1
|
Martinand-Mari C, Debiais-Thibaud M, Potier E, Gasset E, Dutto G, Leurs N, Lallement S, Farcy E. Estradiol-17β and bisphenol A affect growth and mineralization in early life stages of seabass. Comp Biochem Physiol C Toxicol Pharmacol 2024; 281:109921. [PMID: 38609061 DOI: 10.1016/j.cbpc.2024.109921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/22/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024]
Abstract
Natural and synthetic estrogens are contaminants present in aquatic ecosystems. They can have significant consequences on the estrogen-sensitive functions of organisms, including skeletal development and growth of vertebrate larvae. Synthetic polyphenols represent a group of environmental xenoestrogens capable of binding the receptors for the natural hormone estradiol-17β (E2). To better understand how (xeno-)estrogens can affect the skeleton in fish species with high ecological and commercial interest, 16 days post-hatch larvae of the seabass were experimentally exposed for 7 days to E2 and Bisphenol A (BPA), both used at the regulatory concentration of surface water quality (E2: 0.4 ng.L-1, BPA: 1.6 μg.L-1) or at a concentration 100 times higher. Skeletal mineralization levels were evaluated using Alizarin red staining, and expression of several genes playing key roles in growth, skeletogenesis and estrogen signaling pathways was assessed by qPCR. Our results show that E2 exerts an overall negative effect on skeletal mineralization at the environmental concentration of 0.4 ng.L-1, correlated with an increase in the expression of genes associated only with osteoblast bone cells. Both BPA exposures inhibited mineralization with less severe effects and modified bone homeostasis by regulating the expression of gene encoding osteoblasts and osteoclasts markers. Our results demonstrate that environmental E2 exposure inhibits larval growth and has an additional inhibitory effect on skeleton mineralization while both BPA exposures have marginal inhibitory effect on skeletal mineralization. All exposures have significant effects on transcriptional levels of genes involved in the skeletal development of seabass larvae.
Collapse
Affiliation(s)
- Camille Martinand-Mari
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France.
| | - Melanie Debiais-Thibaud
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Eric Potier
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Eric Gasset
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Gilbert Dutto
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Nicolas Leurs
- Institut des Sciences de l'Evolution de Montpellier, ISEM, Univ. Montpellier, CNRS, IRD, France
| | - Stéphane Lallement
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France
| | - Emilie Farcy
- Marine Biodiversity, Exploitation and Conservation, MARBEC, Univ. Montpellier, Ifremer, CNRS, IRD, France.
| |
Collapse
|
2
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
3
|
Yin X, Teng X, Ma T, Yang T, Zhang J, Huo M, Liu W, Yang Y, Yuan B, Yu H, Huang W, Wang Y. RUNX2 recruits the NuRD(MTA1)/CRL4B complex to promote breast cancer progression and bone metastasis. Cell Death Differ 2022; 29:2203-2217. [PMID: 35534547 PMCID: PMC9613664 DOI: 10.1038/s41418-022-01010-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor 2 (RUNX2) is an osteogenesis-related transcription factor that has emerged as a prominent transcription repressing factor in carcinogenesis. However, the role of RUNX2 in breast cancer metastasis remains poorly understood. Here, we show that RUNX2 recruits the metastasis-associated 1 (MTA1)/NuRD and the Cullin 4B (CUL4B)-Ring E3 ligase (CRL4B) complex to form a transcriptional-repressive complex, which catalyzes the histone deacetylation and ubiquitylation. Genome-wide analysis of the RUNX2/NuRD(MTA1)/CRL4B complex targets identified a cohort of genes including peroxisome proliferator-activated receptor alpha (PPARα) and superoxide dismutase 2 (SOD2), which are critically involved in cell growth, epithelial-to-mesenchymal transition (EMT) and invasion. We demonstrate that the RUNX2/NuRD(MTA1)/CRL4B complex promotes the proliferation, invasion, tumorigenesis, bone metastasis, cancer stemness of breast cancer in vitro and in vivo. Strikingly, RUNX2 expression is upregulated in multiple human carcinomas, including breast cancer. Our study suggests that RUNX2 is a promising potential target for the future treatment strategies of breast cancer.
Collapse
Affiliation(s)
- Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Tianyu Ma
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jingyao Zhang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Miaomiao Huo
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wei Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Yunkai Yang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Baowen Yuan
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| | - Yan Wang
- Key Laboratory of Cancer and Microbiome, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Feng C, Xu Z, Tang X, Cao H, Zhang G, Tan J. Estrogen-Related Receptor α: A Significant Regulator and Promising Target in Bone Homeostasis and Bone Metastasis. Molecules 2022; 27:3976. [PMID: 35807221 PMCID: PMC9268386 DOI: 10.3390/molecules27133976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/20/2022] [Indexed: 01/23/2023] Open
Abstract
Bone homeostasis is maintained with the balance between bone formation and bone resorption, which is involved in the functional performance of osteoblast and osteoclast. Disruption of this equilibrium usually causes bone disorders including osteoporosis, osteoarthritis, and osteosclerosis. In addition, aberrant activity of bone also contributes to the bone metastasis that frequently occurs in the late stage of aggressive cancers. Orphan nuclear receptor estrogen-related receptor (ERRα) has been demonstrated to control the bone cell fate and the progression of tumor cells in bone through crosstalk with various molecules and signaling pathways. However, the defined function of this receptor in bone is inconsistent and controversial. Therefore, we summarized the latest research and conducted an overview to reveal the regulatory effect of ERRα on bone homeostasis and bone metastasis, this review may broaden the present understanding of the cellular and molecular model of ERRα and highlight its potential implication in clinical therapy.
Collapse
Affiliation(s)
- Chun Feng
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Zhaowei Xu
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Xiaojie Tang
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Haifei Cao
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| | - Guilong Zhang
- School of Pharmacy, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, China; (C.F.); (Z.X.)
| | - Jiangwei Tan
- Department of Spinal Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Yantai 264100, China; (X.T.); (H.C.)
| |
Collapse
|
5
|
Chen H, Fan W, He H, Huang F. PGC-1: a key regulator in bone homeostasis. J Bone Miner Metab 2022; 40:1-8. [PMID: 34424416 DOI: 10.1007/s00774-021-01263-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) is an inducible co-regulator of nuclear receptors and is involved in a wide variety of biological responses. As the master regulators of mitochondrial biogenesis and function, PGC-1α and PGC-1β have been reported to play key roles in bone metabolism. They can be rapidly induced under conditions of increased metabolic activities, such as osteoblastogenesis and osteoclastogenesis, to fulfill greater energy demand or facilitate other biochemical reactions. PGC-1α and PGC-1β have both overlapping and distinct functions with each other among their target organs. In bone homeostasis, PGC-1α and PGC-1β promote the expression of genes required for mitochondrial biogenesis via coactivator interactions with key transcription factors, respectively regulating osteoblastogenesis and osteoclastogenesis. Here, we review the current understanding of how PGC-1α and PGC-1β affect osteoblastogenesis and osteoclastogenesis, how these two PGC-1 coactivators are regulated in bone homeostasis, and how we can translate these findings into therapeutic potential for bone metabolic diseases.
Collapse
Affiliation(s)
- Haoling Chen
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
| | - Wenguo Fan
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
| | - Fang Huang
- Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuan Xi Road, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-Sen University, 74 Zhongshan Rd 2, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Ahmed M, Lai TH, Kim W, Kim DR. A Functional Network Model of the Metastasis Suppressor PEBP1/RKIP and Its Regulators in Breast Cancer Cells. Cancers (Basel) 2021; 13:6098. [PMID: 34885208 PMCID: PMC8657175 DOI: 10.3390/cancers13236098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Korea; (M.A.); (T.H.L.); (W.K.)
| |
Collapse
|
7
|
Zheng L, Lin Y, Zhong S. ROS Signaling-Mediated Novel Biological Targets: Brf1 and RNA Pol III Genes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5888432. [PMID: 34646425 PMCID: PMC8505076 DOI: 10.1155/2021/5888432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022]
Abstract
Biomolecule metabolism produces ROS (reactive oxygen species) under physiological and pathophysiological conditions. Dietary factors (alcohol) and carcinogens (EGF, DEN, and MNNG) also induce the release of ROS. ROS often causes cell stress and tissue injury, eventually resulting in disorders or diseases of the body through different signaling pathways. Normal metabolism of protein is critically important to maintain cellular function and body health. Brf1 (transcript factor II B-related factor 1) and its target genes, RNA Pol III genes (RNA polymerase III-dependent genes), control the process of protein synthesis. Studies have demonstrated that the deregulation of Brf1 and its target genes is tightly linked to cell proliferation, cell transformation, tumor development, and human cancers, while alcohol, EGF, DEN, and MNNG are able to induce the deregulation of these genes through different signaling pathways. Therefore, it is very important to emphasize the roles of these signaling events mediating the processes of Brf1 and RNA Pol III gene transcription. In the present paper, we mainly summarize our studies on signaling events which mediate the deregulation of these genes in the past dozen years. These studies indicate that Brf1 and RNA Pol III genes are novel biological targets of ROS.
Collapse
Affiliation(s)
- Liling Zheng
- First Hospital of Quanzhou Affiliated to Fujian Medical University, China
| | - Yongluan Lin
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuping Zhong
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Schaduangrat N, Malik AA, Nantasenamat C. ERpred: a web server for the prediction of subtype-specific estrogen receptor antagonists. PeerJ 2021; 9:e11716. [PMID: 34285834 PMCID: PMC8274494 DOI: 10.7717/peerj.11716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/11/2021] [Indexed: 11/22/2022] Open
Abstract
Estrogen receptors alpha and beta (ERα and ERβ) are responsible for breast cancer metastasis through their involvement of clinical outcomes. Estradiol and hormone replacement therapy targets both ERs, but this often leads to an increased risk of breast and endometrial cancers as well as thromboembolism. A major challenge is posed for the development of compounds possessing ER subtype specificity. Herein, we present a large-scale classification structure-activity relationship (CSAR) study of inhibitors from the ChEMBL database which consisted of an initial set of 11,618 compounds for ERα and 7,810 compounds for ERβ. The IC50 was selected as the bioactivity unit for further investigation and after the data curation process, this led to a final data set of 1,593 and 1,281 compounds for ERα and ERβ, respectively. We employed the random forest (RF) algorithm for model building and of the 12 fingerprint types, models built using the PubChem fingerprint was the most robust (Ac of 94.65% and 92.25% and Matthews correlation coefficient (MCC) of 89% and 76% for ERα and ERβ, respectively) and therefore selected for feature interpretation. Results indicated the importance of features pertaining to aromatic rings, nitrogen-containing functional groups and aliphatic hydrocarbons. Finally, the model was deployed as the publicly available web server called ERpred at http://codes.bio/erpred where users can submit SMILES notation as the input query for prediction of the bioactivity against ERα and ERβ.
Collapse
Affiliation(s)
- Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Aijaz Ahmad Malik
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Chanin Nantasenamat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
10
|
Hong Z, Fang Z, Lei J, Shi G, Zhang Y, He Z, Li B W, Zhong S. The significance of Runx2 mediating alcohol-induced Brf1 expression and RNA Pol III gene transcription. Chem Biol Interact 2020; 323:109057. [PMID: 32198086 PMCID: PMC7261693 DOI: 10.1016/j.cbi.2020.109057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/10/2020] [Indexed: 02/05/2023]
Abstract
Runx2 (Runt-related transcription factor 2) is a key transcription factor which is associated with osteoblast differentiation and expressed in ER+ (estrogen receptor positive) human breast cancer cell lines. Runx2 also participates in mammary gland development. Deregulation of RNA Pol III genes (polymerase III-dependent genes) is tightly linked to tumor development, while Brf1 (TFIIB-related factor 1) specifically regulates these gene transcription. However, nothing is known about the effect of Runx2 on Brf1 expression and Pol III gene transcription. Expression of Runx2, Brf1 and Pol III genes from the samples of human breast cancer and cell culture model were determined by the assays of RT-qPCR, immunoblot, luciferase reporter activity, immunohistochemistry, chromatin immunoprecipitation and Immunofluorescence. High expression of Runx2 is observed in the cases of breast cancer. The patients of high Runx2 expression at early stages display longer survival period, whereas the cases of high Runx2 at advanced stages reveal faster recurrence. The identification of signaling pathway indicates that JNK1 and c-Jun mediate Runx2 transcription. Repression of Runx2 reduces Brf1 expression and Pol III gene transcription. Further analysis indicates that Runx2 is colocalized with Brf1 in nucleus of breast cancer tissue. Both Runx2 and Brf1 synergistically modulate Pol III gene transcription. These studies indicate that Brf1 overexpression is able to be used as an early diagnosis biomarker of breast cancer, while high Runx2 expression indicates long survival period and faster recurrence. Runx2 mediates the deregulation of Brf1 and Pol III genes and its abnormal expression predicts the worse prognosis of breast cancer.
Collapse
Affiliation(s)
- Zaifa Hong
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zeng Fang
- Laboratory of General Surgery and Department of Breast and Thyroid Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Junxia Lei
- School of Medicine, South China University of Technology, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, China; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Zhiming He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, China
| | - Wen Li B
- Laboratory of General Surgery and Department of Breast and Thyroid Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Shuping Zhong
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Manzotti G, Torricelli F, Donati B, Sancisi V, Gugnoni M, Ciarrocchi A. HDACs control RUNX2 expression in cancer cells through redundant and cell context-dependent mechanisms. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:346. [PMID: 31395086 PMCID: PMC6686443 DOI: 10.1186/s13046-019-1350-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022]
Abstract
Background RUNX2 is a Runt-related transcription factor required during embryogenesis for skeletal development and morphogenesis of other organs including thyroid and breast gland. Consistent evidence indicates that RUNX2 expression is aberrantly reactivated in cancer and supports tumor progression. The mechanisms leading to RUNX2 expression in cancer has only recently began to emerge. Previously, we showed that suppressing the activity of the epigenetic regulators HDACs significantly represses RUNX2 expression highlighting a role for these enzymes in RUNX2 reactivation in cancer. However, the molecular mechanisms by which HDACs control RUNX2 are still largely unexplored. Here, to fill this gap, we investigated the role of different HDACs in RUNX2 expression regulation in breast and thyroid cancer, tumors that majorly rely on RUNX2 for their development and progression. Methods Proliferation assays and evaluation of RUNX2 mRNA levels by qRT-PCR were used to evaluate the effect of several HDACi and specific siRNAs on a panel of cancer cell lines. Moreover, ChIP and co-IP assays were performed to elucidate the molecular mechanism underneath the RUNX2 transcriptional regulation. Finally, RNA-sequencing unveiled a new subset of genes whose transcription is regulated by the complex RUNX2-HDAC6. Results In this study, we showed that Class I HDACs and in particular HDAC1 are required for RUNX2 efficient transcription in cancer. Furthermore, we found an additional and cell-specific function of HDAC6 in driving RUNX2 expression in thyroid cancer cells. In this model, HDAC6 likely stabilizes the assembly of the transcriptional complex, which includes HDAC1, on the RUNX2 P2 promoter potentiating its transcription. Since a functional interplay between RUNX2 and HDAC6 has been suggested, we used RNA-Seq profiling to consolidate this evidence in thyroid cancer and to extend the knowledge on this cooperation in a setting in which HDAC6 also controls RUNX2 expression. Conclusions Overall, our data provide new insights into the molecular mechanisms controlling RUNX2 in cancer and consolidate the rationale for the use of HDACi as potential pharmacological strategy to counteract the pro-oncogenic program controlled by RUNX2 in cancer cells. Electronic supplementary material The online version of this article (10.1186/s13046-019-1350-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gloria Manzotti
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Valentina Sancisi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123, Reggio Emilia, Italy.
| |
Collapse
|
12
|
Li D, Cai Y, Teng D, Li W, Tang Y, Liu G. Computational insights into the interaction mechanisms of estrogen-related receptor alpha with endogenous ligand cholesterol. Chem Biol Drug Des 2019; 94:1316-1329. [PMID: 30811808 DOI: 10.1111/cbdd.13506] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 11/30/2022]
Abstract
Estrogen-related receptor alpha (ERRα) has attracted increasing concerns. ERRα, orphan nuclear receptor, plays important roles in energy metabolism. Therefore, small molecule agonists of ERRα could be a potential therapeutic strategy in the treatment of metabolic diseases such as diabetes. Recently, Wei et al. identified cholesterol as the endogenous agonist of ERRα. However, the detailed molecular mechanism of cholesterol bound with ERRα remains ambiguous. Thus, in this study molecular docking and molecular dynamics (MD) simulations were performed to characterize how cholesterol affects the behavior of ERRα. Based on the results, we found that a proven residue Phe232 and others including Leu228, Glu235, Arg276, and Phe399 were key residues to ligand binding. A hydrogen-bonding interaction between cholesterol and Glu235 ensured the orientation of the ligand in the binding pocket, while hydrophobic interactions between cholesterol and the above-mentioned residues promoted the stability of ERRα-cholesterol complex. In the presence of the proliferator-activated receptor γ coactivator 1α (PGC-1α), the cholesterol-ERRα interaction became more stable. Interestingly, we observed that cholesterol facilitated the binding of ERRα with its coactivator PGC-1α via stabilizing the conformation of helix 12 and the interaction surface of ERRα/PGC-1α. Overall, these findings would be valuable for the future rational design of novel ERRα agonists.
Collapse
Affiliation(s)
- Dongping Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yingchun Cai
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Dan Teng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Weihua Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yun Tang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Guixia Liu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Low-dose exposure to triclosan disrupted osteogenic differentiation of mouse embryonic stem cells via BMP/ERK/Smad/Runx-2 signalling pathway. Food Chem Toxicol 2019; 127:1-10. [DOI: 10.1016/j.fct.2019.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/20/2019] [Accepted: 02/25/2019] [Indexed: 01/13/2023]
|
14
|
Mechanism of Action of Icariin in Bone Marrow Mesenchymal Stem Cells. Stem Cells Int 2019; 2019:5747298. [PMID: 31089330 PMCID: PMC6476003 DOI: 10.1155/2019/5747298] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/28/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
Osteoporosis, femoral head necrosis, and congenital bone defects are orthopedic disorders characterized by reduced bone generation and insufficient bone mass. Bone regenerative therapy primarily relies on the bone marrow mesenchymal stem cells (BMSCs) and their ability to differentiate osteogenically. Icariin (ICA) is the active ingredient of Herba epimedii, a common herb used in traditional Chinese medicine (TCM) formulations, and can effectively enhance BMSC proliferation and osteogenesis. However, the underlying mechanism of ICA action in BMSCs is not completely clear. In this review, we provide an overview of the studies on the role and mechanism of action of ICA in BMSCs, to provide greater insights into its potential clinical use in bone regeneration.
Collapse
|
15
|
Kokabu T, Mori T, Matsushima H, Yoriki K, Kataoka H, Tarumi Y, Kitawaki J. Antitumor effect of XCT790, an ERRα inverse agonist, on ERα-negative endometrial cancer cells. Cell Oncol (Dordr) 2019; 42:223-235. [PMID: 30706380 DOI: 10.1007/s13402-019-00423-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE The estrogen-related receptor (ERR) α is structurally similar to classical estrogen receptors (ERs), but is considered to be an orphan nuclear receptor. We previously found that ERRα regulates uterine endometrial cancer progression. Here, we investigated the efficacy of XCT790, a selective inverse agonist of ERRα, on endometrial cancer cells in vitro and in vivo. METHODS HEC-1A and KLE, ERα-negative endometrial cancer cells exhibiting high ERRα expression levels, and HEC-1A cell-derived xenograft model mice were treated with XCT790. Transcriptional activity and cell proliferation were examined using luciferase, WST-8 and colony formation assays, respectively. Cell cycle progression was evaluated using flow cytometry, immunofluorescence cytochemistry and Western blotting. Apoptosis was evaluated using a caspase-3/7 activity assay. RESULTS We found that XCT790 significantly inhibited ERRα-induced in vitro transcriptional activity, including that of the vascular endothelial growth factor (VEGF) gene, in a concentration-dependent manner (p < 0.05). We also found that XCT790 suppressed colony formation and cell proliferation in a concentration and time-dependent manner (p < 0.01) without cytotoxicity, and induced apoptosis (p < 0.01). XCT790 was found to cause cell cycle arrest at the mitotic phase. Akt and mTOR phosphorylation was found to be inhibited by XCT790, but PI3K levels were not found to be significantly affected. Combination therapy of XCT790 with paclitaxel elicited a synergistic inhibitory effect. Additionally, we found that XCT790 significantly inhibited in vivo tumor growth and angiogenesis, and induced apoptosis without a reduction in body weight, in xenograft models (p < 0.01). CONCLUSIONS From our data we conclude that XCT790 has an anti-tumor effect on endometrial cancer cells in vitro and in vivo. As such, it may serve as a novel therapeutic agent for endometrial cancer.
Collapse
Affiliation(s)
- Tetsuya Kokabu
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan.
| | - Hiroshi Matsushima
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kaori Yoriki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Hisashi Kataoka
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Yosuke Tarumi
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Jo Kitawaki
- Department of Obstetrics and Gynecology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kamigyo-ku, Kyoto, 602-8566, Japan
| |
Collapse
|
16
|
Emerging Roles of Estrogen-Related Receptors in the Brain: Potential Interactions with Estrogen Signaling. Int J Mol Sci 2018; 19:ijms19041091. [PMID: 29621182 PMCID: PMC5979530 DOI: 10.3390/ijms19041091] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/21/2018] [Accepted: 03/30/2018] [Indexed: 01/22/2023] Open
Abstract
In addition to their well-known role in the female reproductive system, estrogens can act in the brain to regulate a wide range of behaviors and physiological functions in both sexes. Over the past few decades, genetically modified animal models have greatly increased our knowledge about the roles of estrogen receptor (ER) signaling in the brain in behavioral and physiological regulations. However, less attention has been paid to the estrogen-related receptors (ERRs), the members of orphan nuclear receptors whose sequences are homologous to ERs but lack estrogen-binding ability. While endogenous ligands of ERRs remain to be determined, they seemingly share transcriptional targets with ERs and their expression can be directly regulated by ERs through the estrogen-response element embedded within the regulatory region of the genes encoding ERRs. Despite the broad expression of ERRs in the brain, we have just begun to understand the fundamental roles they play at molecular, cellular, and circuit levels. Here, we review recent research advancement in understanding the roles of ERs and ERRs in the brain, with particular emphasis on ERRs, and discuss possible cross-talk between ERs and ERRs in behavioral and physiological regulations.
Collapse
|
17
|
Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G, Torricelli F, Catellani F, Faria do Valle I, Remondini D, Castellani G, Ragazzi M, Piana S, Ciarrocchi A. RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucleic Acids Res 2017; 45:11249-11267. [PMID: 28981843 PMCID: PMC5737559 DOI: 10.1093/nar/gkx802] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown. Here we showed that RUNX2 transcription in thyroid and breast cancer requires the cooperation of three distantly located enhancers (ENHs) brought together by chromatin three-dimensional looping. We showed that BRD4 controls RUNX2 by binding to the newly identified ENHs and we demonstrated that the anti-proliferative effects of bromodomain inhibitors (BETi) is associated with RUNX2 transcriptional repression. We demonstrated that each RUNX2 ENH is potentially controlled by a distinct set of TFs and we identified c-JUN as the principal pivot of this regulatory platform. We also observed that accumulation of genetic mutations within these elements correlates with metastatic behavior in human thyroid tumors. Finally, we identified RAINs, a novel family of ENH-associated long non-coding RNAs, transcribed from the identified RUNX2 regulatory unit. Our data provide a new model to explain how RUNX2 expression is reactivated in thyroid and breast cancer and how cancer-driving signaling pathways converge on the regulation of this gene.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Francesca Catellani
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
18
|
mTOR/Raptor signaling is critical for skeletogenesis in mice through the regulation of Runx2 expression. Cell Death Differ 2017; 24:1886-1899. [PMID: 28686577 PMCID: PMC5635215 DOI: 10.1038/cdd.2017.110] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/08/2017] [Accepted: 05/31/2017] [Indexed: 02/07/2023] Open
Abstract
The mammalian target of rapamycin (mTOR)/regulatory-associated protein of mTOR (Raptor) pathway transmits and integrates different signals including growth factors, nutrients, and energy metabolism. Nearly all these signals have been found to play roles in skeletal biology. However, the contribution of mTOR/Raptor to osteoblast biology in vivo remains to be elucidated as the conclusions of recent studies are controversial. Here we report that mice with a deficiency of either mTOR or Raptor in preosteoblasts exhibited clavicular hypoplasia and delayed fontanelle fusion, similar to those found in human patients with cleidocranial dysplasia (CCD) haploinsufficient for the transcription factor runt-related transcription factor 2 (Runx2) or those identified in Runx2+/− mice. Mechanistic analysis revealed that the mTOR-Raptor-S6K1 axis regulates Runx2 expression through phosphorylation of estrogen receptor α, which binds to Distal-less homeobox 5 (DLX5) and augments the activity of Runx2 enhancer. Moreover, heterozygous mutation of raptor in osteoblasts aggravates the bone defects observed in Runx2+/− mice, indicating a genetic interaction between Raptor and Runx2. Collectively, these findings reveal that mTOR/Raptor signaling is essential for bone formation in vivo through the regulation of Runx2 expression. These results also suggest that a selective mTOR/Raptor antagonist, which has been developed for treatment of many diseases, may have the side effect of causing bone loss.
Collapse
|
19
|
Wei Q, He M, Chen M, Chen Z, Yang F, Wang H, Zhang J, He W. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression. Biomed Pharmacother 2017; 91:581-589. [DOI: 10.1016/j.biopha.2017.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
|
20
|
Sancisi V, Ciarrocchi A. Role of CBX4 in the Colorectal Carcinoma Metastasis-Letter. Cancer Res 2017; 77:2548-2549. [PMID: 28428280 DOI: 10.1158/0008-5472.can-17-0249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Azienda Ospedaliera, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda Ospedaliera, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
21
|
Wang X, Kang T. Role of CBX4 in the Colorectal Carcinoma Metastasis-Response. Cancer Res 2017; 77:2550-2551. [PMID: 28428281 DOI: 10.1158/0008-5472.can-17-0594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 11/16/2022]
Affiliation(s)
- Xin Wang
- Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Tiebang Kang
- Sun Yat-sen University Cancer Center, Guangzhou, China. .,State Key Laboratory of Oncology in South China, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| |
Collapse
|
22
|
Role of Runx2 in breast cancer-mediated bone metastasis. Int J Biol Macromol 2017; 99:608-614. [PMID: 28268169 DOI: 10.1016/j.ijbiomac.2017.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/21/2022]
Abstract
Breast cancer is one of the most prevalent forms of cancer in women. The currently available treatment for breast cancer is mostly curative except when it becomes metastatic. One of the major sites for metastasis of breast cancer is the bone. Homing of the circulating tumor cells is tightly regulated including a number of factors present in the cells and their microenvironment. Runx2, a transcription factor plays an important role in osteogenesis and breast cancer mediated bone metastases. One of the recent advances in molecular therapy includes the discovery of the small, non-coding microRNAs (miRNAs) and they target specific genes to reduce their expression at the post-transcriptional level. This review provides an outline of breast cancer mediated bone metastasis and summarizes the recent development on the regulation of Runx2 expression by miRNAs which can lead to novel molecular therapeutics for the same.
Collapse
|
23
|
Chuffa LGDA, Lupi-Júnior LA, Costa AB, Amorim JPDA, Seiva FRF. The role of sex hormones and steroid receptors on female reproductive cancers. Steroids 2017; 118:93-108. [PMID: 28041951 DOI: 10.1016/j.steroids.2016.12.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/10/2016] [Accepted: 12/24/2016] [Indexed: 02/08/2023]
Abstract
Sex steroids have been widely described to be associated with a number of human diseases, including hormone-dependent tumors. Several studies have been concerned about the factors regulating the availability of sex steroids and its importance in the pathophysiological aspects of the reproductive cancers in women. In premenopausal women, large fluctuations in the concentration of circulating estradiol (E2) and progesterone (P4) orchestrate many events across the menstrual cycle. After menopause, the levels of circulating E2 and P4 decline but remain at high concentration in the peripheral tissues. Notably, there is a strong relationship between circulating sex hormones and female reproductive cancers (e.g. ovarian, breast, and endometrial cancers). These hormones activate a number of specific signaling pathways after binding either to estrogen receptors (ERs), especially ERα, ERα36, and ERβ or progesterone receptors (PRs). Importantly, the course of the disease will depend on particular transactivation pathway. Identifying ER- or PR-positive tumors will benefit patients in terms of proper endocrine therapy. Based on hormonal responsiveness, effective prevention methods for ovarian, breast, and endometrial cancers represent a special opportunity for women at risk of malignancies. Hormone replacement therapy (HRT) might significantly increase the risk of these cancer types, and endocrine treatments targeting ER signaling may be helpful against E2-dependent tumors. This review will present the role of sex steroids and their receptors associated with the risk of developing female reproductive cancers, with emphasis on E2 levels in pre and postmenopausal women. In addition, new therapeutic strategies for improving the survival rate outcomes in women will be addressed.
Collapse
Affiliation(s)
| | - Luiz Antonio Lupi-Júnior
- Department of Anatomy, IBB/UNESP, Institute of Biosciences of Botucatu, Univ. Estadual Paulista, SP, Brazil
| | - Aline Balandis Costa
- Department of Nursing, UENP/CLM - Universidade Estadual do Norte do Paraná, PR, Brazil
| | | | | |
Collapse
|
24
|
Han L, Liu B, Jiang L, Liu J, Han S. MicroRNA-497 downregulation contributes to cell proliferation, migration, and invasion of estrogen receptor alpha negative breast cancer by targeting estrogen-related receptor alpha. Tumour Biol 2016; 37:13205-13214. [PMID: 27456360 DOI: 10.1007/s13277-016-5200-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/13/2016] [Indexed: 02/07/2023] Open
Abstract
Metastasis has become the main challenge for treatment of estrogen receptor alpha (ERα) negative breast cancer. Here, we found a negative correlation between miR-497 and estrogen-related receptor alpha (ERRα), a nuclear receptor overexpressed in ERα negative breast cancer. Targeted inhibition of ERRα by si-RNA increased miR-497 expression while overexpression of ERRα inhibited miR-497 expression. Further investigation showed that miR-497 targeted ERRα by binding to the 3'UTR region of ERRα. Luciferase assay and ChIP assay confirmed that ERα directly regulated the transcription of miR-497, suggesting that loss of ERα lowered miR-497 level in ERα negative breast cancer. Further, overexpression of miR-497 not only inhibited ERRα expression but also reduced MIF level and MMP9 activity, which led to significant decreases in cell proliferation, migration, and invasion of ERα negative breast cancer. Taken together, our findings suggested that, in ERα negative breast cancer, the low level of ERα reduced miR-497 expression, which promoted ERRα expression that enhanced cell proliferation, migration, and invasion by increasing MIF expression and MMP9 activity.
Collapse
Affiliation(s)
- Li Han
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China.
| | - Bo Liu
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Lixi Jiang
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Junyan Liu
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| | - Shumei Han
- Department of Internal Medicine Oncology, Shandong Tumor Hospital and Institute, No.440 Ji Yan Road, Jinan, 250117, China
| |
Collapse
|
25
|
Zhang L, Wong J, Vanacker JM. The estrogen-related receptors (ERRs): potential targets against bone loss. Cell Mol Life Sci 2016; 73:3781-7. [PMID: 27514376 PMCID: PMC11108346 DOI: 10.1007/s00018-016-2328-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 01/20/2023]
Abstract
Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.
Collapse
Affiliation(s)
- Ling Zhang
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Université de Lyon, Université Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jiemin Wong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, CNRS UMR5242, Université de Lyon, Université Lyon I, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
26
|
Miao M, Yan X, Guo L, Li P. Effect of Cynomorium total flavone on depression model of perimenopausal rat. Saudi J Biol Sci 2016; 24:139-148. [PMID: 28053584 PMCID: PMC5198975 DOI: 10.1016/j.sjbs.2016.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 11/03/2022] Open
Abstract
Purpose To observe the effect of cynomorium total flavone on the depression model of perimenopausal rat and to analyze the action characteristics of cynomorium total flavone on depression of rat with perimenopausal syndrome. Method Duplicate the model of rat with perimenopausal depression based on the combined method of incomplete castration and chronic stimulation, and keep drug administration for 35d. And then measure related behavior indicators and the change of biochemical index level in serum and brains; measure the estrogen/androgen receptor (ER/AR) in related tissues and the ERmRNA expression in hypothalamus. Result It can be seen that cynomorium total flavone can significantly improve the behavior indicators of rat with perimenopausal depression; obviously or significantly change the level of related biomedical indexes in serum and brains of perimenopausal depressed rat; obviously or significantly increase the expression of ER/AR in related tissues of perimenopausal depressed rat; obviously or significantly increase the ERmRNA expression in hypothalamus. Conclusion Cynomorium total flavone can adjust hypothalamic-pituitary-gonadal axis by increasing E2, and make related biomedical indexes and hormone receptors tend to be normal, so as to relieve perimenopausal syndrome and perimenopausal syndrome with depression.
Collapse
Affiliation(s)
- Mingsan Miao
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
| | - Xiaoli Yan
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
| | - Lin Guo
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
| | - Pengfei Li
- Henan University of Traditional Chinese Medicine, Zhengzhou 450008, China
| |
Collapse
|
27
|
Carnesecchi J, Vanacker JM. Estrogen-Related Receptors and the control of bone cell fate. Mol Cell Endocrinol 2016; 432:37-43. [PMID: 26206717 DOI: 10.1016/j.mce.2015.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/23/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022]
Abstract
Bone loss is naturally occurring in aging males and females and exacerbated in the latter after menopause, altogether leading to cumulative skeleton fragility and increased fracture risk. Two types of therapeutic strategies can be envisioned to counteract age- or menopause-associated bone loss, aiming at either reducing bone resorption exerted by osteoclasts or, alternatively, promoting bone formation by osteoblasts. We here summarize data suggesting that inhibition of the Estrogen-Related Receptors α and/or γ could promote bone formation and compensate for bone loss induced by ageing or estrogen-deficiency.
Collapse
Affiliation(s)
- Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France.
| |
Collapse
|
28
|
Gomes PS, Zomorodian A, Kwiatkowski L, Lutze R, Balkowiec A, Colaço B, Pinheiro V, Fernandes JCS, Montemor MF, Fernandes MH. In vivo assessment of a new multifunctional coating architecture for improved Mg alloy biocompatibility. ACTA ACUST UNITED AC 2016; 11:045007. [PMID: 27508333 DOI: 10.1088/1748-6041/11/4/045007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnesium alloys are regarded as potential biodegradable load-bearing biomaterials for orthopedic applications due to their physico-chemical and biomechanical properties. However, their clinical applicability is restricted by their high degradation rate, which limits the physiological reconstruction of the neighbouring tissues. In this work, a multifunctional coating architecture was developed on an AZ31 alloy by conjoining an anodization process with the deposition of a polymeric-based layer consisting of polyether imine reinforced with hydroxyapatite nanoparticles, aiming at improved control of the corrosion activity and biological performance of the Mg substrate. Anodization and coating protocols were evaluated either independently or combined for corrosion resistance and biological behaviour, i.e. the irritation potential and angiogenic capability within a chicken chorioallantoic membrane assay, and bone tissue response following tibia implantation within a rabbit model. Electrochemical impedance spectroscopy (EIS) analysis showed that coated Mg constructs, particularly anodized plus coated with AZ31, exhibited excellent stability compared to the anodized alloy and, particularly, to the bare AZ31. Microtomographic evaluation of the implanted samples correlated with these degradation results. Mg constructs displayed a non-irritating behaviour, and were associated with high levels of vascular ingrowth. Bone ingrowth neighbouring the implanted constructs was observed for all samples, with coated and anodized plus coated samples presenting the highest bone formation. Gene expression analysis suggested that the enhanced bone tissue formation was associated with the boost in osteogenic activity through Runx2 upregulation, following the activation of PGC-1α/ERRα signaling. Overall, the developed multifunctional coatings appear to be a promising strategy to obtain safe and bioactive biodegradable Mg-based implants with potential applications within bone tissue.
Collapse
Affiliation(s)
- Pedro S Gomes
- Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, U. Porto, R. Dr Manuel Pereira da Silva, 4200-393 Porto, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tribollet V, Barenton B, Kroiss A, Vincent S, Zhang L, Forcet C, Cerutti C, Périan S, Allioli N, Samarut J, Vanacker JM. miR-135a Inhibits the Invasion of Cancer Cells via Suppression of ERRα. PLoS One 2016; 11:e0156445. [PMID: 27227989 PMCID: PMC4881992 DOI: 10.1371/journal.pone.0156445] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/13/2016] [Indexed: 01/04/2023] Open
Abstract
MicroRNA-135a (miR-135a) down-modulates parameters of cancer progression and its expression is decreased in metastatic breast cancers (as compared to non-metastatic tumors) as well as in prostate tumors relative to normal tissue. These expression and activity patterns are opposite to those of the Estrogen-Related Receptor α (ERRα), an orphan member of the nuclear receptor family. Indeed high expression of ERRα correlates with poor prognosis in breast and prostate cancers, and the receptor promotes various traits of cancer aggressiveness including cell invasion. Here we show that miR-135a down-regulates the expression of ERRα through specific sequences of its 3'UTR. As a consequence miR-135a also reduces the expression of downstream targets of ERRα. miR-135a also decreases cell invasive potential in an ERRα-dependent manner. Our results suggest that the decreased expression of miR-135a in metastatic tumors leads to elevated ERRα expression, resulting in increased cell invasion capacities.
Collapse
Affiliation(s)
- Violaine Tribollet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Bruno Barenton
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Auriane Kroiss
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Séverine Vincent
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Ling Zhang
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Christelle Forcet
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Catherine Cerutti
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Séverine Périan
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Nathalie Allioli
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- Institut des Sciences Pharmaceutiques et Biologiques, Faculté de Pharmacie, Université de Lyon, Lyon, France
| | - Jacques Samarut
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
- Faculté de Médecine Lyon-Sud, Université de Lyon, Lyon, France
- UMOMT, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Lyon, France
| | - Jean-Marc Vanacker
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon, France
| |
Collapse
|
30
|
Xu Z, Liu J, Gu L, Ma X, Huang B, Pan X. Research progress on the reproductive and non-reproductive endocrine tumors by estrogen-related receptors. J Steroid Biochem Mol Biol 2016; 158:22-30. [PMID: 26802897 DOI: 10.1016/j.jsbmb.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/03/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022]
Abstract
Oncologists have traditionally considered that tumorigenesis are closely related to classical nuclear estrogen receptors (ERs), such as estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ), through the ligands binding and target gene transcription induction. Estrogen-related receptors (ERRs) have similar structures with ERs, which are also gradually thought to be relevant to reproductive endocrine tumor diseases, even non-reproductive endocrine tumors. In this review, different subtypes of ERRs and their structures firstly will be introduced, then the expression patterns in gynecological oncology (i.e., breast cancer, endometrial cancer, and ovarian cancer), male genitourinary system malignancy especially prostatic cancer along with other non-reproductive endocrine tumors (i.e., lung cancer, colorectal cancer, and liver cancer) will be described, and simultaneously the role of tumorigenesis related to ERRs will be discussed. Therefore, the review is benefit to explore the way of tumor prevention and treatment.
Collapse
Affiliation(s)
- Zhixiang Xu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Jun Liu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lipeng Gu
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xiaodong Ma
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Bin Huang
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faulty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
31
|
Chuang SC, Chen CH, Fu YC, Tai IC, Li CJ, Chang LF, Ho ML, Chang JK. Estrogen receptor mediates simvastatin-stimulated osteogenic effects in bone marrow mesenchymal stem cells. Biochem Pharmacol 2015; 98:453-64. [PMID: 26410676 DOI: 10.1016/j.bcp.2015.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/22/2015] [Indexed: 11/18/2022]
Abstract
Simvastatin, an HMG-CoA reductase inhibitor, is known to promote osteogenic differentiation. However, the mechanism underlying simvastatin-induced osteogenesis is not well understood. In this study, we hypothesize that the estrogen receptor (ER) mediates simvastatin-induced osteogenic differentiation. ER antagonists and siRNA were used to determine the involvement of the ER in simvastatin-induced osteogenesis in mouse bone marrow mesenchymal stem cells (D1 cells). Osteogenesis was evaluated by mRNA expression, protein level/activity of osteogenic markers, and mineralization. The estrogen response element (ERE) promoter activity and the ER-simvastatin binding affinity were examined. Our results showed that the simvastatin-induced osteogenic effects were decreased by treatment with ERα antagonists and ERα siRNA but not by an antagonist specific for the G protein-coupled estrogen receptor (GPER-1). The simvastatin-induced osteogenic effects were further increased by E2 treatment and were reversed by ERα antagonists or siRNA treatment. Luciferase reporter gene assays demonstrated that simvastatin increase ERα-dependent transcriptional activity that was suppressed by ERα antagonists. Furthermore, the ERα-simvastatin binding assay showed that IC50 value of simvastatin is 7.85 μM and that of E2 is 32.8 nM, indicating that simvastatin is a weak ligand for ERα. These results suggest that simvastatin-stimulated osteogenesis is mediated by ERα but not GPER-1. Moreover, this is the first report to demonstrate that simvastatin acts as an ERα ligand and a co-activator to enhance ERα-dependent transcriptional activity and thus promotes osteogenesis. These results indicate that simvastatin-induced osteogenesis is mediated via an ERα-dependent pathway.
Collapse
Affiliation(s)
- Shu-Chun Chuang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Hwan Chen
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chin Fu
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Chun Tai
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Ju Li
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Fu Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mei-Ling Ho
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan.
| | - Je-Ken Chang
- Orthopedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
32
|
Wysokinski D, Blasiak J, Pawlowska E. Role of RUNX2 in Breast Carcinogenesis. Int J Mol Sci 2015; 16:20969-93. [PMID: 26404249 PMCID: PMC4613236 DOI: 10.3390/ijms160920969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/12/2022] Open
Abstract
RUNX2 is a transcription factor playing the major role in osteogenesis, but it can be involved in DNA damage response, which is crucial for cancer transformation. RUNX2 can interact with cell cycle regulators: cyclin-dependent kinases, pRB and p21Cip1 proteins, as well as the master regulator of the cell cycle, the p53 tumor suppressor. RUNX2 is involved in many signaling pathways, including those important for estrogen signaling, which, in turn, are significant for breast carcinogenesis. RUNX2 can promote breast cancer development through Wnt and Tgfβ signaling pathways, especially in estrogen receptor (ER)-negative cases. ERα interacts directly with RUNX2 and regulates its activity. Moreover, the ERα gene has a RUNX2 binding site within its promoter. RUNX2 stimulates the expression of aromatase, an estrogen producing enzyme, increasing the level of estrogens, which in turn stimulate cell proliferation and replication errors, which can be turned into carcinogenic mutations. Exploring the role of RUNX2 in the pathogenesis of breast cancer can lead to revealing new therapeutic targets.
Collapse
Affiliation(s)
- Daniel Wysokinski
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| |
Collapse
|
33
|
Sancisi V, Gandolfi G, Ambrosetti DC, Ciarrocchi A. Histone Deacetylase Inhibitors Repress Tumoral Expression of the Proinvasive Factor RUNX2. Cancer Res 2015; 75:1868-82. [PMID: 25769725 DOI: 10.1158/0008-5472.can-14-2087] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 01/20/2015] [Indexed: 11/16/2022]
Abstract
Aberrant reactivation of embryonic pathways occurs commonly in cancer. The transcription factor RUNX2 plays a fundamental role during embryogenesis and is aberrantly reactivated during progression and metastasization of different types of human tumors. In this study, we attempted to dissect the molecular mechanisms governing RUNX2 expression and its aberrant reactivation. We identified a new regulatory enhancer element, located within the RUNX2 gene, which is responsible for the activation of the RUNX2 promoter and for the regulation of its expression in cancer cells. Furthermore, we have shown that treatment with the anticancer compounds histone deacetylase inhibitor (HDACi) results in a profound inhibition of RUNX2 expression, which is determined by the disruption of the transcription-activating complex on the identified enhancer. These data envisage a possible targeting strategy to counteract the oncongenic function of RUNX2 in cancer cells and provide evidence that the cytotoxic activity of HDACi in cancer is not only dependent on the reactivation of silenced oncosuppressors but also on the repression of oncogenic factors that are necessary for survival and progression.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| | - Greta Gandolfi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Davide Carlo Ambrosetti
- Laboratory of Molecular Biology, Department of Pharmacology and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Research and Statistic Infrastructure, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy.
| |
Collapse
|
34
|
Heger Z, Rodrigo MAM, Krizkova S, Zitka O, Beklova M, Kizek R, Adam V. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review). Oncol Lett 2014; 7:1341-1344. [PMID: 24765135 PMCID: PMC3997732 DOI: 10.3892/ol.2014.1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 01/03/2023] Open
Abstract
Estrogen receptors [ERs (subtypes α and β)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ERα positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Ondrej Zitka
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| |
Collapse
|