- IRGS, Biogem, Via Camporeale, 83031 Ariano Irpino, Avellino, Italy; Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy
| | | | - Gilda Cobellis
- Department of Experimental Medicine, Sez. Bozzatti, II University of Naples, 80138 Napoli, Italy
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy; Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Geppino Falco
- Department of Biology, University of Naples "Federico II", Napoli, Italy
| | - Antonio Nardone
- Department of Public Health, University of Naples "Federico II", Napoli, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, 84081 Baronissi, SA, Italy
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Napoli, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via Port'Arsa 11, 82100 Benevento, Italy.
| |
Collapse
|
16
|
Abstract
BACKGROUND The limited availability of donor organs has led to a search for alternatives to liver transplantation to restore liver function and bridge patients to transplantation. We have shown that the proliferation of late gestation (embryonic day 19) fetal rat hepatocytes is mitogen-independent and that mechanisms regulating mRNA translation, cell cycle progression, and gene expression differ from those of adult rat hepatocytes. In the present study, we investigated whether E19 fetal hepatocytes can engraft and repopulate an injured adult liver. METHODS Fetal hepatocytes were isolated using a monoclonal antibody against a hepatic surface protein, leucine amino peptidase (LAP). LAP+ and LAP- fractions were analyzed by immunofluorescence and microarray. Immunopurified E19 liver cells from DPPIV+ rats were transplanted via splenic injection into partial hepatectomized DPPIV- rats that had been pretreated with mitomycin C. RESULTS More than a third of LAP+ fetal hepatocytes expressed ductal markers. Transcriptomic analysis revealed that these dual-expressing cells represent a population of less well-differentiated hepatocytes. Upon transplantation, LAP+ late gestation fetal hepatocytes formed hepatic, endothelial, and ductal colonies within 1 month. By 10 months, colonies derived from LAP+ cells increased so that up to 35% of the liver was repopulated by donor-derived cells. CONCLUSIONS Late gestation fetal hepatocytes, despite being far along in the differentiation process, possess the capacity for extensive liver repopulation. This is likely related to the unexpected presence of a significant proportion of hepatocyte marker-positive cells maintaining a less well-differentiated phenotype.
Collapse
|
17
|
Massafra V, van Mil SWC. Farnesoid X receptor: A "homeostat" for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:45-59. [PMID: 28986309 DOI: 10.1016/j.bbadis.2017.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states. FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
18
|
Cariello M, Peres C, Zerlotin R, Porru E, Sabbà C, Roda A, Moschetta A. Long-term Administration of Nuclear Bile Acid Receptor FXR Agonist Prevents Spontaneous Hepatocarcinogenesis in Abcb4 -/- Mice. Sci Rep 2017; 7:11203. [PMID: 28894223 PMCID: PMC5593831 DOI: 10.1038/s41598-017-11549-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 08/25/2017] [Indexed: 02/08/2023] Open
Abstract
Altered bile acid (BA) signaling is associated with hepatotoxicity. The farnesoid X receptor (FXR) is a nuclear receptor that transcriptionally regulates BA homeostasis. Mice with FXR ablation present hepatocarcinoma (HCC) due to high toxic BA levels. Mice with Abcb4 ablation accumulate toxic BA within the bile ducts and present HCC. We have previously shown that intestinal specific activation of FXR by transgenic VP16-FXR chimera is able to reduce BA pool size and prevent HCC. Here we tested chemical FXR activation by administering for 15 months the dual FXR/ membrane G protein-coupled receptor (TGR5) agonist INT-767 (6α-ethyl-3α,7α,23-trihydroxy-24-nor-5β-cholan-23-sulphate) to Fxr-/- and Abcb4-/- mice. HCC number and size were significantly reduced by INT-767 administration. In contrast, no changes in HCC tumor number and size were observed in Fxr-/- mice fed with or without INT-767. Notably, INT-767 preserved the hepatic parenchyma, improved hepatic function and down-regulated pro-inflammatory cytokines. Moreover, in Abcb4-/- mice INT-767 prevented fibrosis by reducing collagen expression and deposition. Thus, long term activation of FXR is able to reduce BA pool, reprogram BA metabolism and prevent HCC. These data provide the impetus to address the bona fide therapeutic potential of FXR activation in disease with BA-associated development of HCC.
Collapse
Affiliation(s)
- Marica Cariello
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
| | - Claudia Peres
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy
| | - Roberta Zerlotin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, 00136, Rome, Italy
| | - Emanuele Porru
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Carlo Sabbà
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy
| | - Aldo Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126, Bologna, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, 70124, Bari, Italy.
- National Cancer Research Center, IRCCS Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy.
| |
Collapse
|
19
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
20
|
Levy G, Habib N, Guzzardi MA, Kitsberg D, Bomze D, Ezra E, Uygun BE, Uygun K, Trippler M, Schlaak JF, Shibolet O, Sklan EH, Cohen M, Timm J, Friedman N, Nahmias Y. Nuclear receptors control pro-viral and antiviral metabolic responses to hepatitis C virus infection. Nat Chem Biol 2016; 12:1037-1045. [PMID: 27723751 DOI: 10.1038/nchembio.2193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/02/2016] [Indexed: 12/11/2022]
Abstract
Viruses lack the basic machinery needed to replicate and therefore must hijack the host's metabolism to propagate. Virus-induced metabolic changes have yet to be systematically studied in the context of host transcriptional regulation, and such studies shoul offer insight into host-pathogen metabolic interplay. In this work we identified hepatitis C virus (HCV)-responsive regulators by coupling system-wide metabolic-flux analysis with targeted perturbation of nuclear receptors in primary human hepatocytes. We found HCV-induced upregulation of glycolysis, ketogenesis and drug metabolism, with glycolysis controlled by activation of HNF4α, ketogenesis by PPARα and FXR, and drug metabolism by PXR. Pharmaceutical inhibition of HNF4α reversed HCV-induced glycolysis, blocking viral replication while increasing apoptosis in infected cells showing virus-induced dependence on glycolysis. In contrast, pharmaceutical inhibition of PPARα or FXR reversed HCV-induced ketogenesis but increased viral replication, demonstrating a novel host antiviral response. Our results show that virus-induced changes to a host's metabolism can be detrimental to its life cycle, thus revealing a biologically complex relationship between virus and host.
Collapse
Affiliation(s)
- Gahl Levy
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Naomi Habib
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Maria Angela Guzzardi
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Daniel Kitsberg
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Bomze
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Elishai Ezra
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Faculty of Engineering, Jerusalem College of Technology, Jerusalem, Israel
| | - Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Korkut Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Martin Trippler
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Joerg F Schlaak
- Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Oren Shibolet
- Liver Unit, Department of Gastroenterology, Tel-Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Ella H Sklan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Merav Cohen
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joerg Timm
- Institute for Virology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Nir Friedman
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yaakov Nahmias
- Grass Center for Bioengineering, Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
21
|
Ament Z, West JA, Stanley E, Ashmore T, Roberts LD, Wright J, Nicholls AW, Griffin JL. PPAR-pan activation induces hepatic oxidative stress and lipidomic remodelling. Free Radic Biol Med 2016; 95:357-68. [PMID: 26654758 PMCID: PMC4891066 DOI: 10.1016/j.freeradbiomed.2015.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/13/2015] [Accepted: 11/26/2015] [Indexed: 01/11/2023]
Abstract
The peroxisome proliferator-activated receptors (PPARs) are ligand activated nuclear receptors that regulate cellular homoeostasis and metabolism. PPARs control the expression of genes involved in fatty-acid and lipid metabolism. Despite evidence showing beneficial effects of their activation in the treatment of metabolic diseases, particularly dyslipidaemias and type 2 diabetes, PPAR agonists have also been associated with a variety of side effects and adverse pathological changes. Agonists have been developed that simultaneously activate the three PPAR receptors (PPARα, γ and δ) in the hope that the beneficial effects can be harnessed while avoiding some of the negative side effects. In this study, the hepatic effects of a discontinued PPAR-pan agonist (a triple agonist of PPAR-α, -γ, and -δ), was investigated after dietary treatment of male Sprague-Dawley (SD) rats. The agonist induced liver enlargement in conjunction with metabolomic and lipidomic remodelling. Increased concentrations of several metabolites related to processes of oxidation, such as oxo-methionine, methyl-cytosine and adenosyl-methionine indicated increased stress and immune status. These changes are reflected in lipidomic changes, and increased energy demands as determined by free fatty acid (decreased 18:3 n-3, 20:5 n-3 and increased ratios of n-6/n-3 fatty acids) triacylglycerol, phospholipid (decreased and increased bulk changes respectively) and eicosanoid content (increases in PGB2 and 15-deoxy PGJ2). We conclude that the investigated PPAR agonist, GW625019, induces liver enlargement, accompanied by lipidomic remodelling, oxidative stress and increases in several pro-inflammatory eicosanoids. This suggests that such pathways should be monitored in the drug development process and also outline how PPAR agonists induce liver proliferation.
Collapse
Affiliation(s)
- Zsuzsanna Ament
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - James A West
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Elizabeth Stanley
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Tom Ashmore
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Lee D Roberts
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK
| | - Jayne Wright
- Jayne Wright Ltd., Underhill House, Ledbury, Herefordshire HR8 2QR, UK
| | - Andrew W Nicholls
- GlaxoSmithKline, Investigative Preclinical Toxicology, Park Road, Ware SG12 0DP, UK
| | - Julian L Griffin
- Medical Research Council, Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, UK; The Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; The Cambridge Systems Biology Centre (CSBC), University of Cambridge, Cambridge CB2 1QR, UK.
| |
Collapse
|
22
|
Huang Q, Fan J, Qian X, Lv Z, Zhang X, Han J, Wu F, Chen C, Du J, Guo M, Hu G, Jin Y. Retinoic acid-related orphan receptor C isoform 2 expression and its prognostic significance for non-small cell lung cancer. J Cancer Res Clin Oncol 2016; 142:263-72. [PMID: 26319393 DOI: 10.1007/s00432-015-2040-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/24/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Retinoic acid-related orphan receptor C isoform 2 (RORC2) is regarded as a pathogenic factor for autoimmune and inflammatory diseases and tumours. Previous studies have primarily focused on RORC2 expression in IL-17-producing immune cells but not in carcinoma cells; thus, little is known about the roles of RORC2 in the progression of human non-small cell lung cancer (NSCLC). In this study, we analysed the expression of RORC2 and its participation in tumour progression in NSCLC. METHODS RORC2 expression in NSCLC and adjacent normal lung tissues was assessed via quantitative real-time PCR (qRT-PCR) and immunohistochemistry. RORC2 expression in NSCLC cell lines was examined by qRT-PCR, Western blotting and flow cytometry. The effects of inhibiting RORC2 activity on the proliferation of NSCLC cells were evaluated. The prognostic value of RORC2 for NSCLC was revealed based on Kaplan-Meier analysis. RESULTS High RORC2 expression was observed in lung cancer tissues and was significantly related to age (p = 0.013) and regional lymph node metastasis (p = 0.009). RORC2 expression was higher in the A549, H460, SPC-A1 and H1299 cell lines than in a control cell line. In addition, cell proliferation was decreased in NSCLC cells upon the blocking of RORC2 activity using a specific inhibitor. High RORC2 expression correlated with worse overall survival (p = 0.030). CONCLUSIONS Our study suggests that RORC2 is expressed by lung cancer cells and greatly contributes to tumour cell proliferation and overall survival in NSCLC. These findings strongly imply that RORC2 is associated with tumour progression.
Collapse
MESH Headings
- Adenocarcinoma/genetics
- Adenocarcinoma/metabolism
- Adenocarcinoma/mortality
- Adenocarcinoma/secondary
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Carcinoma, Adenosquamous/genetics
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/mortality
- Carcinoma, Adenosquamous/secondary
- Carcinoma, Large Cell/genetics
- Carcinoma, Large Cell/metabolism
- Carcinoma, Large Cell/mortality
- Carcinoma, Large Cell/secondary
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/secondary
- Cell Proliferation
- Female
- Flow Cytometry
- Follow-Up Studies
- Humans
- Immunoenzyme Techniques
- Lung/metabolism
- Lung/pathology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Lymphatic Metastasis
- Male
- Middle Aged
- Neoplasm Staging
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Prognosis
- Protein Isoforms
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Qi Huang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jinshuo Fan
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xin Qian
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Department of Respiratory Medicine, Taihe Hospital, Hubei University of Medicine, No. 98 South Renmin Road, Shiyan, 442000, Hubei, People's Republic of China
| | - Zhilei Lv
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Xiuxiu Zhang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Jieli Han
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Caiyun Chen
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Department of Respiratory, the First Hospital of Xi'an City, Xi'an, 710002, Shanxi, People's Republic of China
| | - Jiao Du
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
- Zhongshan Hospital, Xiamen University, 201-209 Hubin Road, Xiamen, 361004, Fujian, People's Republic of China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Guorong Hu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of the Health Ministry, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, People's Republic of China.
| |
Collapse
|
23
|
Berasain C, Avila MA. Regulation of hepatocyte identity and quiescence. Cell Mol Life Sci 2015; 72:3831-51. [PMID: 26089250 PMCID: PMC11114060 DOI: 10.1007/s00018-015-1970-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/23/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
The liver is a highly differentiated organ with a central role in metabolism, detoxification and systemic homeostasis. To perform its multiple tasks, liver parenchymal cells, the hepatocytes, express a large complement of enabling genes defining their complex phenotype. This phenotype is progressively acquired during fetal development and needs to be maintained in adulthood to guarantee the individual's survival. Upon injury or loss of functional mass, the liver displays an extraordinary regenerative response, mainly based on the proliferation of hepatocytes which otherwise are long-lived quiescent cells. Increasing observations suggest that loss of hepatocellular differentiation and quiescence underlie liver malfunction in chronic liver disease and pave the way for hepatocellular carcinoma development. Here, we briefly review the essential mechanisms leading to the acquisition of liver maturity. We also identify the key molecular factors involved in the preservation of hepatocellular homeostasis and finally discuss potential strategies to preserve liver identity and function.
Collapse
Affiliation(s)
- Carmen Berasain
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| | - Matías A Avila
- Division of Hepatology, CIMA, University of Navarra, CIBEREHD, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Avda. Pio XII, n55, 31008, Pamplona, Spain.
| |
Collapse
|
24
|
Capone F, Guerriero E, Colonna G, Maio P, Mangia A, Marfella R, Paolisso G, Izzo F, Potenza N, Tomeo L, Castello G, Costantini S. The Cytokinome Profile in Patients with Hepatocellular Carcinoma and Type 2 Diabetes. PLoS One 2015; 10:e0134594. [PMID: 26226632 PMCID: PMC4520685 DOI: 10.1371/journal.pone.0134594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/11/2015] [Indexed: 12/13/2022] Open
Abstract
Understanding the dynamics of the complex interaction network of cytokines, defined as ‘‘cytokinome’’, can be useful to follow progression and evolution of hepatocellular carcinoma (HCC) from its early stages as well as to define therapeutic strategies. Recently we have evaluated the cytokinome profile in patients with type 2 diabetes (T2D) and/or chronic hepatitis C (CHC) infection and/or cirrhosis suggesting specific markers for the different stages of the diseases. Since T2D has been identified as one of the contributory cause of HCC, in this paper we examined the serum levels of cytokines, growth factors, chemokines, as well as of other cancer and diabetes biomarkers in a discovery cohort of patients with T2D, chronic hepatitis C (CHC) and/or CHC-related HCC comparing them with a healthy control group to define a profile of proteins able to characterize these patients, and to recognize the association between diabetes and HCC. The results have evidenced that the serum levels of some proteins are significantly and differently up-regulated in all the patients but they increased still more when HCC develops on the background of T2D. Our results were verified also using a separate validation cohort. Furthermore, significant correlations between clinical and laboratory data characterizing the various stages of this complex disease, have been found. In overall, our results highlighted that a large and simple omics approach, such as that of the cytokinome analysis, supplemented by common biochemical and clinical data, can give a complete picture able to improve the prognosis of the various stages of the disease progression. We have also demonstrated by means of interactomic analysis that our experimental results correlate positively with the general metabolic picture that is emerging in the literature for this complex multifactorial disease.
Collapse
Affiliation(s)
- Francesca Capone
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Eliana Guerriero
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Giovanni Colonna
- Center of Medical Informatics-SIM/AOU-Second University of Naples, Naples, Italy
| | - Patrizia Maio
- Unita`Operativa Malattie Infettive, Azienda Ospedaliera di Rilievo Nazionale ''San Giuseppe Moscati", Avellino, Italy
| | - Alessandra Mangia
- Liver Unit, IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo, Italy
| | - Raffaele Marfella
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy
| | - Giuseppe Paolisso
- Department of Geriatrics and Metabolic Diseases, Second University of Naples, Naples, Italy
| | - Francesco Izzo
- Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Nicoletta Potenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | | | - Giuseppe Castello
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| | - Susan Costantini
- CROM, Istituto Nazionale Tumori "Fondazione G. Pascale"-IRCCS, Naples, Italy
| |
Collapse
|
25
|
Li T, Apte U. Bile Acid Metabolism and Signaling in Cholestasis, Inflammation, and Cancer. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2015; 74:263-302. [PMID: 26233910 DOI: 10.1016/bs.apha.2015.04.003] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bile acids are synthesized from cholesterol in the liver. Some cytochrome P450 (CYP) enzymes play key roles in bile acid synthesis. Bile acids are physiological detergent molecules, so are highly cytotoxic. They undergo enterohepatic circulation and play important roles in generating bile flow and facilitating biliary secretion of endogenous metabolites and xenobiotics and intestinal absorption of dietary fats and lipid-soluble vitamins. Bile acid synthesis, transport, and pool size are therefore tightly regulated under physiological conditions. In cholestasis, impaired bile flow leads to accumulation of bile acids in the liver, causing hepatocyte and biliary injury and inflammation. Chronic cholestasis is associated with fibrosis, cirrhosis, and eventually liver failure. Chronic cholestasis also increases the risk of developing hepatocellular or cholangiocellular carcinomas. Extensive research in the last two decades has shown that bile acids act as signaling molecules that regulate various cellular processes. The bile acid-activated nuclear receptors are ligand-activated transcriptional factors that play critical roles in the regulation of bile acid, drug, and xenobiotic metabolism. In cholestasis, these bile acid-activated receptors regulate a network of genes involved in bile acid synthesis, conjugation, transport, and metabolism to alleviate bile acid-induced inflammation and injury. Additionally, bile acids are known to regulate cell growth and proliferation, and altered bile acid levels in diseased conditions have been implicated in liver injury/regeneration and tumorigenesis. We will cover the mechanisms that regulate bile acid homeostasis and detoxification during cholestasis, and the roles of bile acids in the initiation and regulation of hepatic inflammation, regeneration, and carcinogenesis.
Collapse
Affiliation(s)
- Tiangang Li
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA.
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
26
|
Fan M, Wang X, Xu G, Yan Q, Huang W. Bile acid signaling and liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1849:196-200. [PMID: 24878541 PMCID: PMC4246016 DOI: 10.1016/j.bbagrm.2014.05.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/20/2014] [Accepted: 05/20/2014] [Indexed: 12/25/2022]
Abstract
The liver is able to regenerate itself in response to partial hepatectomy or liver injury. This is accomplished by a complex network of different cell types and signals both inside and outside the liver. Bile acids (BAs) are recently identified as liver-specific metabolic signals and promote liver regeneration by activating their receptors: Farnesoid X Receptor (FXR) and G-protein-coupled BA receptor 1 (GPBAR1, or TGR5). FXR is a member of the nuclear hormone receptor superfamily of ligand-activated transcription factors. FXR promotes liver regeneration after 70% partial hepatectomy (PHx) or liver injury. Moreover, activation of FXR is able to alleviate age-related liver regeneration defects. Both liver- and intestine-FXR are activated by BAs after liver resection or injury and promote liver regeneration through distinct mechanism. TGR5 is a membrane-bound BA receptor and it is also activated during liver regeneration. TGR5 regulates BA hydrophobicity and stimulates BA excretion in urine during liver regeneration. BA signaling thus represents a novel metabolic pathway during liver regeneration. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Mingjie Fan
- Institute of Genetics, College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Xichun Wang
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ganyu Xu
- Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Qingfeng Yan
- Institute of Genetics, College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Wendong Huang
- Institute of Genetics, College of Life Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China; Department of Diabetes and Metabolic Diseases Research, Beckman Research Institute, City of Hope National Medical Center, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
27
|
|
28
|
Degirolamo C, Modica S, Vacca M, Di Tullio G, Morgano A, D'Orazio A, Kannisto K, Parini P, Moschetta A. Prevention of spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice by intestinal-specific farnesoid X receptor reactivation. Hepatology 2015; 61:161-70. [PMID: 24954587 DOI: 10.1002/hep.27274] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
UNLABELLED Farnesoid X receptor (FXR) is the master regulator of bile acid (BA) homeostasis because it controls BA synthesis, influx, efflux, and detoxification in the gut/liver axis. Deregulation of BA homeostasis has been linked to hepatocellular carcinoma (HCC), and spontaneous hepatocarcinogenesis has been observed in FXR-null mice. This dreaded liver neoplasm has been associated with both FXR gene deletion and BA-mediated metabolic abnormalities after inactivation of FXR transcriptional activity. In the present study, we addressed the hypothesis that intestinal selective FXR reactivation would be sufficient to restore the fibroblast growth factor 15 (FGF15)/cholesterol-7alpha-hydroxylase (Cyp7a1) enterohepatic axis and eventually provide protection against HCC. To this end, we generated FXR-null mice with re-expression of constitutively active FXR in enterocytes (FXR(-/-)iVP16FXR) and corresponding control mice (FXR(-/-)iVP16). In FXR-null mice, intestinal selective FXR reactivation normalized BA enterohepatic circulation along with up-regulation of intestinal FXR transcriptome and reduction of hepatic BA synthesis. At 16 months of age, intestinal FXR reactivation protected FXR-null mice from spontaneous HCC development that occurred in otherwise FXR-null mice. Activation of intestinal FXR conferred hepatoprotection by restoring hepatic homeostasis, limiting cellular proliferation through reduced cyclinD1 expression, decreasing hepatic inflammation and fibrosis (decreased signal transducer and activator of transcription 3 activation and curtailed collagen deposition). CONCLUSION Intestinal FXR is sufficient to restore BA homeostasis through the FGF15 axis and prevent progression of liver damage to HCC even in the absence of hepatic FXR. Intestinal-selective FXR modulators could stand as potential therapeutic intervention to prevent this devastating hepatic malignancy, even if carrying a somatic FXR mutation.
Collapse
Affiliation(s)
- Chiara Degirolamo
- National Cancer Research Center, IRCCS Istituto Oncologico "Giovanni Paolo II", Bari, Italy; Laboratory of Lipid Metabolism and Cancer, Fondazione Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Meng Q, Chen X, Wang C, Liu Q, Sun H, Sun P, Peng J, Liu K. Alisol B 23-acetate promotes liver regeneration in mice after partial hepatectomy via activating farnesoid X receptor. Biochem Pharmacol 2014; 92:289-298. [PMID: 25278094 DOI: 10.1016/j.bcp.2014.09.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 02/08/2023]
Abstract
Liver resection has become a common treatment for liver tumors and hepatocellular carcinoma over the past decades. However, after surgery, the remnant livers in some patients fail to regenerate. Therefore, there is an urgent medical need to develop drugs that can promote liver regeneration. The purpose of the current study is to investigate the promotive effect of alisol B 23-acetate (AB23A) on liver regeneration in mice following partial hepatectomy (PH), and further elucidate the involvement of farnesoid X receptor (FXR) in the liver regeneration-promotive effect using in vivo and in vitro experiments. The results showed that AB23A dose-dependently promoted hepatocyte proliferation via upregulating hepatocyte proliferation-related protein forkhead box M1b (FoxM1b), Cyclin D1 and Cyclin B1 expression, and attenuated liver injury via an inhibition in Cyp7a1 and an induction in efflux transporters Bsep expression resulting in reduced hepatic bile acid levels. These changes in the genes, as well as accelerated liver regeneration in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly showed the regulation of these genes by AB23A was abrogated when FXR was silenced. Luciferase reporter assay in HepG2 cells and molecular docking further demonstrated the effect of AB23A on FXR activation in vitro. In conclusions, AB23A produces promotive effect on liver regeneration, due to FXR-mediated regulation of genes involved in hepatocyte proliferation and hepato-protection. AB23A has the potential to be a novel therapeutic option for facilitating efficient liver regeneration in patients subjected to liver resection.
Collapse
Affiliation(s)
- Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Xinli Chen
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Pengyuan Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jinyong Peng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Kexin Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
30
|
Gioiello A, Cerra B, Zhang W, Vallerini GP, Costantino G, De Franco F, Passeri D, Pellicciari R, Setchell KDR. Synthesis of atypical bile acids for use as investigative tools for the genetic defect of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase deficiency. J Steroid Biochem Mol Biol 2014; 144 Pt B:348-60. [PMID: 24954360 DOI: 10.1016/j.jsbmb.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/28/2014] [Accepted: 06/17/2014] [Indexed: 12/31/2022]
Abstract
Deficiency of 3β-hydroxy-Δ(5)-C27-steroid oxidoreductase (HSD3B7), an enzyme catalyzing the second step in the pathway for bile acid synthesis, leads to a complete lack of the primary bile acids, cholic and chenodeoxycholic acids, and the accumulation of 3β,7α-dihydroxy- and 3β,7α,12α-trihydroxy-Δ(5)-cholenoic acids. Patients affected by this autosomal recessive genetic defect develop cholestatic liver disease that is clinically responsive to primary bile acid therapy. Reference standards of these compounds are needed to facilitate diagnosis and to accurately quantify biochemical responses to therapy. Described are a novel synthesis of atypical bile acids that characterize the HSD3B7 deficiency and their effect on bile acid-activated nuclear receptors, target genes and cytochromes involved in bile acid homeostasis and detoxification. The failure of 3β-hydroxy-Δ(5)-cholenoic acids to function as FXR, PXR and CAR agonists and to exert hepatoprotective actions explains the mechanism for progressive cholestatic liver disease in patients with HSD3B7 deficiency.
Collapse
Affiliation(s)
- Antimo Gioiello
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy.
| | - Bruno Cerra
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy
| | - Wujuan Zhang
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Gian Paolo Vallerini
- Department of Farmacy, University of Parma, Viale delle Scienze 27/A, Parma I-43124, Italy
| | - Gabriele Costantino
- Department of Farmacy, University of Parma, Viale delle Scienze 27/A, Parma I-43124, Italy
| | | | - Daniela Passeri
- TES Pharma, Via P. Togliatti, 20, Loc Taverne, I-06073 Corciano, Italy
| | - Roberto Pellicciari
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, I-06122 Perugia, Italy; TES Pharma, Via P. Togliatti, 20, Loc Taverne, I-06073 Corciano, Italy
| | - Kenneth D R Setchell
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center and Department of Pediatrics of the University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
31
|
Vacca M, D'Amore S, Graziano G, D'Orazio A, Cariello M, Massafra V, Salvatore L, Martelli N, Murzilli S, Sasso GL, Mariani-Costantini R, Moschetta A. Clustering nuclear receptors in liver regeneration identifies candidate modulators of hepatocyte proliferation and hepatocarcinoma. PLoS One 2014; 9:e104449. [PMID: 25116592 PMCID: PMC4130532 DOI: 10.1371/journal.pone.0104449] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
Abstract
Background & Aims Liver regeneration (LR) is a valuable model for studying mechanisms modulating hepatocyte proliferation. Nuclear receptors (NRs) are key players in the control of cellular functions, being ideal modulators of hepatic proliferation and carcinogenesis. Methods & Results We used a previously validated RT-qPCR platform to profile modifications in the expression of all 49 members of the NR superfamily in mouse liver during LR. Twenty-nine NR transcripts were significantly modified in their expression during LR, including fatty acid (peroxisome proliferator-activated receptors, PPARs) and oxysterol (liver X receptors, Lxrs) sensors, circadian masters RevErbα and RevErbβ, glucocorticoid receptor (Gr) and constitutive androxane receptor (Car). In order to detect the NRs that better characterize proliferative status vs. proliferating liver, we used the novel Random Forest (RF) analysis to selected a trio of down-regulated NRs (thyroid receptor alpha, Trα; farsenoid X receptor beta, Fxrβ; Pparδ) as best discriminators of the proliferating status. To validate our approach, we further studied PPARδ role in modulating hepatic proliferation. We first confirmed the suppression of PPARδ both in LR and human hepatocellular carcinoma at protein level, and then demonstrated that PPARδ agonist GW501516 reduces the proliferative potential of hepatoma cells. Conclusions Our data suggest that NR transcriptome is modulated in proliferating liver and is a source of biomarkers and bona fide pharmacological targets for the management of liver disease affecting hepatocyte proliferation.
Collapse
Affiliation(s)
- Michele Vacca
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
| | - Simona D'Amore
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Giusi Graziano
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Andria D'Orazio
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Marica Cariello
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
| | - Vittoria Massafra
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Lorena Salvatore
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Nicola Martelli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Stefania Murzilli
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Giuseppe Lo Sasso
- Fondazione Mario Negri Sud, Santa Maria Imbaro (Chieti), Chieti, Italy
| | - Renato Mariani-Costantini
- Unit of General Pathology, Aging Research Center (Ce.S.I.), “Gabriele D'Annunzio” University and Foundation, Chieti, Italy
| | - Antonio Moschetta
- Interdisciplinary Department of Medicine, “Aldo Moro” University of Bari, Bari, Italy
- National Cancer Institute, IRCCS Oncologico “Giovanni Paolo II”, Bari, Italy
- * E-mail:
| |
Collapse
|
32
|
Tan HL, Moran NE, Cichon MJ, Riedl KM, Schwartz SJ, Erdman JW, Pearl DK, Thomas-Ahner JM, Clinton SK. β-Carotene-9',10'-oxygenase status modulates the impact of dietary tomato and lycopene on hepatic nuclear receptor-, stress-, and metabolism-related gene expression in mice. J Nutr 2014; 144:431-9. [PMID: 24553694 PMCID: PMC3952621 DOI: 10.3945/jn.113.186676] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tomato and lycopene (ψ,ψ-carotene) consumption is hypothesized to protect against nonalcoholic steatohepatitis and hepatocarcinogenesis, processes that may depend upon diet and gene interactions. To investigate the interaction of tomato or lycopene feeding with β-carotene-9',10'-monooxygenase (Bco2) on hepatic metabolic and signaling pathways, male wild-type (WT) and Bco2(-/-) mice (3-wk-old; n = 36) were fed semi-purified control, 10% tomato powder-containing, or 0.25% lycopene beadlet-containing diets for 3 wk. Serum lycopene concentrations were higher in lycopene- and tomato-fed Bco2(-/-) mice compared with WT (P = 0.03). Tomato- and lycopene-fed mice had detectable hepatic apolipoprotein (apo)-6'-, apo-8'-, and apo-12'-lycopenal concentrations. Hepatic expression of β-carotene-15,15'-monooxygenase was increased in Bco2(-/-) mice compared with WT (P = 0.02), but not affected by diet. Evaluation of hepatic gene expression by focused quantitative reverse transcriptase-polymerase chain reaction arrays for nuclear receptors and coregulators (84 genes) and stress and metabolism (82 genes) genes indicates that tomato feeding affected 31 genes (≥1.5-fold, P < 0.05) and lycopene feeding affected 19 genes, 16 of which were affected by both diets. Lycopene down-regulation of 7 nuclear receptors and coregulators, estrogen-related receptor-α, histone deacetylase 3, nuclear receptor coactivator 4, RevErbA-β, glucocorticoid receptor, peroxisome proliferator-activated receptor (PPAR)-α, and PPAR-γ, coactivator 1 β was dependent upon interaction with Bco2 status. Lycopene and tomato feeding induced gene expression patterns consistent with decreased lipid uptake, decreased cell proliferation and mitosis, down-regulated aryl hydrocarbon receptor signaling, and decreased expression of genes involved in retinoid X receptor heterodimer activation. Tomato feeding also caused expression changes consistent with down-regulation of DNA synthesis and terpenoid metabolism. These data suggest tomato components, particularly lycopene, affect hepatic gene expression, potentially affecting hepatic responses to metabolic, infectious, or chemical stress.
Collapse
Affiliation(s)
- Hsueh-Li Tan
- The Interdisciplinary Program in Nutrition,Comprehensive Cancer Center, and
| | | | - Morgan J. Cichon
- Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - Ken M. Riedl
- Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - Steven J. Schwartz
- Comprehensive Cancer Center, and,Department of Food Science and Technology, Ohio State University, Columbus, OH
| | - John W. Erdman
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL; and
| | - Dennis K. Pearl
- Comprehensive Cancer Center, and,Department of Statistics and
| | | | - Steven K. Clinton
- Comprehensive Cancer Center, and,Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, OH,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
33
|
Jia Y, Viswakarma N, Reddy JK. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis. Gene Expr 2014; 16:63-75. [PMID: 24801167 PMCID: PMC4093800 DOI: 10.3727/105221614x13919976902219] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic diseases associated with increased energy combustion in liver.
Collapse
Affiliation(s)
- Yuzhi Jia
- *Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Navin Viswakarma
- †Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago, Maywood, IL, USA
| | - Janardan K. Reddy
- *Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
34
|
Kuklin A, Tokovenko B, Makogon N, Oczko-Wojciechowska M, Jarząb B, Obolenskaya M. Hepatocytes response to interferon alpha levels recorded after liver resection. J Interferon Cytokine Res 2013; 34:90-9. [PMID: 24107099 DOI: 10.1089/jir.2012.0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Extensive damage of liver parenchyma stimulates hepatic cells to transit from quiescence to proliferation with eventual restoration of liver mass and function. Our recent studies have revealed upregulated expression of interferon (IFN)-α and its antiviral activity during the early hours after partial hepatectomy. In this study, we analyzed the response of primary hepatocytes from intact liver to IFN-α mimicking its levels (250 U/mL) during the transition period of liver restoration. The gene expression profile was analyzed with rat genome array 230 2.0 (Affymetrix). After 3- and 6-h treatment we identified respectively 28 and 124 differentially expressed genes responsible for autonomous changes in hepatocytes and those involving non-parenchymal cells in a concerted response to IFN-α. The response has an energy sparing character and affects all levels of gene expression. The factors activating T cells and apoptosis are opposed by those restricting the signal propagation, inhibiting T cells activation, and promoting survival. The partial resemblance between the specific in vitro response to IFN-α and the processes in regenerating liver is discussed. Our study opens the way to a more focused investigation of the liver cell response to quasiphysiological dose of IFN-α.
Collapse
Affiliation(s)
- Andrii Kuklin
- 1 Institute of Molecular Biology and Genetics , National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | | | | |
Collapse
|
35
|
Lin YM, Velmurugan BK, Yeh YL, Tu CC, Ho TJ, Lai TY, Tsai CH, Tsai FJ, Tsai CH, Huang CY. Activation of estrogen receptors with E2 downregulates peroxisome proliferator-activated receptor γ in hepatocellular carcinoma. Oncol Rep 2013; 30:3027-31. [PMID: 24126791 DOI: 10.3892/or.2013.2793] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/18/2013] [Indexed: 12/23/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality and occurs more often in men than in women; however, little is known about its underlying molecular mechanisms. The present study investigated the effect of estrogen receptor (ER)α and ERβ on peroxisome proliferator-activated receptor γ (PPARγ) expression in Hep3B cells. We examined PPARγ, ERα and ERβ mRNA and protein expression by RT-PCR and western blotting. In order to determine whether PPARγ plays a central role in HCC, we screened for PPARγ expression in liver cancer patient tissues and differentially differentiated HCC cell lines (HA22T, Huh-7, Hep3B and HepG2). We found that PPARγ expression was highly expressed in liver cancer tissues and in Hep3B cells. Furthermore, overexpression of ERα and ERβ was found to decrease PPARγ expression at the transcriptional as well as at the translational level in a ligand-dependent manner. In summary, the present study demonstrated that both ERα and β were sufficient to inhibit PPARγ and provide a valuable therapeutic option for the treatment of HCC patients.
Collapse
Affiliation(s)
- Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan, R.O.C
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu HX, Fang Y, Hu Y, Gonzalez FJ, Fang J, Wan YJY. PPARβ Regulates Liver Regeneration by Modulating Akt and E2f Signaling. PLoS One 2013; 8:e65644. [PMID: 23823620 PMCID: PMC3688817 DOI: 10.1371/journal.pone.0065644] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/25/2013] [Indexed: 12/14/2022] Open
Abstract
The current study tests the hypothesis that peroxisome proliferator-activated receptor β (PPARβ) has a role in liver regeneration due to its effect in regulating energy homeostasis and cell proliferation. The role of PPARβ in liver regeneration was studied using two-third partial hepatectomy (PH) in Wild-type (WT) and PPARβ-null (KO) mice. In KO mice, liver regeneration was delayed and the number of Ki-67 positive cells reached the peak at 60 hr rather than at 36-48 hr after PH shown in WT mice. RNA-sequencing uncovered 1344 transcriptomes that were differentially expressed in regenerating WT and KO livers. About 70% of those differentially expressed genes involved in glycolysis and fatty acid synthesis pathways failed to induce during liver regeneration due to PPARβ deficiency. The delayed liver regeneration in KO mice was accompanied by lack of activation of phosphoinositide-dependent kinase 1 (PDK1)/Akt. In addition, cell proliferation-associated increase of genes encoding E2f transcription factor (E2f) 1-2 and E2f7-8 as well as their downstream target genes were not noted in KO livers 36-48 hr after PH. E2fs have dual roles in regulating metabolism and proliferation. Moreover, transient steatosis was only found in WT, but not in KO mice 36 hr after PH. These data suggested that PPARβ-regulated PDK1/Akt and E2f signaling that controls metabolism and proliferation is involved in the normal progression of liver regeneration.
Collapse
Affiliation(s)
- Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California, Sacramento, California, United States of America
| | | | | | | | | | | |
Collapse
|