1
|
Guo H, Zhang Z, Yang J, Liu J, Lin H, Yin N. Depot-specific acetylation profiles of adipose tissues-therapeutic targets for metabolically unhealthy obesity. Diabetol Metab Syndr 2025; 17:36. [PMID: 39881347 PMCID: PMC11776295 DOI: 10.1186/s13098-025-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/18/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Adipose tissue plays a critical role in the development of metabolically unhealthy obesity (MUO), with distinct adipose depots demonstrating functional differences. This study aimed to investigate the unique characteristics of subcutaneous (SA) and visceral adipose tissue (VA) in MUO. METHODS Paired omental VA and abdominal SA samples were obtained from four male patients with MUO and subjected to Four-Dimensional Data Independent Acquisition (4D-DIA) proteomic and lysine acetylation (Kac) analyses. Differentially expressed proteins and differentially modified Kac sites were identified, quantified, integrated, and subjected to functional analyses. Overlap analysis was performed between our datasets and previously published proteomic datasets in obesity populations. Additionally, differentially modified Kac sites on histones and their related enzymes were identified. RESULTS A total of 281 differentially expressed proteins and 147 differentially modified Kac sites were identified among 6,201 quantifiable proteins and 1,826 quantifiable Kac sites. Upregulated proteins and acetylated proteins in SA were predominantly enriched in extracellular matrix (ECM) remodeling pathways, while those in VA were enriched in energy metabolism and disease-related pathways. Differential ECM remodeling adaptability between SA and VA was primarily mediated by fibranexin and integrin, with COL6A1, COL6A3, and ITGA5 identified as differentially acetylated proteins overlapping between our dataset and previous studies. Potential unique proteins in MUO were enriched in inflammatory processes and closely associated with acetylated modifications. Specific differentially acetylated sites on histones, including H1.2K63, H1XK90, and H3.7K80, showed increased acetylation in VA, with N-deacetylase/N-sulfotransferase 1 (NDST1) identified as the associated enzyme. CONCLUSIONS This study provided a comprehensive dataset on the proteomic and acetylomic profiles of SA and VA, laying a foundation for investigating the pathogenesis and potential therapeutic approaches for MUO. SA was characterized by pronounced ECM remodeling regulation, while VA exhibited poorer adaptability and more prominent metabolic functional changes. These differential processes were influenced not only by protein expression levels but, more importantly, by acetylated modifications. The regulation of acetylated modifications in white adipose tissue (WAT), particularly for the differential Kac sites enriched in ECM remodeling and inflammation-related pathways, may serve as an effective intervention strategy for MUO, with NDST1 emerging as a promising therapeutic target. TRIAL REGISTRATION Not applicable since this study did not involve clinical intervention.
Collapse
Affiliation(s)
- Haoyue Guo
- The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China
| | - Zhiyi Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Juntao Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongwei Lin
- The Center for Obesity and Metabolic Disease, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| | - Ningbei Yin
- The Centre for Cleft Lip and Palate Treatment, Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 33 Badachu Road, Shijingshan District, Beijing, 100144, People's Republic of China.
| |
Collapse
|
2
|
Ferreira CR, Lima Gomes PCFD, Robison KM, Cooper BR, Shannahan JH. Implementation of multiomic mass spectrometry approaches for the evaluation of human health following environmental exposure. Mol Omics 2024; 20:296-321. [PMID: 38623720 PMCID: PMC11163948 DOI: 10.1039/d3mo00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Omics analyses collectively refer to the possibility of profiling genetic variants, RNA, epigenetic markers, proteins, lipids, and metabolites. The most common analytical approaches used for detecting molecules present within biofluids related to metabolism are vibrational spectroscopy techniques, represented by infrared, Raman, and nuclear magnetic resonance (NMR) spectroscopies and mass spectrometry (MS). Omics-based assessments utilizing MS are rapidly expanding and being applied to various scientific disciplines and clinical settings. Most of the omics instruments are operated by specialists in dedicated laboratories; however, the development of miniature portable omics has made the technology more available to users for field applications. Variations in molecular information gained from omics approaches are useful for evaluating human health following environmental exposure and the development and progression of numerous diseases. As MS technology develops so do statistical and machine learning methods for the detection of molecular deviations from personalized metabolism, which are correlated to altered health conditions, and they are intended to provide a multi-disciplinary overview for researchers interested in adding multiomic analysis to their current efforts. This includes an introduction to mass spectrometry-based omics technologies, current state-of-the-art capabilities and their respective strengths and limitations for surveying molecular information. Furthermore, we describe how knowledge gained from these assessments can be applied to personalized medicine and diagnostic strategies.
Collapse
Affiliation(s)
- Christina R Ferreira
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | | | - Kiley Marie Robison
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce R Cooper
- Purdue Metabolite Profiling Facility, Purdue University, West Lafayette, IN 47907, USA.
| | - Jonathan H Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
3
|
Ky A, McCoy AJ, Flesher CG, Friend NE, Li J, Akinleye K, Patsalis C, Lumeng CN, Putnam AJ, O’Rourke RW. Matrix density regulates adipocyte phenotype. Adipocyte 2023; 12:2268261. [PMID: 37815174 PMCID: PMC10566443 DOI: 10.1080/21623945.2023.2268261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023] Open
Abstract
Alterations of the extracellular matrix contribute to adipose tissue dysfunction in metabolic disease. We studied the role of matrix density in regulating human adipocyte phenotype in a tunable hydrogel culture system. Lipid accumulation was maximal in intermediate hydrogel density of 5 weight %, relative to 3% and 10%. Adipogenesis and lipid and oxidative metabolic gene pathways were enriched in adipocytes in 5% relative to 3% hydrogels, while fibrotic gene pathways were enriched in 3% hydrogels. These data demonstrate that the intermediate density matrix promotes a more adipogenic, less fibrotic adipocyte phenotype geared towards increased lipid and aerobic metabolism. These observations contribute to a growing literature describing the role of matrix density in regulating adipose tissue function.
Collapse
Affiliation(s)
- Alexander Ky
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Atticus J. McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Carmen G. Flesher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Graduate Program, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jie Li
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kore Akinleye
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Christopher Patsalis
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Carey N. Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Robert W. O’Rourke
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Arderiu G, Mendieta G, Gallinat A, Lambert C, Díez-Caballero A, Ballesta C, Badimon L. Type 2 Diabetes in Obesity: A Systems Biology Study on Serum and Adipose Tissue Proteomic Profiles. Int J Mol Sci 2023; 24:ijms24010827. [PMID: 36614270 PMCID: PMC9821208 DOI: 10.3390/ijms24010827] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023] Open
Abstract
Obesity is associated with metabolic disorders such as insulin resistance and type 2 diabetes mellitus (T2DM), further increasing an already heightened cardiovascular risk. Here, amongst obese class III bariatric surgery patients, we have investigated the effect of T2DM in serum and in two, same patient, adipose tissue (AT) depots through proteomic profile expression analyses. Serum and AT samples from subcutaneous (SAT) and visceral (VAT) fat were collected during bariatric surgery. Bead-based targeted multiplex assay systems were used to simultaneously detect and quantify multiple targets in serum samples (targeted proteomics) and analyze changes in adipokine serum composition. AT samples were assessed through an untargeted proteomics approach. Through a systems biology analysis of the proteomic data, information on the affected biological pathways was acquired. In obese class III individuals, the presence of T2DM induced a significantly higher systemic release of ghrelin, GLP-1, glucagon, MMP3, BAFF, chitinase 3-like 1, TNF-R1 and TNF-R2, and a lower systemic release of IL-8. SAT and VAT proteomes belonging to the same patient showed significant differences in local protein content. While the proteins upregulated in VAT were indicative of metabolic dysregulation, SAT protein upregulation suggested adequate endocrine regulation. The presence of T2DM significantly affected VAT protein composition through the upregulation of dysregulating metabolic pathways, but SAT protein composition was not significantly modified. Our results show that T2DM induces metabolic dysregulation in obese individuals with changes in systemic marker levels and impairment of proteostasis in VAT but not in SAT.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), 28029 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| | - Guiomar Mendieta
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Alex Gallinat
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
| | - Carmen Lambert
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- IPSA-Instituto de Investigación Sanitaria del Principado de Asturias, 33011 Oviedo, Spain
| | | | - Carlos Ballesta
- Centro Médico Teknon, Grupo Quiron Salut, 08022 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular-Program, Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CiberCV), 28029 Barcelona, Spain
- Correspondence: (G.A.); (L.B.); Tel.: +34-935565880 (G.A. & L.B.); Fax: +34-935565559 (G.A. & L.B.)
| |
Collapse
|
5
|
Costa VV, Sugimoto MA, Hubner J, Bonilha CS, Queiroz-Junior CM, Gonçalves-Pereira MH, Chen J, Gobbetti T, Libanio Rodrigues GO, Bambirra JL, Passos IB, Machado Lopes CE, Moreira TP, Bonjour K, Melo RCN, Oliveira MAP, Andrade MVM, Sousa LP, Souza DG, Santiago HDC, Perretti M, Teixeira MM. Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife 2022; 11:73853. [PMID: 35293862 PMCID: PMC8959599 DOI: 10.7554/elife.73853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Josy Hubner
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio S Bonilha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gisele Olinto Libanio Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana L Bambirra
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingredy B Passos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Elizabeth Machado Lopes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiane P Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kennedy Bonjour
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Milton A P Oliveira
- Tropical Pathology and Public Health Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Gloria Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Lopes MES, Marcantonio CC, de Molon RS, Cerri PS, Salmon CR, Mofatto LS, Nociti Junior FH, Deschner J, Cirelli JA, Nogueira AVB. Obesity influences the proteome of periodontal ligament tissues following periodontitis induction in rats. J Periodontal Res 2022; 57:545-557. [PMID: 35246839 DOI: 10.1111/jre.12983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Many studies have been conducted to better understand the molecular mechanism involved with periodontitis progression. There has been growing interest in the potential impact of obesity on periodontitis onset and progression, but the mechanisms involved remain to be elucidated. The present study was designed to determine the impact of obesity on experimentally induced periodontitis in rats and identify novel pathways involved. METHODS Sixteen Holtzman rats were distributed into two groups (n = 8): ligature-induced periodontitis (P) and obesity plus ligature-induced periodontitis (OP). Obesity was induced by a high-fat diet for 70 days, whereas periodontitis was induced for 20 days, with a cotton thread placed around the upper first molars bilaterally. Alveolar bone loss was measured by microtomographic analysis and histologically by histometry on the hemimaxillae. The protein composition of the periodontal ligament was evaluated by proteomic analysis. RESULTS Data analysis (body weight, adipose tissue weight, and blood test) confirmed obesity induction, whereas bone loss was confirmed by micro-CT and histologic analyses. Proteome analysis from the periodontal ligament tissues (PDL) identified 819 proteins, 53 exclusive to the P group, 28 exclusive to the OP group, and 738 commonly expressed. Validation was performed by immunohistochemistry for selected proteins (spondin1, vinculin, and TRAP). CONCLUSION Histologically, it was found that obesity did not significantly affect bone loss resulting from periodontitis. However, the present study's findings indicated that obesity affects the proteome of PDL submitted to experimental periodontitis, allowing for identifying potential targets for personalized approaches.
Collapse
Affiliation(s)
- Maria Eduarda Scordamaia Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Camila Chierici Marcantonio
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Rafael Scaf de Molon
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Paulo Sérgio Cerri
- Department of Morphology, School of Dentistry at Araraquara, São Paulo State University, Araraquara, Brazil
| | - Cristiane Ribeiro Salmon
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Luciana Souto Mofatto
- Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Francisco Humberto Nociti Junior
- Division of Periodontics, Department of Prosthodontics and Periodontics, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, Brazil.,São Leopoldo Mandic Research Center, Campinas, Brazil
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Joni Augusto Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil
| | - Andressa Vilas Boas Nogueira
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University - UNESP, Araraquara, Brazil.,Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
7
|
Wu H, Norton V, Cui K, Zhu B, Bhattacharjee S, Lu YW, Wang B, Shan D, Wong S, Dong Y, Chan SL, Cowan D, Xu J, Bielenberg DR, Zhou C, Chen H. Diabetes and Its Cardiovascular Complications: Comprehensive Network and Systematic Analyses. Front Cardiovasc Med 2022; 9:841928. [PMID: 35252405 PMCID: PMC8891533 DOI: 10.3389/fcvm.2022.841928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.
Collapse
Affiliation(s)
- Hao Wu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Vikram Norton
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Kui Cui
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Bo Zhu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Sudarshan Bhattacharjee
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yao Wei Lu
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Beibei Wang
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Dan Shan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Scott Wong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Yunzhou Dong
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Siu-Lung Chan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Douglas Cowan
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Jian Xu
- Department of Medicine, Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma, OK, United States
| | - Diane R Bielenberg
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| | - Changcheng Zhou
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Hong Chen
- Department of Surgery, Vascular Biology Program, Harvard Medical School, Boston Children's Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Hruska P, Kucera J, Pekar M, Holéczy P, Mazur M, Buzga M, Kuruczova D, Lenart P, Fialova Kucerova J, Potesil D, Zdrahal Z, Bienertova-Vasku J. Proteomic Signatures of Human Visceral and Subcutaneous Adipocytes. J Clin Endocrinol Metab 2022; 107:755-775. [PMID: 34669916 PMCID: PMC8851937 DOI: 10.1210/clinem/dgab756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Indexed: 11/21/2022]
Abstract
CONTEXT Adipose tissue distribution is a key factor influencing metabolic health and risk in obesity-associated comorbidities. OBJECTIVE Here we aim to compare the proteomic profiles of mature adipocytes from different depots. METHODS Abdominal subcutaneous (SA) and omental visceral adipocytes (VA) were isolated from paired adipose tissue biopsies obtained during bariatric surgery on 19 severely obese women (body mass index > 30 kg/m2) and analyzed using state-of-the-art mass spectrometry. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were performed to investigate proteome signature properties and to examine a possible association of the protein expression with the clinical data. RESULTS We identified 3686 protein groups and found 1140 differentially expressed proteins (adj. P value < 0.05), of which 576 proteins were upregulated in SA and 564 in VA samples. We provide a global protein profile of abdominal SA and omental VA, present the most differentially expressed pathways and processes distinguishing SA from VA, and correlate them with clinical and body composition data. We show that SA are significantly more active in processes linked to vesicular transport and secretion, and to increased lipid metabolism activity. Conversely, the expression of proteins involved in the mitochondrial energy metabolism and translational or biosynthetic activity is higher in VA. CONCLUSION Our analysis represents a valuable resource of protein expression profiles in abdominal SA and omental VA, highlighting key differences in their role in obesity.
Collapse
Affiliation(s)
- Pavel Hruska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jan Kucera
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Matej Pekar
- Department of Surgery, Vitkovice Hospital, 70300 Ostrava, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, 70300 Brno, Czech Republic
| | - Pavol Holéczy
- Department of Surgery, Vitkovice Hospital, 70300 Ostrava, Czech Republic
- Department of Surgical Disciplines, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Miloslav Mazur
- Department of Surgery, Vitkovice Hospital, 70300 Ostrava, Czech Republic
| | - Marek Buzga
- Department of Human Movement Studies, Faculty of Education, University of Ostrava, 70900 Ostrava, Czech Republic
- Department of Physiology and Pathohysiology, Faculty of Medicine, University of Ostrava, 70300 Ostrava, Czech Republic
| | - Daniela Kuruczova
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Peter Lenart
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
| | - Jana Fialova Kucerova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - David Potesil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: Julie Dobrovolna (previously Bienertova-Vasku), Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A18, Brno 625 00, Czech Republic.
| |
Collapse
|
9
|
Antoniotti V, Bellone S, Gonçalves Correia FP, Peri C, Tini S, Ricotti R, Mancioppi V, Gagliardi M, Spadaccini D, Caputo M, Corazzari M, Prodam F. Calreticulin and PDIA3, two markers of endoplasmic reticulum stress, are associated with metabolic alterations and insulin resistance in pediatric obesity: A pilot study. Front Endocrinol (Lausanne) 2022; 13:1003919. [PMID: 36213269 PMCID: PMC9537381 DOI: 10.3389/fendo.2022.1003919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Our aim was to evaluate the markers of endoplasmic reticulum (ER) stress among children and adolescents with obesity in relation to metabolic alterations. Calreticulin (CALR) and PDIA3 circulating levels were assessed on 52 pediatric subjects-26 patients with obesity and 26 normal weight controls (4-18 years)-enrolled in a pilot study. Clinical and metabolic evaluations were performed (BMI-SDS, insulin, and glucose at fasting and during an oral glucose tolerance test, lipid profile, blood pressure), and metabolic syndrome was detected. PDIA3 was higher (p < 0.02) and CALR slightly higher in children with obesity than in controls. PDIA3 was related positively to the Tanner stages. Both PDIA3 and CALR were positively associated with insulin resistance, cholesterol, and triglycerides and the number of criteria identifying metabolic syndrome and negatively with fasting and post-challenge insulin sensitivity. Our preliminary findings suggest the existence of a link between ER stress and metabolic changes behind obesity complications even at the pediatric age. CALR and PDIA3 could be early markers of insulin resistance and dyslipidemia-related ER stress useful to stratify patients at high risk of further complications.
Collapse
Affiliation(s)
- Valentina Antoniotti
- Struttura Complessa a Direzione Universitaria (SCDU) of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Struttura Complessa a Direzione Universitaria (SCDU) of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | | | - Caterina Peri
- Struttura Complessa a Direzione Universitaria (SCDU) of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Sabrina Tini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Roberta Ricotti
- Struttura Complessa a Direzione Universitaria (SCDU) of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Valentina Mancioppi
- Struttura Complessa a Direzione Universitaria (SCDU) of Pediatrics, Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Mara Gagliardi
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Daniele Spadaccini
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
| | - Marina Caputo
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Marco Corazzari
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Center for Translational Research on Autoimmune and Allergic Disease (CAAD) & Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
- *Correspondence: Marco Corazzari, ; Flavia Prodam,
| | - Flavia Prodam
- Department of Health Sciences, University of Piemonte Orientale, Novara, Italy
- Endocrinology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
- *Correspondence: Marco Corazzari, ; Flavia Prodam,
| |
Collapse
|
10
|
Cheng X, Fu Z, Xie W, Zhu L, Meng J. Preoperative circulating peroxiredoxin 1 levels as a predictor of non-alcoholic fatty liver disease remission after laparoscopic bariatric surgery. Front Endocrinol (Lausanne) 2022; 13:1072513. [PMID: 36619535 PMCID: PMC9810748 DOI: 10.3389/fendo.2022.1072513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance and can be improved after bariatric surgery. Circulating Peroxiredoxin 1 (Prdx1) protein was reported to regulate energy metabolism and inflammation. This study aimed to investigate the roles of serum prdx1 in NAFLD patients with obesity undergoing LSG and to develop a prognostic model to predict the remission of severe NAFLD. METHODS The data of 93 participants from a tertiary hospital were assessed. Before laparoscopic sleeve gastrectomy (LSG) and three months after LSG, anthropometric parameters, laboratory biochemical data, and abdominal B-ultrasound results were collected, and their hepatic steatosis index (HSI) and triglyceride-glucose index (TyG) were calculated. A NAFLD improvement (NAFLD-I) nomogram prediction model was constructed using the least absolute shrinkage and selection operator (LASSO) regression and multiple regression, and its predictive ability was verified in a validation cohort. RESULTS The baseline Prdx1 (OR: 0.887, 95% CI: 0.816-0.963, p=0.004), preoperative TyG (OR: 8.207, 95% CI: 1.903-35.394, p=0.005) and HSI (OR: 0.861, 95% CI: 0.765-0.969, p=0.013) levels were independently associated with NAFLD-I at three months after LSG in NAFLD patients with obesity. In the primary and validation cohorts, the area under the receiver operating characteristic (AUC) of the developed nomogram model was 0.891 and 0.878, respectively. The preoperative circulating Prdx1 levels of NAFLD patients with obesity were significantly reduced after LSG (25.32 [18.99-30.88] vs. 23.34 [15.86-26.42], p=0.001). Prdx1 was related to obesity and hepatic steatosis based on correlation analysis. CONCLUSION The nomogram based on preoperative serum prdx1, HSI and TyG could be an effective tool for predicting remission of severe NAFLD after LSG.
Collapse
Affiliation(s)
- Xiaoyun Cheng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
| | - Zhibing Fu
- Department of General Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xie
- Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Liyong Zhu
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
- *Correspondence: Jie Meng, ; Liyong Zhu,
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, Hunan, China
- *Correspondence: Jie Meng, ; Liyong Zhu,
| |
Collapse
|
11
|
van Bilsen JHM, van den Brink W, van den Hoek AM, Dulos R, Caspers MPM, Kleemann R, Wopereis S, Verschuren L. Mechanism-Based Biomarker Prediction for Low-Grade Inflammation in Liver and Adipose Tissue. Front Physiol 2021; 12:703370. [PMID: 34858196 PMCID: PMC8631400 DOI: 10.3389/fphys.2021.703370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/18/2021] [Indexed: 01/12/2023] Open
Abstract
Metabolic disorders, such as obesity and type 2 diabetes have a large impact on global health, especially in industrialized countries. Tissue-specific chronic low-grade inflammation is a key contributor to complications in metabolic disorders. To support therapeutic approaches to these complications, it is crucial to gain a deeper understanding of the inflammatory dynamics and to monitor them on the individual level. To this end, blood-based biomarkers reflecting the tissue-specific inflammatory dynamics would be of great value. Here, we describe an in silico approach to select candidate biomarkers for tissue-specific inflammation by using a priori mechanistic knowledge from pathways and tissue-derived molecules. The workflow resulted in a list of candidate markers, in part consisting of literature confirmed biomarkers as well as a set of novel, more innovative biomarkers that reflect inflammation in the liver and adipose tissue. The first step of biomarker verification was on murine tissue gene-level by inducing hepatic inflammation and adipose tissue inflammation through a high-fat diet. Our data showed that in silico predicted hepatic markers had a strong correlation to hepatic inflammation in the absence of a relation to adipose tissue inflammation, while others had a strong correlation to adipose tissue inflammation in the absence of a relation to liver inflammation. Secondly, we evaluated the human translational value by performing a curation step in the literature using studies that describe the regulation of the markers in human, which identified 9 hepatic (such as Serum Amyloid A, Haptoglobin, and Interleukin 18 Binding Protein) and 2 adipose (Resistin and MMP-9) inflammatory biomarkers at the highest level of confirmation. Here, we identified and pre-clinically verified a set of in silico predicted biomarkers for liver and adipose tissue inflammation which can be of great value to study future development of therapeutic/lifestyle interventions to combat metabolic inflammatory complications.
Collapse
Affiliation(s)
- Jolanda H M van Bilsen
- Department of Risk Assessment for Products in Development, The Netherlands Organization for Applied Scientific Research (TNO), Utrecht, Netherlands
| | - Willem van den Brink
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Remon Dulos
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, Netherlands
| | - Suzan Wopereis
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, Netherlands
| |
Collapse
|
12
|
Carruthers NJ, Strieder-Barboza C, Caruso JA, Flesher CG, Baker NA, Kerk SA, Ky A, Ehlers AP, Varban OA, Lyssiotis CA, Lumeng CN, Stemmer PM, O'Rourke RW. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity. Sci Rep 2021; 11:17394. [PMID: 34462518 PMCID: PMC8405693 DOI: 10.1038/s41598-021-96995-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 08/11/2021] [Indexed: 01/21/2023] Open
Abstract
Dysfunctional visceral adipose tissue (VAT) in obesity is associated with type 2 diabetes (DM) but underlying mechanisms remain unclear. Our objective in this discovery analysis was to identify genes and proteins regulated by DM to elucidate aberrant cellular metabolic and signaling mediators. We performed label-free proteomics and RNA-sequencing analysis of VAT from female bariatric surgery subjects with DM and without DM (NDM). We quantified 1965 protein groups, 23 proteins, and 372 genes that were differently abundant in DM vs. NDM VAT. Proteins downregulated in DM were related to fatty acid synthesis and mitochondrial function (fatty acid synthase, FASN; dihydrolipoyl dehydrogenase, mitochondrial, E3 component, DLD; succinate dehydrogenase-α, SDHA) while proteins upregulated in DM were associated with innate immunity and transcriptional regulation (vitronectin, VTN; endothelial protein C receptor, EPCR; signal transducer and activator of transcription 5B, STAT5B). Transcriptome indicated defects in innate inflammation, lipid metabolism, and extracellular matrix (ECM) function, and components of complement classical and alternative cascades. The VAT proteome and transcriptome shared 13 biological processes impacted by DM, related to complement activation, cell proliferation and migration, ECM organization, lipid metabolism, and gluconeogenesis. Our data revealed a marked effect of DM in downregulating FASN. We also demonstrate enrichment of complement factor B (CFB), coagulation factor XIII A chain (F13A1), thrombospondin 1 (THBS1), and integrins at mRNA and protein levels, albeit with lower q-values and lack of Western blot or PCR confirmation. Our findings suggest putative mechanisms of VAT dysfunction in DM.
Collapse
Affiliation(s)
- Nicholas J Carruthers
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Clarissa Strieder-Barboza
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Joseph A Caruso
- Department of Chemistry, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carmen G Flesher
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Nicki A Baker
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Samuel A Kerk
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Alexander Ky
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Anne P Ehlers
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA
| | - Oliver A Varban
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Carey N Lumeng
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Immunology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paul M Stemmer
- Proteomics Core Facility, Wayne State University, 42 W. Warren Ave, Detroit, MI, 48202, USA
| | - Robert W O'Rourke
- Department of Surgery, University of Michigan Medical School, 1301 Catherine St, Ann Arbor, MI, 48109, USA.
- Department of Surgery, Veterans Affairs Ann Arbor Healthcare System, 2215 Fuller Rd, Ann Arbor, MI, 48105, USA.
- Section of General Surgery, Department of Surgery, University of Michigan, 2210 Taubman Center-5343, 1500 E. Medical Center Drive, Ann Arbor, MI, 48109-5343, USA.
| |
Collapse
|
13
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
14
|
Palau-Rodriguez M, Marco-Ramell A, Casas-Agustench P, Tulipani S, Miñarro A, Sanchez-Pla A, Murri M, Tinahones FJ, Andres-Lacueva C. Visceral Adipose Tissue Phospholipid Signature of Insulin Sensitivity and Obesity. J Proteome Res 2021; 20:2410-2419. [PMID: 33760621 PMCID: PMC8631729 DOI: 10.1021/acs.jproteome.0c00918] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Alterations in visceral adipose tissue
(VAT) are closely linked
to cardiometabolic abnormalities. The aim of this work is to define
a metabolic signature in VAT of insulin resistance (IR) dependent
on, and independent of, obesity. An untargeted UPLC-Q-Exactive metabolomic
approach was carried out on the VAT of obese insulin-sensitive (IS)
and insulin-resistant subjects (N = 11 and N = 25, respectively) and nonobese IS and IR subjects (N = 25 and N = 10, respectively). The VAT
metabolome in obesity was defined among other things by changes in
the metabolism of lipids, nucleotides, carbohydrates, and amino acids,
whereas when combined with high IR, it affected the metabolism of
18 carbon fatty acyl-containing phospholipid species. A multimetabolite
model created by glycerophosphatidylinositol (18:0); glycerophosphatidylethanolamine
(18:2); glycerophosphatidylserine (18:0); and glycerophosphatidylcholine
(18:0/18:1), (18:2/18:2), and (18:2/18:3) exhibited a highly predictive
performance to identify the metabotype of “insulin-sensitive
obesity” among obese individuals [area under the curve (AUC)
96.7% (91.9–100)] and within the entire study population [AUC
87.6% (79.0–96.2)]. We demonstrated that IR has a unique and
shared metabolic signature dependent on, and independent of, obesity.
For it to be used in clinical practice, these findings need to be
validated in a more accessible sample, such as blood.
Collapse
Affiliation(s)
- Magalí Palau-Rodriguez
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Anna Marco-Ramell
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Patricia Casas-Agustench
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Sara Tulipani
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.,Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Malaga (IBIMA), Virgen de la Victoria University Hospital,, Málaga University, Malaga 29010, Spain
| | - Antonio Miñarro
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain.,Genetics, Microbiology and Statistics Department, Biology Faculty, University of Barcelona, Barcelona 08028, Spain
| | - Alex Sanchez-Pla
- CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain.,Genetics, Microbiology and Statistics Department, Biology Faculty, University of Barcelona, Barcelona 08028, Spain
| | - Mora Murri
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Malaga (IBIMA), Virgen de la Victoria University Hospital,, Málaga University, Malaga 29010, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Francisco J Tinahones
- Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Malaga (IBIMA), Virgen de la Victoria University Hospital,, Málaga University, Malaga 29010, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Cristina Andres-Lacueva
- Biomarkers and Nutrimetabolomics Laboratory, Department of Nutrition, Food Sciences and Gastronomy, XIA, INSA, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona 08028, Spain.,CIBER Fragilidad y Envejecimiento Saludable (CIBERfes), Instituto de Salud Carlos III, Madrid 28029, Spain
| |
Collapse
|
15
|
Diniz Pereira J, Gomes Fraga V, Morais Santos AL, Carvalho MDG, Caramelli P, Braga Gomes K. Alzheimer's disease and type 2 diabetes mellitus: A systematic review of proteomic studies. J Neurochem 2020; 156:753-776. [PMID: 32909269 DOI: 10.1111/jnc.15166] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 12/16/2022]
Abstract
Similar to dementia, the risk for developing type 2 diabetes mellitus (T2DM) increases with age, and T2DM also increases the risk for dementia, particularly Alzheimer's disease (AD). Although T2DM is primarily a peripheral disorder and AD is a central nervous system disease, both share some common features as they are chronic and complex diseases, and both show involvement of oxidative stress and inflammation in their progression. These characteristics suggest that T2DM may be associated with AD, which gave rise to a new term, type 3 diabetes (T3DM). In this study, we searched for matching peripheral proteomic biomarkers of AD and T2DM based in a systematic review of the available literature. We identified 17 common biomarkers that were differentially expressed in both patients with AD or T2DM when compared with healthy controls. These biomarkers could provide a useful workflow for screening T2DM patients at risk to develop AD.
Collapse
Affiliation(s)
- Jessica Diniz Pereira
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Gomes Fraga
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anna Luiza Morais Santos
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria das Graças Carvalho
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Caramelli
- Departamento de Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Karina Braga Gomes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
16
|
Getie A, Geda B, Alemayhu T, Bante A, Aschalew Z, wassihun B. Self- care practices and associated factors among adult diabetic patients in public hospitals of Dire Dawa administration, Eastern Ethiopia. BMC Public Health 2020; 20:1232. [PMID: 32787826 PMCID: PMC7425567 DOI: 10.1186/s12889-020-09338-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 08/03/2020] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Diabetes is a huge growing problem, and causes high and escalating costs to society. Self- care practice for adults with diabetes is not well addressed in sub-Saharan Africa including Ethiopia. To prevent serious morbidity and mortality, diabetes treatment requires a commitment to demanding self-care practice. This study aimed to assess self- care practices and its associated factors among adults with diabetes in Dire Dawa public hospitals of Eastern, Ethiopia. METHODS A cross-sectional study was conducted among 513 adults with diabetes. The study participants were selected through systematic random sampling. Data were collected from February 1st to March 1st, 2018. Patients were interviewed using a structured questionnaire. Data were entered into Epi-data version 3.3.1 and exported to SPSS version 22.0 for analysis. Bivariable and multivariable logistic regression with crude and adjusted odds ratios along with the 95% confidence interval was computed and interpreted accordingly. Good self-care was defined based on mean calculation; a result above the mean value had a good self-care practice, and a P-value of < 0.05 was considered to declare a result as statistically significant. RESULT The result of the study showed that 55.9%, (95% CI: 51.4, 60.3) of participants had good self-care practices. Good self-care practice was associated with having family support, treatment satisfaction, diabetes education, having glucometer, higher educational status, duration of the disease, high economic status, and having good knowledge. Self-care practice was significantly associated with good diabetes knowledge (AOR = 2.14, 95% CI: 1.37, 3.35), family support system (AOR = 2.69, 95% CI:1.56, 4.62), treatment satisfaction (AOR = 2.07, 95% CI:1.18, 3.62), diabetes education (AOR = 2.21, 95% CI: 1.35, 3.63), high economic status (AOR = 1.89, 95% CI: 1.01, 3.48), having glucometer,(AOR = 2.69, 95% CI:1.57, 4.63),higher educational status (AOR = 2.68, 95% CI: 1.31, 5.49), and duration of disease greater than 10 years AOR = 2.70, 95% CI: 1.17, 6.26). CONCLUSION In this study, a large number of adults had poor self-care practices which are very significant in controlling diabetes. Providing diabetes education, about self-care practices to the respondents and their families should be considerable.
Collapse
Affiliation(s)
- Asmare Getie
- College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Biftu Geda
- School of Nursing and Midwifery, Department of public health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Tadesse Alemayhu
- School of Nursing and Midwifery, Department of public health, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Agenehu Bante
- College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Zeleke Aschalew
- College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Biresaw wassihun
- College of Medicine and Health Sciences, Arba Minch University, Arba Minch, Ethiopia
| |
Collapse
|
17
|
Li Y, Ma Q, Li P, Wang J, Wang M, Fan Y, Wang T, Wang C, Wang T, Zhao B. Proteomics reveals different pathological processes of adipose tissue, liver, and skeletal muscle under insulin resistance. J Cell Physiol 2020; 235:6441-6461. [PMID: 32115712 DOI: 10.1002/jcp.29658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Type 2 diabetes mellitus is the most common type of diabetes, and insulin resistance (IR) is its core pathological mechanism. Proteomics is an ingenious and promising Omics technology that can comprehensively describe the global protein expression profiling of body or specific tissue, and is widely applied to the study of molecular mechanisms of diseases. In this paper, we focused on insulin target organs: adipose tissue, liver, and skeletal muscle, and analyzed the different pathological processes of IR in these three tissues based on proteomics research. By literature studies, we proposed that the main pathological processes of IR among target organs were diverse, which showed unique characteristics and focuses. We further summarized the differential proteins in target organs which were verified to be related to IR, and discussed the proteins that may play key roles in the emphasized pathological processes, aiming at discovering potentially specific differential proteins of IR, and providing new ideas for pathological mechanism research of IR.
Collapse
Affiliation(s)
- Yaqi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Quantao Ma
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Pengfei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingkang Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Min Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tieshan Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chunguo Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ting Wang
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
18
|
Johar D, Ahmed SM, El Hayek S, Al-Dewik N, Bahbah EI, Omar NH, Mustafa M, Salman DO, Fahmey A, Mottawea M, Azouz RAM, Bernstein L. Diabetes-induced Proteome Changes Throughout Development. Endocr Metab Immune Disord Drug Targets 2020; 19:732-743. [PMID: 31038056 DOI: 10.2174/1871530319666190305153810] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 10/31/2018] [Accepted: 11/25/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Diabetes Mellitus (DM) is a multisystemic disease involving the homeostasis of insulin secretion by the pancreatic islet beta cells (β-cells). It is associated with hypertension, renal disease, and arterial and arteriolar vascular diseases. DISCUSSION The classification of diabetes is identified as type 1 (gene linked β-cell destruction in childhood) and type 2 (late onset associated with β-cell overload and insulin resistance in peripheral tissues. Type 1 diabetes is characterized by insulin deficiency, type 2 diabetes by both insulin deficiency and insulin resistance. The former is a genetically programmed loss of insulin secretion whereas the latter constitutes a disruption of the homeostatic relationship between the opposing activity of β- cell insulin and alpha cell (α-cell) glucagon of the Islets of Langerhans. The condition could also occur in pregnancy, as a prenatal occurring event, possibly triggered by the hormonal changes of pregnancy combined with β-cell overload. This review discusses the molecular basis of the biomolecular changes that occur with respect to glucose homeostasis and related diseases in DM. The underlying link between pancreatic, renal, and microvascular diseases in DM is based on oxidative stress and the Unfolded Protein Response (UPR). CONCLUSION Studying proteome changes in diabetes can deepen our understanding of the biomolecular basis of disease and help us acquire more efficient therapies.
Collapse
Affiliation(s)
- Dina Johar
- Biomedical Science Program, University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt and Biochemistry and Nutrition Department, Ain Shams University Faculty of Women for Arts, Sciences and Education, Heliopolis, Cairo, Egypt
| | - Sara M Ahmed
- Clinical Pathology Department, Faculty of Medicine (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Samer El Hayek
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nader Al-Dewik
- Qatar Medical Genetic Center, Pediatrics Department, Hamad General Hospital (HGH), Hamad Medical Corporation (HMC), Doha, Qatar
| | - Eshak I Bahbah
- Faculty of Medicine, Al-Azhar University, Damietta, P.C. 34511, Egypt
| | - Nabil H Omar
- Pharmacy Department, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Doaa O Salman
- Genetics Unit, Histology and Cell biology department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Asmaa Fahmey
- Faculty of Pharmacy, Al-Mansoura University, Al-Mansoura, Egypt
| | - Mohamed Mottawea
- Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Rasha A M Azouz
- Molecular Biology Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Dokki, 12622 Giza, Egypt
| | - Larry Bernstein
- Triplex Consulting, 54 Firethorn Lane, Northampton, MA 01060, United States
| |
Collapse
|
19
|
Gulentie TM, Yesuf EM, Yazie TS, Kefale B. Predictors of Diabetes Self-Care Practice Among Patients with Type 2 Diabetes in Public Hospitals in Northeastern Ethiopia: A Facility-Based Cross-Sectional Study. Diabetes Metab Syndr Obes 2020; 13:3137-3147. [PMID: 32982346 PMCID: PMC7489949 DOI: 10.2147/dmso.s273682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/15/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Even though life-threatening complications in type 2 diabetes mellitus (T2DM) minimize through self-care practice, extensive studies in northeast Ethiopia have been scarce about self-care practice and predictors. This study aimed to assess diabetes self-care predictors among patients with T2DM patients at Dubti and Assaita hospitals in northeastern Ethiopia. METHODS A facility-based cross-sectional study was conducted among 403 patients with T2DM who followed-up in northeastern Ethiopia's Dubti and Assaita hospitals. Data were analyzed using SPSS version-22.0 after the data were entered, sorted and cleaned. Multiple stepwise backward logistic regression analysis was done for a P value of <0.25 to identify the independent predictors of self-care practice. RESULTS In the present study, males comprised 62% of the sex category. Overall, 63.8% of the study participants had adequate self-care practice, while 36.2% had inadequate self-care practice. Being younger age (AOR 2.27, 95% CI 1.27-4.07, P= 0.005), monthly income status with low (AOR 3.08, 95% CI 1.08-8.78, P= 0.04), average (AOR 2.43, 95% CI 1.15-5.09, P= 0.02) and high (AOR 2.68, 95% CI 1.03-6.99, P= 0.04), treated with oral hypoglycemic agents (OHA) (AOR 0.22, 95% CI 0.05-0.95, P = 0.04) and insulin (AOR 0.18, 95% CI 0.04-0.75, P= 0.01), having social support (AOR 3.09, 95% CI 1.76-5.4, P ≤ 0.01) and diabetic education from health professionals (AOR 5.53, 95% CI 1.92-15.93, P= 0.001) and media (AOR 2.63, 95% CI 1.47-4.7, P = 0.001) were the independent predictors of self-care practice. CONCLUSION In this study, the practice of self-care found to be sub-optimal among patients with T2DM. Independent predictors of self-care practice were age, monthly income, treatment regimen, social support, and diabetic education. Therefore, a suitable approach should be built to improve self-care practice with diabetes.
Collapse
Affiliation(s)
- Tesfaye Molla Gulentie
- Department of Drug Distribution, Pharmaceutical Fund and Supply Agency, Samara, Ethiopia
| | | | - Taklo Simeneh Yazie
- Pharmacology Unit and Research Team, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Amhara, Ethiopia
| | - Belayneh Kefale
- Clinical Pharmacy Unit and Research Team, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Amhara, Ethiopia
- Correspondence: Belayneh Kefale Clinical Pharmacy Unit and Research Team, Department of Pharmacy, College of Health Sciences, Debre Tabor University, PO Box 272, Debre Tabor, Amhara, EthiopiaTel +251 913805289/90 Email
| |
Collapse
|
20
|
Edén D, Panagiotou G, Mokhtari D, Eriksson JW, Åberg M, Siegbahn A. Adipocytes express tissue factor and FVII and are procoagulant in a TF/FVIIa-dependent manner. Ups J Med Sci 2019; 124:158-167. [PMID: 31407948 PMCID: PMC6758637 DOI: 10.1080/03009734.2019.1645248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Tissue factor (TF) combined with its ligand FVII initiates blood coagulation and intracellular signaling. Obese and type 2 diabetic subjects have increased TF expression in their adipose tissue and an increased risk for thrombotic complications. Here we address the role of TF/FVII on adipocyte functions. Materials and methods: Subcutaneous fat was obtained by means of needle aspiration from healthy volunteers, and adipocytes were isolated after collagenase digestion. 3T3-L1 fibroblasts kept in culture were differentiated into adipocytes by addition of IBMX, dexamethasone, rosiglitazone, and insulin to the media. Proteins and mRNA were analyzed by western blot and RT-PCR. Coagulation activity was determined by a colorimetric FX-assay. Lipolysis was measured as free glycerol using a colorimetric method. Glucose uptake was evaluated by scintillation counting of D-[U-14C] glucose. Results: In isolated human primary adipocytes we found expression of TF and FVII. TF expression was confirmed in 3T3-L1 adipocytes, and both cell types were found to be procoagulant in a TF/FVIIa-dependent manner. FXa was generated without FVIIa added to the coagulation assay, and active site-inhibited FVIIa blocked FXa formation, supporting our finding of FVII production by human primary adipocytes. There was no evidence for a role of TF in either lipolysis or glucose uptake in our experimental settings. Conclusion: Human primary adipocytes express active TF and FVII, and the TF/FVIIa complex formed on the adipocyte surface can activate substrate FX. Whether the TF/FVIIa complex conveys signaling pathways leading to biological functions and has any biological activity in adipocytes beyond coagulation remains to be elucidated.
Collapse
Affiliation(s)
- Desirée Edén
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Grigorios Panagiotou
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- CONTACT Agneta Siegbahn Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
López de Las Hazas MC, Martin-Hernández R, Crespo MC, Tomé-Carneiro J, Del Pozo-Acebo L, Ruiz-Roso MB, Escola-Gil JC, Osada J, Portillo MP, Martinez JA, Navarro MA, Rubió L, Motilva MJ, Visioli F, Dávalos A. Identification and validation of common molecular targets of hydroxytyrosol. Food Funct 2019; 10:4897-4910. [PMID: 31339147 DOI: 10.1039/c9fo01159e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydroxytyrosol (HT) is involved in healthful activities and is beneficial to lipid metabolism. Many investigations focused on finding tissue-specific targets of HT through the use of different omics approaches such as transcriptomics and proteomics. However, it is not clear which (if any) of the potential molecular targets of HT reported in different studies are concurrently affected in various tissues. Following the bioinformatic analyses of publicly available data from a selection of in vivo studies involving HT-supplementation, we selected differentially expressed lipid metabolism-related genes and proteins common to more than one study, for validation in rodent liver samples from the entire selection. Four miRNAs (miR-802-5p, miR-423-3p, miR-30a-5p, and miR-146b-5p) responded to HT supplementation. Of note, miR-802-5p was commonly regulated in the liver and intestine. Our premise was that, in an organ crucial for lipid metabolism such as the liver, consistent modulation should be found for a specific target of HT even if different doses and duration of HT supplementation were used in vivo. Even though our results show inconsistency regarding differentially expressed lipid metabolism-related genes and proteins across studies, we found Fgf21 and Rora as potential novel targets of HT. Omics approaches should be fine-tuned to better exploit the available databases.
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, Instituto Madrileño de Estudios Avanzados (IMDEA)-Alimentación, CEI UAM+CSIC, 28049 Madrid, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abdulwahab RA, Alaiya A, Shinwari Z, Allaith AAA, Giha HA. LC‑MS/MS proteomic analysis revealed novel associations of 37 proteins with T2DM and notable upregulation of immunoglobulins. Int J Mol Med 2019; 43:2118-2132. [PMID: 30864687 PMCID: PMC6443330 DOI: 10.3892/ijmm.2019.4127] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/04/2019] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a disease associated with a number of metabolic disturbances, including protein metabolism. In the present study, blood samples were obtained from Bahraini subjects, including 6 patients with T2DM and 6 age‑ and sex‑matched, non‑diabetic, healthy controls. Depleted and non‑depleted sera were prepared from the collected blood, and the global protein expression changes were evaluated by liquid chromatography tandem mass spectrometry. Only significantly and markedly differentially‑expressed proteins (P<0.05, analysis of variance; maximum fold change ≥1.5) were considered as candidate proteins for informatics analysis. Accordingly, a total of 62 proteins were identified to be differentially expressed in T2DM, compared with control subjects, and they were grouped functionally into 16 classes of proteins. The largest class was that of the immune‑associated proteins. Additionally, ~25 of these proteins (40%) had previously been associated with DM; however, the association of the other 37 proteins with T2DM was a novel observation. The majority of the identified proteins were upregulated in T2DM. The identified proteins could be involved in the pathogenesis of the disease or serve as disease biomarkers. Further validation of the identified proteins in a large study cohort is required, in order to fully access their potential clinical usefulness.
Collapse
Affiliation(s)
- Rabab Asghar Abdulwahab
- Integrated Science Division, College of Health Sciences, University of Bahrain, Manama 32038
- Al Jawhara Centre for Molecular Medicine and Inherited Disorders, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| | - Ayodele Alaiya
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Zakia Shinwari
- Proteomics Unit, Stem Cell and Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | - Hayder A. Giha
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama 26671, Kingdom of Bahrain
| |
Collapse
|
23
|
Sacca PA, Mazza ON, Scorticati C, Vitagliano G, Casas G, Calvo JC. Human Periprostatic Adipose Tissue: Secretome from Patients With Prostate Cancer or Benign Prostate Hyperplasia. Cancer Genomics Proteomics 2019; 16:29-58. [PMID: 30587498 DOI: 10.21873/cgp.20110] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND/AIM Periprostatic adipose tissue (PPAT) directs tumour behaviour. Microenvironment secretome provides information related to its biology. This study was performed to identify secreted proteins by PPAT, from both prostate cancer and benign prostate hyperplasia (BPH) patients. PATIENTS AND METHODS Liquid chromatography-mass spectrometry-based proteomic analysis was performed in PPAT-conditioned media (CM) from patients with prostate cancer (CMs-T) (stage T3: CM-T3, stage T2: CM-T2) or benign disease (CM-BPH). RESULTS The highest number and diversity of proteins was identified in CM-T3. Locomotion was the biological process mainly associated to CMs-T and reproduction to CM-T3. Immune responses were enriched in CMs-T. Extracellular matrix and structural proteins were associated to CMs-T. CM-T3 was enriched in proteins with catalytic activity and CM-T2 in proteins with defense/immunity activity. Metabolism and energy pathways were enriched in CM-T3 and those with immune system functions in CMs-T. Transport proteins were enriched in CM-T2 and CM-BPH. CONCLUSION Proteins and pathways reported in this study could be useful to distinguish stages of disease and may become targets for novel therapies.
Collapse
Affiliation(s)
- Paula Alejandra Sacca
- Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina
| | - Osvaldo Néstor Mazza
- Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital "José de San Martín", Buenos Aires, Argentina
| | - Carlos Scorticati
- Department of Urology, School of Medicine, University of Buenos Aires, Clínical Hospital "José de San Martín", Buenos Aires, Argentina
| | | | - Gabriel Casas
- Department of Pathology, Deutsches Hospital, Buenos Aires, Argentina
| | - Juan Carlos Calvo
- Institute of Biology and Experimental Medicine (IBYME), CONICET, Buenos Aires, Argentina.,Department of Biological Chemistry, School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
24
|
Vogel MAA, Wang P, Bouwman FG, Hoebers N, Blaak EE, Renes J, Mariman EC, Goossens GH. A comparison between the abdominal and femoral adipose tissue proteome of overweight and obese women. Sci Rep 2019; 9:4202. [PMID: 30862933 PMCID: PMC6414508 DOI: 10.1038/s41598-019-40992-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 02/20/2019] [Indexed: 12/20/2022] Open
Abstract
Body fat distribution is an important determinant of cardiometabolic health. Lower-body adipose tissue (AT) has protective characteristics as compared to upper-body fat, but the underlying depot-differences remain to be elucidated. Here, we compared the proteome and morphology of abdominal and femoral AT. Paired biopsies from abdominal and femoral subcutaneous AT were taken from eight overweight/obese (BMI ≥ 28 kg/m2) women with impaired glucose metabolism after an overnight fast. Proteins were isolated and quantified using liquid chromatography-mass spectrometry, and protein expression in abdominal and femoral subcutaneous AT was compared. Moreover, correlations between fat cell size and the proteome of both AT depots were determined. In total, 651 proteins were identified, of which 22 proteins tended to be differentially expressed between abdominal and femoral AT after removal of blood protein signals (p < 0.05). Proteins involved in cell structure organization and energy metabolism were differently expressed between AT depots. Fat cell size, which was higher in femoral AT, was significantly correlated with ADH1B, POSTN and LCP1. These findings suggest that there are only slight differences in protein expression between abdominal and femoral subcutaneous AT. It remains to be determined whether these differences, as well as differences in protein activity, contribute to functional and/or morphological differences between these fat depots.
Collapse
Affiliation(s)
- M A A Vogel
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - P Wang
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,Department of Clinical Genetics, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F G Bouwman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - N Hoebers
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Renes
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E C Mariman
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - G H Goossens
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Shang C, Sun W, Wang C, Wang X, Zhu H, Wang L, Yang H, Wang X, Gong F, Pan H. Comparative Proteomic Analysis of Visceral Adipose Tissue in Morbidly Obese and Normal Weight Chinese Women. Int J Endocrinol 2019; 2019:2302753. [PMID: 31929791 PMCID: PMC6935805 DOI: 10.1155/2019/2302753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Visceral adipose tissue (VAT) plays a central role in the balance of energy metabolism. The objective of this study was to investigate the differentially expressed proteins in VAT between morbidly obese (BMI >35 kg/m2) and normal weight Chinese women. METHOD Nine morbidly obese women and 8 normal weight women as controls were enrolled. Abdominal VAT was excised and analyzed by label-free one-dimensional liquid chromatography tandem mass spectrometry (1D-LC-MS/MS). Differentially expressed VAT proteins were further analyzed with Gene Ontology (GO) analysis and Ingenuity Pathway Analysis (IPA). Masson's trichrome staining and CD68 immunohistochemical staining of VAT were conducted in all subjects. RESULT A total of 124 differentially expressed proteins were found with a ≥2-fold difference. Forty-one proteins were upregulated, and 83 proteins were downregulated in obese individuals. These altered VAT proteins were involved in the attenuation of the liver X receptor/retinoid X receptor (LXR/RXR) signaling pathway and the activation of the acute-phase response process. Three proteins (ACSL1, HADH, and UCHL1) were validated by western blotting using the same set of VAT samples from 6 morbidly obese and 7 normal weight patients, and the results indicated that the magnitude and direction of the protein changes were in accordance with the proteomic analysis. Masson's trichrome staining and CD68 immunohistochemical staining demonstrated that there was much more collagen fiber deposition and CD68-positive macrophages in the VAT of morbidly obese patients, suggesting extensive fiber deposition and macrophage infiltration. CONCLUSION A number of differentially expressed proteins were identified in VAT between morbidly obese and normal weight Chinese females. These differential proteins could be potential candidates in addressing the role of VAT in the development of obesity.
Collapse
Affiliation(s)
- Chen Shang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Wei Sun
- Core Facility of Instrument, Institute of Basic Medicine, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Chunlin Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xiangqing Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Xue Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
26
|
Masood A, Benabdelkamel H, Alfadda AA. Obesity Proteomics: An Update on the Strategies and Tools Employed in the Study of Human Obesity. High Throughput 2018; 7:ht7030027. [PMID: 30213114 PMCID: PMC6164994 DOI: 10.3390/ht7030027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023] Open
Abstract
Proteomics has become one of the most important disciplines for characterizing cellular protein composition, building functional linkages between protein molecules, and providing insight into the mechanisms of biological processes in a high-throughput manner. Mass spectrometry-based proteomic advances have made it possible to study human diseases, including obesity, through the identification and biochemical characterization of alterations in proteins that are associated with it and its comorbidities. A sizeable number of proteomic studies have used the combination of large-scale separation techniques, such as high-resolution two-dimensional gel electrophoresis or liquid chromatography in combination with mass spectrometry, for high-throughput protein identification. These studies have applied proteomics to comprehensive biochemical profiling and comparison studies while using different tissues and biological fluids from patients to demonstrate the physiological or pathological adaptations within their proteomes. Further investigations into these proteome-wide alterations will enable us to not only understand the disease pathophysiology, but also to determine signature proteins that can serve as biomarkers for obesity and related diseases. This review examines the different proteomic techniques used to study human obesity and discusses its successful applications along with its technical limitations.
Collapse
Affiliation(s)
- Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia.
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
27
|
Palau-Rodriguez M, Tulipani S, Marco-Ramell A, Miñarro A, Jauregui O, Gonzalez-Dominguez R, Sanchez-Pla A, Ramos-Molina B, Tinahones FJ, Andres-Lacueva C. Characterization of Metabolomic Profile Associated with Metabolic Improvement after Bariatric Surgery in Subjects with Morbid Obesity. J Proteome Res 2018; 17:2704-2714. [DOI: 10.1021/acs.jproteome.8b00144] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Magali Palau-Rodriguez
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable [CIBERfes], Instituto de Salud Carlos III [ISCIII], 28029 Madrid, Spain
| | - Sara Tulipani
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- Biomedical Research Institute [IBIMA], Service of Endocrinology and Nutrition, Malaga Hospital Complex [Virgen de la Victoria], Campus de Teatinos s/n, 29010 Malaga, Spain
| | - Anna Marco-Ramell
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable [CIBERfes], Instituto de Salud Carlos III [ISCIII], 28029 Madrid, Spain
| | - Antonio Miñarro
- Genetics, Microbiology and Statistics Department, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
| | - Olga Jauregui
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- Scientific and Technological Centres of the University of Barcelona (CCIT-UB), 08028 Barcelona, Spain
| | - Raul Gonzalez-Dominguez
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable [CIBERfes], Instituto de Salud Carlos III [ISCIII], 28029 Madrid, Spain
| | - Alex Sanchez-Pla
- Genetics, Microbiology and Statistics Department, Biology Faculty, University of Barcelona, 08028 Barcelona, Spain
- Statistics and Bioinformatics Unit, Vall d’Hebron Institut de Recerca [VHIR], 08035 Barcelona, Spain
| | - Bruno Ramos-Molina
- Biomedical Research Institute [IBIMA], Service of Endocrinology and Nutrition, Malaga Hospital Complex [Virgen de la Victoria], Campus de Teatinos s/n, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición [CIBERobn], Instituto de Salud Carlos III [ISCIII], 28029 Barcelona, Spain
| | - Francisco J. Tinahones
- Biomedical Research Institute [IBIMA], Service of Endocrinology and Nutrition, Malaga Hospital Complex [Virgen de la Victoria], Campus de Teatinos s/n, 29010 Malaga, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición [CIBERobn], Instituto de Salud Carlos III [ISCIII], 28029 Barcelona, Spain
| | - Cristina Andres-Lacueva
- Biomarkers & Nutrimetabolomic Lab, Nutrition, Food Science and Gastronomy Department, XaRTA, INSA-UB, Campus Torribera, Pharmacy and Food Science Faculty, University of Barcelona, 08028 Barcelona, Spain
- CIBER Fragilidad y Envejecimiento Saludable [CIBERfes], Instituto de Salud Carlos III [ISCIII], 28029 Madrid, Spain
| |
Collapse
|
28
|
Alfadda AA, Masood A, Al-Naami MY, Chaurand P, Benabdelkamel H. A Proteomics Based Approach Reveals Differential Regulation of Visceral Adipose Tissue Proteins between Metabolically Healthy and Unhealthy Obese Patients. Mol Cells 2017; 40:685-695. [PMID: 28927258 PMCID: PMC5638776 DOI: 10.14348/molcells.2017.0073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/01/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022] Open
Abstract
Obesity and the metabolic disorders that constitute metabolic syndrome are a primary cause of morbidity and mortality in the world. Nonetheless, the changes in the proteins and the underlying molecular pathways involved in the relevant pathogenesis are poorly understood. In this study a proteomic analysis of the visceral adipose tissue isolated from metabolically healthy and unhealthy obese patients was used to identify presence of altered pathway(s) leading to metabolic dysfunction. Samples were obtained from 18 obese patients undergoing bariatric surgery and were subdivided into two groups based on the presence or absence of comorbidities as defined by the International Diabetes Federation. Two dimensional difference in-gel electrophoresis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was carried out. A total of 28 proteins were identified with a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p ≤ 0.05) between the groups. 11 proteins showed increased abundance while 17 proteins were decreased in the metabolically unhealthy obese compared to the healthy obese. The differentially expressed proteins belonged broadly to three functional categories: (i) protein and lipid metabolism (ii) cytoskeleton and (iii) regulation of other metabolic processes. Network analysis by Ingenuity pathway analysis identified the NFκB, IRK/MAPK and PKC as the nodes with the highest connections within the connectivity map. The top network pathway identified in our protein data set related to cellular movement, hematological system development and function, and immune cell trafficking. The VAT proteome between the two groups differed substantially between the groups which could potentially be the reason for metabolic dysfunction.
Collapse
Affiliation(s)
- Assim A. Alfadda
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University,
Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| | | | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal,
Canada
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University,
Saudi Arabia
| |
Collapse
|
29
|
Perucci LO, Sugimoto MA, Gomes KB, Dusse LM, Teixeira MM, Sousa LP. Annexin A1 and specialized proresolving lipid mediators: promoting resolution as a therapeutic strategy in human inflammatory diseases. Expert Opin Ther Targets 2017; 21:879-896. [PMID: 28786708 DOI: 10.1080/14728222.2017.1364363] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The timely resolution of inflammation is essential to restore tissue homeostasis and to avoid chronic inflammatory diseases. Resolution of inflammation is an active process modulated by various proresolving mediators, including annexin A1 (AnxA1) and specialized proresolving lipid mediators (SPMs), which counteract excessive inflammatory responses and stimulate proresolving mechanisms. Areas covered: The protective effects of AnxA1 and SPMs have been extensively explored in pre-clinical animal models. However, studies investigating the function of these molecules in human diseases are just emerging. This review highlights recent advances on the role of proresolving mediators, and pharmacological opportunities of promoting resolution pathways in preclinical models and patients with various human diseases. Expert opinion: Dysregulation or 'failure' in proresolving mechanisms might be involved in the pathogenesis of chronic inflammatory diseases. Altered levels of proresolving mediators were found in a wide range of human diseases. In some cases, AnxA1 and SPMs are up-regulated in human blood and tissues but fail to engage in proresolving signaling and, hence, to regulate excessive inflammation. Thus, the new concept of 'resolution pharmacology' could be applied to compensate deficiency of endogenous proresolving mediators' generation and/or possible failures in the engagement of resolution pathways observed in many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Luiza Oliveira Perucci
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Michelle Amantéa Sugimoto
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Karina Braga Gomes
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Luci Maria Dusse
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Mauro Martins Teixeira
- d Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| | - Lirlândia Pires Sousa
- a Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,b Programa de Pós-Graduação em Análises Clínicas e Toxicológicas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil.,c Programa de Pós-Graduação em Ciências Farmacêuticas , Universidade Federal de Minas Gerais , Belo Horizonte , Minas Gerais , Brazil
| |
Collapse
|
30
|
Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomed Pharmacother 2017; 88:948-955. [DOI: 10.1016/j.biopha.2017.01.091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/04/2017] [Accepted: 01/15/2017] [Indexed: 12/15/2022] Open
|
31
|
Proteomics of human mitochondria. Mitochondrion 2016; 33:2-14. [PMID: 27444749 DOI: 10.1016/j.mito.2016.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022]
Abstract
Proteomics have passed through a tremendous development in the recent years by the development of ever more sensitive, fast and precise mass spectrometry methods. The dramatically increased research in the biology of mitochondria and their prominent involvement in all kinds of diseases and ageing has benefitted from mitochondrial proteomics. We here review substantial findings and progress of proteomic analyses of human cells and tissues in the recent past. One challenge for investigations of human samples is the ethically and medically founded limited access to human material. The increased sensitivity of mass spectrometry technology aids in lowering this hurdle and new approaches like generation of induced pluripotent cells from somatic cells allow to produce patient-specific cellular disease models with great potential. We describe which human sample types are accessible, review the status of the catalog of human mitochondrial proteins and discuss proteins with dual localization in mitochondria and other cellular compartments. We describe the status and developments of pertinent mass spectrometric strategies, and the use of databases and bioinformatics. Using selected illustrative examples, we draw a picture of the role of proteomic analyses for the many disease contexts from inherited disorders caused by mutation in mitochondrial proteins to complex diseases like cancer, type 2 diabetes and neurodegenerative diseases. Finally, we speculate on the future role of proteomics in research on human mitochondria and pinpoint fields where the evolving technologies will be exploited.
Collapse
|
32
|
Park MH, Jo M, Kim YR, Lee CK, Hong JT. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol Ther 2016; 163:1-23. [PMID: 27130805 PMCID: PMC7112520 DOI: 10.1016/j.pharmthera.2016.03.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/22/2016] [Indexed: 12/29/2022]
Abstract
Peroxiredoxins (PRDXs) are antioxidant enzymes, known to catalyze peroxide reduction to balance cellular hydrogen peroxide (H2O2) levels, which are essential for cell signaling and metabolism and act as a regulator of redox signaling. Redox signaling is a critical component of cell signaling pathways that are involved in the regulation of cell growth, metabolism, hormone signaling, immune regulation and variety of other physiological functions. Early studies demonstrated that PRDXs regulates cell growth, metabolism and immune regulation and therefore involved in the pathologic regulator or protectant of several cancers, neurodegenerative diseases and inflammatory diseases. Oxidative stress and antioxidant systems are important regulators of redox signaling regulated diseases. In addition, thiol-based redox systems through peroxiredoxins have been demonstrated to regulate several redox-dependent process related diseases. In this review article, we will discuss recent findings regarding PRDXs in the development of diseases and further discuss therapeutic approaches targeting PRDXs. Moreover, we will suggest that PRDXs could be targets of several diseases and the therapeutic agents for targeting PRDXs may have potential beneficial effects for the treatment of cancers, neurodegenerative diseases and inflammatory diseases. Future research should open new avenues for the design of novel therapeutic approaches targeting PRDXs.
Collapse
Affiliation(s)
- Mi Hee Park
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - MiRan Jo
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Yu Ri Kim
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951
| | - Chong-Kil Lee
- College of Pharmacy and Medical Research Center, Chungbuk National University, 12 Gaesin-dong, Heungduk-gu, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, 194-31, Osongsaengmyeong 1-ro, Osong-eup, Cheongwon-gun, Chungbuk, Republic of Korea, 361-951.
| |
Collapse
|
33
|
Ma Y, Gao J, Yin J, Gu L, Liu X, Chen S, Huang Q, Lu H, Yang Y, Zhou H, Wang Y, Peng Y. Identification of a Novel Function of Adipocyte Plasma Membrane-Associated Protein (APMAP) in Gestational Diabetes Mellitus by Proteomic Analysis of Omental Adipose Tissue. J Proteome Res 2016; 15:628-37. [PMID: 26767403 DOI: 10.1021/acs.jproteome.5b01030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gestational diabetes mellitus (GDM) is considered as an early stage of type 2 diabetes mellitus. In this study, we compared demographic and clinical data between six GDM subjects and six normal glucose tolerance (NGT; healthy controls) subjects and found that homeostasis model of assessment for insulin resistance index (HOMA-IR) increased in GDM. Many previous studies demonstrated that omental adipose tissue dysfunction could induce insulin resistance. Thus, to investigate the cause of insulin resistance in GDM, we used label-free proteomics to identify differentially expressed proteins in omental adipose tissues from GDM and NGT subjects (data are available via ProteomeXchange with identifier PXD003095). A total of 3528 proteins were identified, including 66 significantly changed proteins. Adipocyte plasma membrane-associated protein (APMAP, a.k.a. C20orf3), one of the differentially expressed proteins, was down-regulated in GDM omental adipose tissues. Furthermore, mature 3T3-L1 adipocytes were used to simulate omental adipocytes. The inhibition of APMAP expression by RNAi impaired insulin signaling and activated NFκB signaling in these adipocytes. Our study revealed that the down-regulation of APMAP in omental adipose tissue may play an important role in insulin resistance in the pathophysiology of GDM.
Collapse
Affiliation(s)
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | - Xing Liu
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | |
Collapse
|
34
|
Hajduk J, Klupczynska A, Dereziński P, Matysiak J, Kokot P, Nowak DM, Gajęcka M, Nowak-Markwitz E, Kokot ZJ. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus. Int J Mol Sci 2015; 16:30034-45. [PMID: 26694367 PMCID: PMC4691080 DOI: 10.3390/ijms161226133] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, L-citrulline, L-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.
Collapse
Affiliation(s)
- Joanna Hajduk
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań 60-780, Poland.
| | - Agnieszka Klupczynska
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań 60-780, Poland.
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań 60-780, Poland.
| | - Jan Matysiak
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań 60-780, Poland.
| | - Piotr Kokot
- Obstetrics and Gynecology Ward, District Hospital in Mielec, 22a Żeromskiego Street, Mielec 39-300, Poland.
| | - Dorota M Nowak
- Departmentof Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Święcickiego 4 Street, Poznań 60-781, Poland.
| | - Marzena Gajęcka
- Departmentof Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Święcickiego 4 Street, Poznań 60-781, Poland.
- Institute of Human Genetics, Polish Academy of Sciences, 32 Strzeszyńska Street, Poznań 60-479, Poland.
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, Polna 33 Street, Poznań 60-535, Poland.
| | - Zenon J Kokot
- Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 6 Grunwaldzka Street, Poznań 60-780, Poland.
| |
Collapse
|
35
|
Transcriptome and Molecular Endocrinology Aspects of Epicardial Adipose Tissue in Cardiovascular Diseases: A Systematic Review and Meta-Analysis of Observational Studies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:926567. [PMID: 26636103 PMCID: PMC4655271 DOI: 10.1155/2015/926567] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 09/20/2015] [Accepted: 10/07/2015] [Indexed: 01/17/2023]
Abstract
The objective of this study was to perform a systematic review of published literature on differentially expressed genes (DEGs) in human epicardial adipose tissue (EAT) to identify molecules associated with CVDs. A systematic literature search was conducted in PubMed, SCOPUS, and ISI Web of Science literature databases for papers published before October 2014 that addressed EAT genes and cardiovascular diseases (CVDs). We included original papers that had performed gene expressions in EAT of patients undergoing open-heart surgery. The Reporting Recommendations for Tumor Marker Prognostic Studies (PRIMARK) assessment tool was also used for methodological quality assessment. From the 180 papers identified by our initial search strategy, 40 studies met the inclusion criteria and presented DEGs in EAT samples from patients with and without CVDs. The included studies reported 42 DEGs identified through comparison of EAT-specific gene expression in patients with and without CVDs. Among the 42 DEGs, genes involved in regulating apoptosis had higher enrichment scores. Notably, interleukin-6 (IL-6) and tumor protein p53 (TP53) were the main hub genes in the network. The results suggest that regulation of apoptosis in EAT is critical for CVD development. Moreover, IL-6 and TP53 as hub genes could serve as biomarkers and therapeutic targets for CVDs.
Collapse
|
36
|
Zachut M. Defining the Adipose Tissue Proteome of Dairy Cows to Reveal Biomarkers Related to Peripartum Insulin Resistance and Metabolic Status. J Proteome Res 2015; 14:2863-71. [PMID: 26062109 DOI: 10.1021/acs.jproteome.5b00190] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adipose tissue is a central regulator of metabolism in dairy cows; however, little is known about the association between various proteins in adipose tissue and the metabolic status of peripartum cows. Therefore, the objectives were to (1) examine total protein expression in adipose tissue of dairy cows and (2) identify biomarkers in adipose that are linked to insulin resistance and to cows' metabolic status. Adipose tissue biopsies were obtained from eight multiparous cows at -17 and +4 days relative to parturition. Proteins were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nanoLC-MS/MS). Cows were divided into groups with insulin-resistant (IR) and insulin-sensitive (IS) adipose according to protein kinase B phosphorylation following insulin stimulation. Cows with IR adipose lost more body weight postpartum compared with IS cows. Differential expression of 143 out of 586 proteins was detected in prepartum versus postpartum adipose. Comparing IR to IS adipose revealed differential expression of 18.9% of the proteins; those related to lipolysis (hormone-sensitive lipase, perilipin, monoglycerol lipase) were increased in IR adipose. In conclusion, we found novel biomarkers related to IR in adipose and to metabolic status that could be used to characterize high-yielding dairy cows that are better adapted to peripartum metabolic stress.
Collapse
Affiliation(s)
- Maya Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel
| |
Collapse
|
37
|
Fang L, Kojima K, Zhou L, Crossman DK, Mobley JA, Grams J. Analysis of the Human Proteome in Subcutaneous and Visceral Fat Depots in Diabetic and Non-diabetic Patients with Morbid Obesity. ACTA ACUST UNITED AC 2015; 8:133-141. [PMID: 26472921 PMCID: PMC4603752 DOI: 10.4172/jpb.1000361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
No longer regarded as simply a storage depot, fat is a dynamic organ acting locally and systemically to modulate energy homeostasis, glucose sensitivity, insulin resistance, and inflammatory pathways. Here, mass spectrometry was used to survey the proteome of patient matched subcutaneous fat and visceral fat in 20 diabetic vs 22 nondiabetic patients with morbid obesity. A similar number of proteins (~600) were identified in each tissue type. When stratified by diabetic status, 19 and 41 proteins were found to be differentially abundant in subcutaneous fat and omentum, respectively. These proteins represent pathways known to be involved in metabolism. Five of these proteins were differentially abundant in both fat depots: moesin, 78 kDa glucose-regulated protein, protein cordon-bleu, zinc finger protein 611, and cytochrome c oxidase subunit 6B1. Three proteins, decorin, cytochrome c oxidase subunit 6B1, and 78 kDa glucose-regulated protein, were further tested for validation by western blot analysis. Investigation of the proteins reported here is expected to expand on the current knowledge of adipose tissue driven biochemistry in diabetes and obesity, with the ultimate goal of identifying clinical targets for the development of novel therapeutic interventions in the treatment of type 2 diabetes mellitus. To our knowledge, this study is the first to survey the global proteome derived from each subcutaneous and visceral adipose tissue obtained from the same patient in the clinical setting of morbid obesity, with and without diabetes. It is also the largest study of diabetic vs nondiabetic patients with 42 patients surveyed.
Collapse
Affiliation(s)
- Lingling Fang
- Ningbo Lihuili Hospital; Ningbo, Zhejiang, China ; Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Kyoko Kojima
- Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Lihua Zhou
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA
| | - David K Crossman
- Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Genetics, University of Alabama at Birmingham; Birmingham, AL, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Comprehensive Cancer Center, University of Alabama at Birmingham; Birmingham, AL, USA ; Heflin Center for Genomic Science, University of Alabama at Birmingham; Birmingham, AL, USA
| | - Jayleen Grams
- Department of Surgery, University of Alabama at Birmingham; Birmingham, AL, USA ; Department of Surgery, Birmingham Veterans Administration Medical Center, Birmingham, AL, USA
| |
Collapse
|
38
|
López-Villar E, Martos-Moreno GÁ, Chowen JA, Okada S, Kopchick JJ, Argente J. A proteomic approach to obesity and type 2 diabetes. J Cell Mol Med 2015; 19:1455-70. [PMID: 25960181 PMCID: PMC4511345 DOI: 10.1111/jcmm.12600] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
The incidence of obesity and type diabetes 2 has increased dramatically resulting in an increased interest in its biomedical relevance. However, the mechanisms that trigger the development of diabetes type 2 in obese patients remain largely unknown. Scientific, clinical and pharmaceutical communities are dedicating vast resources to unravel this issue by applying different omics tools. During the last decade, the advances in proteomic approaches and the Human Proteome Organization have opened and are opening a new door that may be helpful in the identification of patients at risk and to improve current therapies. Here, we briefly review some of the advances in our understanding of type 2 diabetes that have occurred through the application of proteomics. We also review, in detail, the current improvements in proteomic methodologies and new strategies that could be employed to further advance our understanding of this pathology. By applying these new proteomic advances, novel therapeutic and/or diagnostic protein targets will be discovered in the obesity/Type 2 diabetes area.
Collapse
Affiliation(s)
- Elena López-Villar
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Oncohematology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Gabriel Á Martos-Moreno
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Julie A Chowen
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Shigeru Okada
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Department of Pediatrics, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, Konneker Research Laboratories, Athens, OH, USA.,Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.,Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Jesús Argente
- Departments of Endocrinology and Pediatrics, Hospital Infantil Universitario Niño Jesús, Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación La Princesa, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
39
|
Luisa Bonet M, Canas JA, Ribot J, Palou A. Carotenoids and their conversion products in the control of adipocyte function, adiposity and obesity. Arch Biochem Biophys 2015; 572:112-125. [DOI: 10.1016/j.abb.2015.02.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/10/2015] [Accepted: 02/17/2015] [Indexed: 12/22/2022]
|
40
|
Kim EY, Kim WK, Oh KJ, Han BS, Lee SC, Bae KH. Recent advances in proteomic studies of adipose tissues and adipocytes. Int J Mol Sci 2015; 16:4581-99. [PMID: 25734986 PMCID: PMC4394436 DOI: 10.3390/ijms16034581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 12/29/2014] [Accepted: 02/16/2015] [Indexed: 12/27/2022] Open
Abstract
Obesity is a chronic disease that is associated with significantly increased levels of risk of a number of metabolic disorders. Despite these enhanced health risks, the worldwide prevalence of obesity has increased dramatically over the past few decades. Obesity is caused by the accumulation of an abnormal amount of body fat in adipose tissue, which is composed mostly of adipocytes. Thus, a deeper understanding of the regulation mechanism of adipose tissue and/or adipocytes can provide a clue for overcoming obesity-related metabolic diseases. In this review, we describe recent advances in the study of adipose tissue and/or adipocytes, focusing on proteomic approaches. In addition, we suggest future research directions for proteomic studies which may lead to novel treatments of obesity and obesity-related diseases.
Collapse
Affiliation(s)
- Eun Young Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Won Kon Kim
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kyoung-Jin Oh
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
| | - Baek Soo Han
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| | - Kwang-Hee Bae
- Functional Genomics Research Center, KRIBB, Daejeon 305-806, Korea.
- Department of Functional Genomics, University of Science and Technology of Korea, Daejeon 305-806, Korea.
| |
Collapse
|
41
|
Benabdelkamel H, Masood A, Almidani GM, Alsadhan AA, Bassas AF, Duncan MW, Alfadda AA. Mature adipocyte proteome reveals differentially altered protein abundances between lean, overweight and morbidly obese human subjects. Mol Cell Endocrinol 2015; 401:142-54. [PMID: 25498962 DOI: 10.1016/j.mce.2014.11.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 11/23/2014] [Accepted: 11/25/2014] [Indexed: 02/08/2023]
Abstract
Overweight (OW) and obese individuals are considered to be graded parts of the scale having increasing weight as a common feature. They may not, however, be part of the same continuum and may differ metabolically. In this study we applied an untargeted proteomic approach to compare protein abundances in mature adipocytes derived from the subcutaneous adipose tissue of overweight and morbidly obese female subjects to those of lean age matched controls. Mature adipocytes were isolated from liposuction samples of abdominal subcutaneous adipose tissue collected from both lean (L; n = 7, 23.3 ± 0.4 kg/m(2); mean BMI ± SD), overweight (OW; n = 8, 27.9 ± 0.6 kg/m(2); mean BMI ± SD) and morbidly obese (MOB; n = 7, 44.8 ± 3.8 kg/m(2); mean BMI ± SD) individuals. Total protein extracts were then compared by two-dimensional difference in gel electrophoresis (2D DIGE). One hundred and ten differentially expressed protein spots (i.e., fitting the statistical criteria ANOVA test, p < 0.05; fold-change ≥1.5) were detected, and of these, 89 were identified by MALDI-TOF mass spectrometry. Of these, 66 protein spots were common to both groups whereas 23 were unique to the MOB group. Significant differences were evident in the abundances of key proteins involved in glucose and lipid metabolism, energy regulation, cytoskeletal structure and redox control signaling pathways. Differences in the abundance of some chaperones were also evident. The differentially abundant proteins were investigated using Ingenuity Pathway Analysis (IPA) to establish their associations with known biological functions. The network identified in the OW group with the highest score relates to-: cell-to-cell signaling and interaction; in contrast, in the MOB group the major interacting pathways are associated with lipid metabolism, small molecule biochemistry and cancer. The differences in abundance of the differentially regulated proteins were validated by immunoblotting. These findings provide insights into metabolic differences in OW and MOB individuals.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Ghaith M Almidani
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulmajeed A Alsadhan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Abdulelah F Bassas
- Department of Surgery, Security Forces Hospital, P.O. Box 3643, Riyadh 11481, Saudi Arabia
| | - Mark W Duncan
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, School of Medicine, MS8106, E. 19th Avenue, Anschutz Medical Campus, University of Colorado Denver, Aurora, CO 80045, USA
| | - Assim A Alfadda
- Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (38), Riyadh 11461, Saudi Arabia.
| |
Collapse
|
42
|
Schanstra JP, Zürbig P, Alkhalaf A, Argiles A, Bakker SJL, Beige J, Bilo HJG, Chatzikyrkou C, Dakna M, Dawson J, Delles C, Haller H, Haubitz M, Husi H, Jankowski J, Jerums G, Kleefstra N, Kuznetsova T, Maahs DM, Menne J, Mullen W, Ortiz A, Persson F, Rossing P, Ruggenenti P, Rychlik I, Serra AL, Siwy J, Snell-Bergeon J, Spasovski G, Staessen JA, Vlahou A, Mischak H, Vanholder R. Diagnosis and Prediction of CKD Progression by Assessment of Urinary Peptides. J Am Soc Nephrol 2015; 26:1999-2010. [PMID: 25589610 DOI: 10.1681/asn.2014050423] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/30/2014] [Indexed: 01/13/2023] Open
Abstract
Progressive CKD is generally detected at a late stage by a sustained decline in eGFR and/or the presence of significant albuminuria. With the aim of early and improved risk stratification of patients with CKD, we studied urinary peptides in a large cross-sectional multicenter cohort of 1990 individuals, including 522 with follow-up data, using proteome analysis. We validated that a previously established multipeptide urinary biomarker classifier performed significantly better in detecting and predicting progression of CKD than the current clinical standard, urinary albumin. The classifier was also more sensitive for identifying patients with rapidly progressing CKD. Compared with the combination of baseline eGFR and albuminuria (area under the curve [AUC]=0.758), the addition of the multipeptide biomarker classifier significantly improved CKD risk prediction (AUC=0.831) as assessed by the net reclassification index (0.303±-0.065; P<0.001) and integrated discrimination improvement (0.058±0.014; P<0.001). Correlation of individual urinary peptides with CKD stage and progression showed that the peptides that associated with CKD, irrespective of CKD stage or CKD progression, were either fragments of the major circulating proteins, suggesting failure of the glomerular filtration barrier sieving properties, or different collagen fragments, suggesting accumulation of intrarenal extracellular matrix. Furthermore, protein fragments associated with progression of CKD originated mostly from proteins related to inflammation and tissue repair. Results of this study suggest that urinary proteome analysis might significantly improve the current state of the art of CKD detection and outcome prediction and that identification of the urinary peptides allows insight into various ongoing pathophysiologic processes in CKD.
Collapse
Affiliation(s)
- Joost P Schanstra
- Institute of Cardiovascular and Metabolic Disease, French Institute of Health and Medical Research U1048, Toulouse, France; Paul Sabatier University (Toulouse III), Toulouse, France
| | | | - Alaa Alkhalaf
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | | | - Stephan J L Bakker
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands
| | - Joachim Beige
- KfH Renal Unit, Department Nephrology, Leipzig and Martin-Luther-University, Halle/Wittenberg, Germany
| | - Henk J G Bilo
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands; Diabetes Centre, Isala Clinics, Zwolle, The Netherlands
| | - Christos Chatzikyrkou
- Department of Nephrology and Hypertension, University Hospital of Magdeburg, Magdeburg, Germany
| | | | - Jesse Dawson
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Hermann Haller
- Department of Nephrology and Hypertension, Medical School of Hanover, Hanover, Germany
| | - Marion Haubitz
- Department of Nephrology, Klinikum Fulda gAG, Fulda, Germany
| | - Holger Husi
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research, RWTH Aachen University Hospital, Aachen, Germany; Department of Internal Medicine IV, Charity Medical University of Berlin, Berlin, Germany
| | - George Jerums
- Austin Health, University of Melbourne, Heidelberg, Australia
| | - Nanne Kleefstra
- University Medical Center Groningen and University of Groningen, Groningen, The Netherlands; Diabetes Centre, Isala Clinics, Zwolle, The Netherlands
| | - Tatiana Kuznetsova
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium; Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - David M Maahs
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Jan Menne
- Department of Nephrology and Hypertension, Medical School of Hanover, Hanover, Germany
| | - William Mullen
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Alberto Ortiz
- School of Medicine, Jimenez Diaz Foundation Institute for Health Research, Autonomous University of Madrid, Madrid, Spain
| | | | - Peter Rossing
- Steno Diabetes Center, Gentofte, Denmark; Faculty of Health, University of Aarhus, Aarhus, Denmark; Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Ivan Rychlik
- Second Department of Internal Medicine, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andreas L Serra
- Division of Nephrology, University Hospital, and Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Switzerland
| | - Justyna Siwy
- mosaiques diagnostics GmbH, Hanover, Germany; Department of Internal Medicine IV, Charity Medical University of Berlin, Berlin, Germany
| | - Janet Snell-Bergeon
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, Colorado
| | - Goce Spasovski
- University Department of Nephrology, Medical Faculty, University of Skopje, Skopje, Macedonia
| | - Jan A Staessen
- Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Antonia Vlahou
- Division of Biotechnology, Biomedical Research Foundation, Academy of Athens, Athens, Greece; School of Biomedical and Healthcare Sciences, Plymouth University, Plymouth, United Kingdom; and
| | - Harald Mischak
- Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
43
|
Thodiyil P. Sleeve gastrectomy is also anti-inflammatory, but why? Surg Obes Relat Dis 2014; 10:1128. [PMID: 25443055 DOI: 10.1016/j.soard.2014.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Paul Thodiyil
- New York Methodist Hospital Department of SurgeryBrooklyn, New York.
| |
Collapse
|
44
|
Murri M, Insenser M, Luque M, Tinahones FJ, Escobar-Morreale HF. Proteomic analysis of adipose tissue: informing diabetes research. Expert Rev Proteomics 2014; 11:491-502. [PMID: 24684164 DOI: 10.1586/14789450.2014.903158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Diabetes, one of the most common endocrine diseases worldwide, results from complex pathophysiological mechanisms that are not fully understood. Adipose tissue is considered a major endocrine organ and plays a central role in the development of diabetes. The identification of the adipose tissue-derived factors that contribute to the onset and progression of diabetes will hopefully lead to the development of preventive and therapeutic interventions. Proteomic techniques may be useful tools for this purpose. In the present review, we have summarized the studies conducting adipose tissue proteomics in subjects with diabetes and insulin resistance, and discussed the proteins identified in these studies as candidates to exert important roles in these disorders.
Collapse
Affiliation(s)
- Mora Murri
- Department of Endocrinology and Nutrition, Diabetes, Obesity and Human Reproduction Research Group, Hospital Universitario Ramón y Cajal and Universidad de Alcalá and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) and Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), E-28034 Madrid, Spain
| | | | | | | | | |
Collapse
|