1
|
Akkaliyev M, Aukenov N, Massabayeva M, Apsalikov B, Rakhyzhanova S, Kuderbaev M. Genetic regulation of testosterone level in overweight males from the Kazakh population and its association with hypogonadism. J Med Life 2023; 16:1343-1349. [PMID: 38107722 PMCID: PMC10719783 DOI: 10.25122/jml-2022-0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 04/18/2023] [Indexed: 12/19/2023] Open
Abstract
Male hypogonadism and erectile dysfunction in different populations are associated with excess body weight. A key aspect in most studies is the metabolism of sexual hormones, primarily testosterone. At the same time, the binding protein sex hormone binding globulin (SHBG) can play a large role, as it determines the ratio of total and bioavailable testosterone in blood, i.e. both the hormone content and level of its production. Recent research has identified common mutations that affect SHBG levels, such as the rs727428 polymorphic locus, which is associated with alterations in histone protein function, affecting the regulation of ribonucleic acid (RNA) protein SHBG synthesis. Similar relationships have been observed for prevalent mutations, including rs5934505 and rs10822184, in diverse populations. This study involved 300 individuals of Kazakh nationality from the Eastern Kazakhstan region, examining three polymorphic variants of the SHBG gene (rs727428, rs5934505, and rs10822184). The participants were categorized into three groups: individuals with hypogonadism and obesity (group 1, n=85), those with excess body weight but no hypogonadism (group 2, n=70), and individuals with neither excess body weight nor hypogonadism (group 3, n=145). The frequency of mutant gene alleles impacting GPS (SHBG) synthesis in the Kazakh population was notably high, comparable to European and South-East Asian populations. However, the association between excess body weight and these mutations exhibited varying patterns. Hypogonadism was linked to decreased GPS levels, strongly correlating with total testosterone but not bioavailable testosterone. The retention of sexual functions in overweight men was not always directly related to BMI levels and GPS concentrations.
Collapse
Affiliation(s)
- Merkhat Akkaliyev
- Department of Surgical Disciplines, Semey Medical University, Semey, Kazakhstan
| | - Nurlan Aukenov
- Department of Health and Human Resources, Ministry of Health, Nur-Sultan, Kazakhstan
| | - Meruyert Massabayeva
- Center of Scientific Research Laboratory, Semey Medical University, Semey, Kazakhstan
| | - Bakytbek Apsalikov
- Department of Family Medicine, Semey Medical University, Semey, Kazakhstan
| | - Saule Rakhyzhanova
- Department of Normal Physiology, Semey Medical University, Semey, Kazakhstan
| | - Muratkhan Kuderbaev
- Department of Surgical Disciplines, Semey Medical University, Semey, Kazakhstan
| |
Collapse
|
2
|
Genetic analyses implicate complex links between adult testosterone levels and health and disease. COMMUNICATIONS MEDICINE 2023; 3:4. [PMID: 36653534 PMCID: PMC9849476 DOI: 10.1038/s43856-022-00226-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/07/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Testosterone levels are linked with diverse characteristics of human health, yet, whether these associations reflect correlation or causation remains debated. Here, we provide a broad perspective on the role of genetically determined testosterone on complex diseases in both sexes. METHODS Leveraging genetic and health registry data from the UK Biobank and FinnGen (total N = 625,650), we constructed polygenic scores (PGS) for total testosterone, sex-hormone binding globulin (SHBG) and free testosterone, associating these with 36 endpoints across different disease categories in the FinnGen. These analyses were combined with Mendelian Randomization (MR) and cross-sex PGS analyses to address causality. RESULTS We show testosterone and SHBG levels are intricately tied to metabolic health, but report lack of causality behind most associations, including type 2 diabetes (T2D). Across other disease domains, including 13 behavioral and neurological diseases, we similarly find little evidence for a substantial contribution from normal variation in testosterone levels. We nonetheless find genetically predicted testosterone affects many sex-specific traits, with a pronounced impact on female reproductive health, including causal contribution to PCOS-related traits like hirsutism and post-menopausal bleeding (PMB). We also illustrate how testosterone levels associate with antagonistic effects on stroke risk and reproductive endpoints between the sexes. CONCLUSIONS Overall, these findings provide insight into how genetically determined testosterone correlates with several health parameters in both sexes. Yet the lack of evidence for a causal contribution to most traits beyond sex-specific health underscores the complexity of the mechanisms linking testosterone levels to disease risk and sex differences.
Collapse
|
3
|
Yeap BB, Knuiman MW, Handelsman DJ, Ho KKY, Hui J, Divitini ML, Arscott GM, McQuillan B, Hung J, Beilby JP. A 5α-reductase (SRD5A2) polymorphism is associated with serum testosterone and sex hormone-binding globulin in men, while aromatase (CYP19A1) polymorphisms are associated with oestradiol and luteinizing hormone reciprocally. Clin Endocrinol (Oxf) 2019; 90:301-311. [PMID: 30353958 DOI: 10.1111/cen.13885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/09/2018] [Accepted: 10/18/2018] [Indexed: 01/04/2023]
Abstract
CONTEXT Pituitary luteinizing hormone (LH) stimulates testicular production of testosterone (T) which is metabolized to dihydrotestosterone (DHT) by 5α-reductase and to oestradiol (E2) by aromatase. How the activity of population variants in these enzymes impacts on gonadal function is unclear. We examined whether polymorphisms in 5α-reductase (SRD5A2) and aromatase (CYP19A1) genes predict circulating sex hormone concentrations. DESIGN Cross-sectional analysis of 1865 community-dwelling men aged 50.4 ± 16.8 years. MEASUREMENTS Early morning sera assayed for T, DHT and E2 (mass spectrometry), and SHBG and LH (immunoassay). Two SRD5A2 and eleven CYP19A1 polymorphisms were analysed by PCR. Regression models were adjusted for age and cardiometabolic risk factors. RESULTS SRD5A2 polymorphism rs9282858 GA vs. GG was associated with higher serum T (+1.5 nmol/L, P < 0.001) and higher SHBG (+3.3 nmol/L, P = 0.001). CYP19A1 polymorphisms were associated with higher serum E2 and lower LH in reciprocal fashion, from which the two-copy haplotype rs10046 = T/rs2899470 = G/rs11575899 = I/rs700518 = G/rs17703883 = T was associated with higher E2 (63.4 vs. 56.5 pmol/L, P = 0.001) and lower LH (3.9 vs. 4.5 IU/L, P = 0.001) compared to null copies. Conversely, rs10046 = C/rs2899470 = T/rs11575899 = D/rs700518 = A/rs17703883 = C was associated with lower E2 (51.8 vs. 62.0 pmol/L, P = 0.001) and higher LH (5.7 vs. 3.9 IU/L, P < 0.001). These haplotypes were associated primarily with differences in E2 in men <65 years and LH in men ≥65 years. CONCLUSIONS A 5α-reductase polymorphism predicts circulating T and SHBG, while aromatase polymorphisms predict E2 and LH in reciprocal fashion. Age and aromatase polymorphisms interact to affect E2 and LH. How these functional polymorphisms impact on male reproductive and general health outcomes requires further study.
Collapse
Affiliation(s)
- Bu B Yeap
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Matthew W Knuiman
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Ken K Y Ho
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Mark L Divitini
- School of Population and Global Health, University of Western Australia, Perth, Western Australia, Australia
| | - Gillian M Arscott
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Brendan McQuillan
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Joseph Hung
- Medical School, University of Western Australia, Perth, Western Australia, Australia
- Department of Cardiovascular Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - John P Beilby
- PathWest Laboratory Medicine, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| |
Collapse
|
4
|
Roosenboom J, Indencleef K, Lee MK, Hoskens H, White JD, Liu D, Hecht JT, Wehby GL, Moreno LM, Hodges-Simeon C, Feingold E, Marazita ML, Richmond S, Shriver MD, Claes P, Shaffer JR, Weinberg SM. SNPs Associated With Testosterone Levels Influence Human Facial Morphology. Front Genet 2018; 9:497. [PMID: 30405702 PMCID: PMC6206510 DOI: 10.3389/fgene.2018.00497] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022] Open
Abstract
Many factors influence human facial morphology, including genetics, age, nutrition, biomechanical forces, and endocrine factors. Moreover, facial features clearly differ between males and females, and these differences are driven primarily by the influence of sex hormones during growth and development. Specific genetic variants are known to influence circulating sex hormone levels in humans, which we hypothesize, in turn, affect facial features. In this study, we investigated the effects of testosterone-related genetic variants on facial morphology. We tested 32 genetic variants across 22 candidate genes related to levels of testosterone, sex hormone-binding globulin (SHGB) and dehydroepiandrosterone sulfate (DHEAS) in three cohorts of healthy individuals for which 3D facial surface images were available (Pittsburgh 3DFN, Penn State and ALSPAC cohorts; total n = 7418). Facial shape was described using a recently developed extension of the dense-surface correspondence approach, in which the 3D facial surface was partitioned into a set of 63 hierarchically organized modules. Each variant was tested against each of the facial surface modules in a multivariate genetic association-testing framework and meta-analyzed. Additionally, the association between these candidate SNPs and five facial ratios was investigated in the Pittsburgh 3DFN cohort. Two significant associations involving intronic variants of SHBG were found: both rs12150660 (p = 1.07E-07) and rs1799941 (p = 6.15E-06) showed an effect on mandible shape. Rs8023580 (an intronic variant of NR2F2-AS1) showed an association with the total and upper facial width to height ratios (p = 9.61E-04 and p = 7.35E-04, respectively). These results indicate that testosterone-related genetic variants affect normal-range facial morphology, and in particular, facial features known to exhibit strong sexual dimorphism in humans.
Collapse
Affiliation(s)
- Jasmien Roosenboom
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karlijne Indencleef
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hanne Hoskens
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - Julie D. White
- Department of Anthropology, Penn State University, University Park, PA, United States
| | - Dongjing Liu
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, United States
| | - George L. Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, United States
| | - Lina M. Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA, United States
| | | | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mary L. Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Mark D. Shriver
- Department of Anthropology, Penn State University, University Park, PA, United States
| | - Peter Claes
- ESAT-PSI, Department of Electrical Engineering, Medical Imaging Research Center, KU Leuven, Leuven, Belgium
| | - John R. Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Seth M. Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Hertz DL, Henry NL, Rae JM. Germline genetic predictors of aromatase inhibitor concentrations, estrogen suppression and drug efficacy and toxicity in breast cancer patients. Pharmacogenomics 2017; 18:481-499. [PMID: 28346074 PMCID: PMC6219438 DOI: 10.2217/pgs-2016-0205] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023] Open
Abstract
The third-generation aromatase inhibitors (AIs), anastrozole, letrozole and exemestane, are highly effective for the treatment of estrogen receptor-positive breast cancer in postmenopausal women. AIs inhibit the aromatase (CYP19A1)-mediated production of estrogens. Most patients taking AIs achieve undetectable blood estrogen concentrations resulting in drug efficacy with tolerable side effects. However, some patients have suboptimal outcomes, which may be due, in part, to inherited germline genetic variants. This review summarizes published germline genetic associations with AI treatment outcomes including systemic AI concentrations, estrogenic response to AIs, AI treatment efficacy and AI treatment toxicities. Significant associations are highlighted with commentary about prioritization for future validation to identify pharmacogenetic predictors of AI treatment outcomes that can be used to inform personalized treatment decisions in patients with estrogen receptor-positive breast cancer.
Collapse
Affiliation(s)
- Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI 48109-1065, USA
| | - N Lynn Henry
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84103, USA
| | - James M Rae
- Breast Oncology Program, University of Michigan Comprehensive Cancer Center, Ann Arbor, MI 48109-1065, USA
| |
Collapse
|
6
|
Durcan L, Petri M. Immunomodulators in SLE: Clinical evidence and immunologic actions. J Autoimmun 2016; 74:73-84. [PMID: 27371107 DOI: 10.1016/j.jaut.2016.06.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
Systemic lupus erythematosus (SLE) is a potentially fatal autoimmune disease. Current treatment strategies rely heavily on corticosteroids, which are in turn responsible for a significant burden of morbidity, and immunosuppressives which are limited by suboptimal efficacy, increased infections and malignancies. There are significant deficiencies in our immunosuppressive armamentarium, making immunomodulatory therapies crucial, offering the opportunity to prevent disease flare and the subsequent accrual of damage. Currently available immunomodulators include prasterone (synthetic dehydroeipandrosterone), vitamin D, hydroxychloroquine and belimumab. These therapies, acting via numerous cellular and cytokine pathways, have been shown to modify the aberrant immune responses associated with SLE without overt immunosuppression. Vitamin D is important in SLE and supplementation appears to have a positive impact on disease activity particularly proteinuria. Belimumab has specific immunomodulatory properties and is an effective therapy in those with specific serological and clinical characteristics predictive of response. Hydroxychloroquine is a crucial background medication in SLE with actions in many molecular pathways. It has disease specific effects in reducing flare, treating cutaneous disease and inflammatory arthralgias in addition to other effects such as reduced thrombosis, increased longevity, improved lipids, better glycemic control and blood pressure. Dehydroeipandrosterone is also an immunomodulator in SLE which can have positive effects on disease activity and has bone protective properties. This review outlines the immunologic actions of these drugs and the clinical evidence supporting their use.
Collapse
Affiliation(s)
- L Durcan
- Division of Rheumatology, University of Washington, Seattle, USA.
| | - M Petri
- Division of Rheumatology, Johns Hopkins University, School of Medicine, Baltimore, USA
| |
Collapse
|
7
|
Prough RA, Clark BJ, Klinge CM. Novel mechanisms for DHEA action. J Mol Endocrinol 2016; 56:R139-55. [PMID: 26908835 DOI: 10.1530/jme-16-0013] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/02/2023]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA), secreted by the adrenal cortex, gastrointestinal tract, gonads, and brain, and its sulfated metabolite DHEA-S are the most abundant endogeneous circulating steroid hormones. DHEA actions are classically associated with age-related changes in cardiovascular tissues, female fertility, metabolism, and neuronal/CNS functions. Early work on DHEA action focused on the metabolism to more potent sex hormones, testosterone and estradiol, and the subsequent effect on the activation of the androgen and estrogen steroid receptors. However, it is now clear that DHEA and DHEA-S act directly as ligands for many hepatic nuclear receptors and G-protein-coupled receptors. In addition, it can function to mediate acute cell signaling pathways. This review summarizes the molecular mechanisms by which DHEA acts in cells and animal models with a focus on the 'novel' and physiological modes of DHEA action.
Collapse
Affiliation(s)
- Russell A Prough
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Barbara J Clark
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
8
|
Schooling CM. Could androgens be relevant to partly explain why men have lower life expectancy than women? J Epidemiol Community Health 2015; 70:324-8. [PMID: 26659456 PMCID: PMC4819655 DOI: 10.1136/jech-2015-206336] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- C Mary Schooling
- School of Urban Public Health at Hunter College and City University of New York School of Public Health, New York, USA Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| |
Collapse
|
9
|
Lacchini R, Tanus-Santos JE. Pharmacogenetics of erectile dysfunction: navigating into uncharted waters. Pharmacogenomics 2015; 15:1519-38. [PMID: 25303302 DOI: 10.2217/pgs.14.110] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sildenafil and other PDE-5 inhibitors have revolutionized erectile dysfunction (ED) treatment. However, a significant number of patients do not respond or present adverse reactions to these drugs. While genetic polymorphisms may underlie this phenomenon, very little research has been undertaken in this research field. Most of the current knowledge is based on sildenafil, thus almost completely ignoring other important pharmacological therapies. Currently, the most promising genes with pharmacogenetic implications in ED are related to the nitric oxide and cGMP pathway, although other genes are likely to affect the responsiveness to treatment of ED. Nevertheless, the small number of studies available opens the possibility of further exploring other genes and phenotypes related to ED. This article provides a comprehensive overview of the genes being tested for their pharmacogenetic relevance in the therapy of ED.
Collapse
Affiliation(s)
- Riccardo Lacchini
- Department of Psychiatric Nursing & Human Sciences, Ribeirao Preto College of Nursing, University of Sao Paulo, Ribeirao Preto, Brazil
| | | |
Collapse
|
10
|
Abstract
Precision medicine can greatly benefit men's health by helping to prevent, diagnose, and treat prostate cancer, benign prostatic hyperplasia, infertility, hypogonadism, and erectile dysfunction. For example, precision medicine can facilitate the selection of men at high risk for prostate cancer for targeted prostate-specific antigen screening and chemoprevention administration, as well as assist in identifying men who are resistant to medical therapy for prostatic hyperplasia, who may instead require surgery. Precision medicine-trained clinicians can also let couples know whether their specific cause of infertility should be bypassed by sperm extraction and in vitro fertilization to prevent abnormalities in their offspring. Though precision medicine's role in the management of hypogonadism has yet to be defined, it could be used to identify biomarkers associated with individual patients' responses to treatment so that appropriate therapy can be prescribed. Last, precision medicine can improve erectile dysfunction treatment by identifying genetic polymorphisms that regulate response to medical therapies and by aiding in the selection of patients for further cardiovascular disease screening.
Collapse
|
11
|
Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BGA, Brown SJ, Feenstra B, Joseph J, Surdulescu GL, Zheng HF, Richards JB, Murray A, Spector TD, Wilson SG, Perry JRB. Genome-wide association study with 1000 genomes imputation identifies signals for nine sex hormone-related phenotypes. Eur J Hum Genet 2015; 24:284-90. [PMID: 26014426 PMCID: PMC4564946 DOI: 10.1038/ejhg.2015.102] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 03/02/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022] Open
Abstract
Genetic factors contribute strongly to sex hormone levels, yet knowledge of the regulatory mechanisms remains incomplete. Genome-wide association studies (GWAS) have identified only a small number of loci associated with sex hormone levels, with several reproductive hormones yet to be assessed. The aim of the study was to identify novel genetic variants contributing to the regulation of sex hormones. We performed GWAS using genotypes imputed from the 1000 Genomes reference panel. The study used genotype and phenotype data from a UK twin register. We included 2913 individuals (up to 294 males) from the Twins UK study, excluding individuals receiving hormone treatment. Phenotypes were standardised for age, sex, BMI, stage of menstrual cycle and menopausal status. We tested 7 879 351 autosomal SNPs for association with levels of dehydroepiandrosterone sulphate (DHEAS), oestradiol, free androgen index (FAI), follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin, progesterone, sex hormone-binding globulin and testosterone. Eight independent genetic variants reached genome-wide significance (P<5 × 10−8), with minor allele frequencies of 1.3–23.9%. Novel signals included variants for progesterone (P=7.68 × 10−12), oestradiol (P=1.63 × 10−8) and FAI (P=1.50 × 10−8). A genetic variant near the FSHB gene was identified which influenced both FSH (P=1.74 × 10−8) and LH (P=3.94 × 10−9) levels. A separate locus on chromosome 7 was associated with both DHEAS (P=1.82 × 10−14) and progesterone (P=6.09 × 10−14). This study highlights loci that are relevant to reproductive function and suggests overlap in the genetic basis of hormone regulation.
Collapse
Affiliation(s)
- Katherine S Ruth
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Purdey J Campbell
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Shelby Chew
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Ee Mun Lim
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Narelle Hadlow
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Bronwyn G A Stuckey
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia
| | - Suzanne J Brown
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - John Joseph
- Pathwest Laboratory Medicine WA, Nedlands, Australia
| | - Gabriela L Surdulescu
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Hou Feng Zheng
- Department of Medicine, Human Genetics, McGill University, Montreal, Canada
| | - J Brent Richards
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,Department of Medicine, Human Genetics, McGill University, Montreal, Canada.,Lady Davis Institute, McGill University, Montreal, Canada
| | - Anna Murray
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Scott G Wilson
- Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Australia.,School of Medicine and Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - John R B Perry
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK.,Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.,MRC Epidemiology Unit, Institute of Metabolic Science, Addenbrooke's Hospital, University of Cambridge, Hills Road, Cambridge, UK
| |
Collapse
|
12
|
Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol 2015; 145:213-25. [PMID: 25008465 DOI: 10.1016/j.jsbmb.2014.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/16/2014] [Accepted: 06/05/2014] [Indexed: 11/17/2022]
Abstract
Approximately 20-30% of PCOS women demonstrate excess adrenal precursor androgen (APA) production, primarily using DHEAS as a marker of APA in general and more specifically DHEA, synthesis. The role of APA excess in determining or causing PCOS is unclear, although observations in patients with inherited APA excess (e.g., patients with 21-hydroxylase deficient congenital classic or non-classic adrenal hyperplasia) demonstrate that APA excess can result in a PCOS-like phenotype. Inherited defects of the enzymes responsible for steroid biosynthesis, or defects in cortisol metabolism, account for only a very small fraction of women suffering from hyperandrogenism or APA excess. Rather, women with PCOS and APA excess appear to have a generalized exaggeration in adrenal steroidogenesis in response to ACTH stimulation, although they do not have an overt hypothalamic-pituitary-adrenal axis dysfunction. In general, extra-adrenal factors, including obesity, insulin and glucose levels, and ovarian secretions, play a limited role in the increased APA production observed in PCOS. Substantial heritabilities of APAs, particularly DHEAS, have been found in the general population and in women with PCOS; however, the handful of SNPs discovered to date account only for a small portion of the inheritance of these traits. Paradoxically, and as in men, elevated levels of DHEAS appear to be protective against cardiovascular risk in women, although the role of DHEAS in modulating this risk in women with PCOS remains unknown. In summary, the exact cause of APA excess in PCOS remains unclear, although it may reflect a generalized and inherited exaggeration in androgen biosynthesis of an inherited nature.
Collapse
Affiliation(s)
| | | | - Ricardo Azziz
- Georgia Regents University, Office of the President, 120 15th St., AA 311, Augusta, GA 30912, USA.
| |
Collapse
|
13
|
Gonzales GF, Chaupis D. Higher androgen bioactivity is associated with excessive erythrocytosis and chronic mountain sickness in Andean Highlanders: a review. Andrologia 2014; 47:729-43. [PMID: 25277225 DOI: 10.1111/and.12359] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2014] [Indexed: 01/12/2023] Open
Abstract
Populations living at high altitudes (HA), particularly in the Peruvian Central Andes, are characterised by presenting subjects with erythrocytosis and others with excessive erythrocytosis (EE)(Hb>21 g dl(-1) ). EE is associated with chronic mountain sickness (CMS), or lack of adaptation to HA. Testosterone is an erythropoietic hormone and it may play a role on EE at HA. The objective of the present review was to summarise findings on role of serum T levels on adaptation at HA and genes acting on this process. Men at HA without EE have higher androstenedione levels and low ratio androstenedione/testosterone than men with EE, suggesting low activity of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and this could be a mechanism of adaptation to HA. Higher conversion of dehydroepiandrosterone to testosterone in men with EE suggests nigher 17beta-HSD activity. Men with CMS at Peruvian Central Andes have two genes SENP1, and ANP32D with higher transcriptional response to hypoxia relative to those without. SUMO-specific protease 1 (SENP1) is an erythropoiesis regulator, which is essential for the stability and activity of hypoxia-inducible factor 1 (HIF-1α) under hypoxia. SENP1 reverses the hormone-augmented SUMOylation of androgen receptor (AR) increasing the transcription activity of AR.In conclusion, increased androgen activity is related with CMS.
Collapse
Affiliation(s)
- G F Gonzales
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - D Chaupis
- Laboratory of Endocrinology and Reproduction, High Altitude Research Institute and Department of Biological and Physiological Sciences, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|