1
|
Haigis AC, Vergauwen L, LaLone CA, Villeneuve DL, O'Brien JM, Knapen D. Cross-species applicability of an adverse outcome pathway network for thyroid hormone system disruption. Toxicol Sci 2023; 195:1-27. [PMID: 37405877 DOI: 10.1093/toxsci/kfad063] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023] Open
Abstract
Thyroid hormone system disrupting compounds are considered potential threats for human and environmental health. Multiple adverse outcome pathways (AOPs) for thyroid hormone system disruption (THSD) are being developed in different taxa. Combining these AOPs results in a cross-species AOP network for THSD which may provide an evidence-based foundation for extrapolating THSD data across vertebrate species and bridging the gap between human and environmental health. This review aimed to advance the description of the taxonomic domain of applicability (tDOA) in the network to improve its utility for cross-species extrapolation. We focused on the molecular initiating events (MIEs) and adverse outcomes (AOs) and evaluated both their plausible domain of applicability (taxa they are likely applicable to) and empirical domain of applicability (where evidence for applicability to various taxa exists) in a THSD context. The evaluation showed that all MIEs in the AOP network are applicable to mammals. With some exceptions, there was evidence of structural conservation across vertebrate taxa and especially for fish and amphibians, and to a lesser extent for birds, empirical evidence was found. Current evidence supports the applicability of impaired neurodevelopment, neurosensory development (eg, vision) and reproduction across vertebrate taxa. The results of this tDOA evaluation are summarized in a conceptual AOP network that helps prioritize (parts of) AOPs for a more detailed evaluation. In conclusion, this review advances the tDOA description of an existing THSD AOP network and serves as a catalog summarizing plausible and empirical evidence on which future cross-species AOP development and tDOA assessment could build.
Collapse
Affiliation(s)
- Ann-Cathrin Haigis
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Carlie A LaLone
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, United States Environmental Protection Agency, Duluth, Minnesota 55804, USA
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
2
|
Nuclear Translocation Triggered at the Onset of Hearing in Cochlear Inner Hair Cells of Rats and Mice. J Assoc Res Otolaryngol 2023:10.1007/s10162-023-00894-2. [PMID: 36932316 DOI: 10.1007/s10162-023-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/21/2023] [Indexed: 03/19/2023] Open
Abstract
PURPOSE Nuclear position is precisely orchestrated during cell division, migration, and maturation of cells and tissues. Here we report a previously unrecognized, programmed movement of the nucleus in rat and mouse cochlear inner hair cells (IHCs) coinciding with the functional maturation of inner hair cells around the onset of hearing. METHODS We measured hair cell length and nuclear position from confocal scans of immunofluorescence-labeled hair cells from whole-mount cochlear preparations throughout post-natal development. RESULTS In early post-natal days, the IHC experiences a period of sustained growth, during which the nucleus sits at the very basal pole of the cell, far from the apically located mechano-transducing stereocilia, but close to where synapses with primary afferent and efferent neurons are forming. After IHCs reach their final length, the nucleus moves to occupy a new position half-way along the length of the cell. Nuclear translocation begins in the middle turn, completes throughout the cochlea within 2-3 days, and coincides with the emergence of endolymphatic potential, the acquisition of big-conductance potassium channels (BK), and the onset of acoustic hearing. IHCs cultured in-vitro without endolymphatic potential (EP) do not grow, do not express BK, and do not experience nuclear movement. IHCs cultured in high K+ solutions (to simulate EP) grow but do not experience nuclear movement or acquire BK channels. CONCLUSION Nuclear migration at the onset of hearing is a key step in the morphological maturation of IHCs. Whether this plays a role in functional maturation remains to be explored.
Collapse
|
3
|
Oliveira PFD, Trindade BBS, Reis PFM, Santos TFDC, Alves JCS, Santana DSD, Badauê-Passos Jr D. The Induction of Hypothyroidism During Gestation Decreases Outer Hair Cell Motility in Rat Offspring. Int Arch Otorhinolaryngol 2022; 26:e712-e717. [DOI: 10.1055/s-0042-1745856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022] Open
Abstract
Abstract
Introduction Perinatal hypothyroidism has a negative repercussion on the development and maturation of auditory system function. However, its long-term effect on auditory function remains unsettled.
Objective To evaluate the effect of prenatal hypothyroidism on the auditory function of adult offspring in rats.
Methods Pregnant Wistar rats were given the antithyroid drug methimazole (0.02% -1-methylimidazole-2-thiol– MMI) in drinking water, ad libitum, from gestational day (GD) 9 to postnatal day 15 (PND15). Anesthetized offspring from MMI-treated dams (OMTD) and control rats were evaluated by tympanometry, distortion product otoacoustic emission (DPOAE), and auditory brainstem response (ABR) at PNDs 30, 60, 90, and 120.
Results Our data demonstrated no middle ear dysfunction, with the OMTD compliance lower than that of the control group. The DPOAE revealed the absence of outer hair cells function, and the ABR showed normal integrity of neural auditory pathways up to brainstem level in the central nervous system. Furthermore, in the OMTD group, hearing loss was characterized by a higher electrophysiological threshold.
Conclusion Our data suggest that perinatal hypothyroidism leads to irreversible damage to cochlear function in offspring.
Collapse
Affiliation(s)
- Priscila Feliciano de Oliveira
- Department of Health Sciences, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
- Department of Speech, Language and Hearing, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
- Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Julio Cesar Santana Alves
- Department of Health Sciences, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
- Department of Veterinary Medicine, Faculdade Pio Décimo , Aracaju, SE, Brazil
- Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | - Demetrius Silva de Santana
- Department of Physiology, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
- Department of Science Computation, Universidade Federal de Sergipe, São Cristóvão, SE, Brazil
| | | |
Collapse
|
4
|
Ng L, Liu Y, Liu H, Forrest D. Cochlear Fibrocyte and Osteoblast Lineages Expressing Type 2 Deiodinase Identified with a Dio2CreERt2 Allele. Endocrinology 2021; 162:bqab179. [PMID: 34436572 PMCID: PMC8475715 DOI: 10.1210/endocr/bqab179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/16/2022]
Abstract
Type 2 deiodinase (Dio2) amplifies levels of 3,5,3'-L-triiodothyronine (T3), the active form of thyroid hormone, and is essential for cochlear maturation and auditory development. However, cellular routes for endocrine signaling in the compartmentalized, anatomically complex cochlea are little understood. Dio2 generates T3 from thyroxine (T4), a more abundant thyroid hormone precursor in the circulation, and is dramatically induced in the cochlea before the onset of hearing. The evidence implies that specific Dio2-expressing cell types critically mediate T3 signaling but these cell types are poorly defined because Dio2 is expressed transiently at low levels. Here, using a Dio2CreERt2 knockin that activates a fluorescent reporter, we define Dio2-expressing cochlear cell types at high resolution in male or female mice. Dio2-positive cells were detected in vascularized supporting tissues but not in avascular internal epithelia, indicating segregation of T3-generating and T3-responding tissues. In the spiral ligament and spiral limbus, Dio2-positive fibrocytes clustered around vascular networks that convey T4 into cochlear tissues. In the otic capsule, Dio2-positive osteoblasts localized at cartilage surfaces as the bony labyrinth matures. We corroborated the identities of Dio2-positive lineages by RNA-sequencing of individual cells. The results suggest a previously unrecognized role for fibrocytes in mediating hormonal signaling. We discuss a model whereby fibrocytes mediate paracrine-like control of T3 signaling to the organ of Corti and epithelial target tissues.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ye Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Liu
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Deafness and loss of cochlear hair cells in the absence of thyroid hormone transporters Slc16a2 (Mct8) and Slc16a10 (Mct10). Sci Rep 2018. [PMID: 29535325 PMCID: PMC5849681 DOI: 10.1038/s41598-018-22553-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Transmembrane proteins that mediate the cellular uptake or efflux of thyroid hormone potentially provide a key level of control over neurodevelopment. In humans, defects in one such protein, solute carrier SLC16A2 (MCT8) are associated with psychomotor retardation. Other proteins that transport the active form of thyroid hormone triiodothyronine (T3) or its precursor thyroxine (T4) have been identified in vitro but the wider significance of such transporters in vivo is unclear. The development of the auditory system requires thyroid hormone and the cochlea is a primary target tissue. We have proposed that the compartmental anatomy of the cochlea would necessitate transport mechanisms to convey blood-borne hormone to target tissues. We report hearing loss in mice with mutations in Slc16a2 and a related gene Slc16a10 (Mct10, Tat1). Deficiency of both transporters results in retarded development of the sensory epithelium similar to impairment caused by hypothyroidism, compounded with a progressive degeneration of cochlear hair cells and loss of endocochlear potential. Administration of T3 largely restores the development of the sensory epithelium and limited auditory function, indicating the T3-sensitivity of defects in the sensory epithelium. The results indicate a necessity for thyroid hormone transporters in cochlear development and function.
Collapse
|
6
|
Ortiga-Carvalho TM, Chiamolera MI, Pazos-Moura CC, Wondisford FE. Hypothalamus-Pituitary-Thyroid Axis. Compr Physiol 2016; 6:1387-428. [PMID: 27347897 DOI: 10.1002/cphy.c150027] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin-releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid-stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100-fold higher than that of T3, undergoes extra-thyroidal conversion to T3. This conversion is catalyzed by 5'-deiodinases (D1 and D2), which are TH-activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5-deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387-1428, 2016.
Collapse
Affiliation(s)
- Tania M Ortiga-Carvalho
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Maria I Chiamolera
- Department of Medicine, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Carmen C Pazos-Moura
- Institute of Biophysics Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Fredic E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
7
|
Pyott SJ, Duncan RK. BK Channels in the Vertebrate Inner Ear. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 128:369-99. [PMID: 27238269 DOI: 10.1016/bs.irn.2016.03.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The perception of complex acoustic stimuli begins with the deconstruction of sound into its frequency components. This spectral processing occurs first and foremost in the inner ear. In vertebrates, two very different strategies of frequency analysis have evolved. In nonmammalian vertebrates, the sensory hair cells of the inner ear are intrinsically electrically tuned to a narrow band of acoustic frequencies. This electrical tuning relies on the interplay between BK channels and voltage-gated calcium channels. Systematic variations in BK channel density and kinetics establish a gradient in electrical resonance that enables the coding of a broad range of acoustic frequencies. In contrast, mammalian hair cells are extrinsically tuned by mechanical properties of the cochlear duct. Even so, mammalian hair cells also express BK channels. These BK channels play critical roles in various aspects of mammalian auditory signaling, from developmental maturation to protection against acoustic trauma. This review summarizes the anatomical localization, biophysical properties, and functional contributions of BK channels in vertebrate inner ears. Areas of future research, based on an updated understanding of the biology of both BK channels and the inner ear, are also highlighted. Investigation of BK channels in the inner ear continues to provide fertile research grounds for examining both BK channel biophysics and the molecular mechanisms underlying signal processing in the auditory periphery.
Collapse
Affiliation(s)
- S J Pyott
- University Medical Center Groningen, Groningen, The Netherlands.
| | - R K Duncan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Renda L, Parlak M, Selçuk ÖT, Renda R, Eyigör H, Yılmaz MD, Osma Ü, Filiz S. Do antithyroid antibodies affect hearing outcomes in patients with pediatric euthyroid Hashimoto's thyroiditis? Int J Pediatr Otorhinolaryngol 2015; 79:2043-9. [PMID: 26388187 DOI: 10.1016/j.ijporl.2015.09.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Hashimoto's thyroiditis (HT) is the most common autoimmune thyroid disease in children. HT is a multifaceted disease with a variable clinicopathological presentation, including hearing impairment. It is known that hearing function is negatively affected in patients with thyroid disorders. The literature includes a very limited number of studies on hearing function in euthyroid pediatric patients with HT. The aim of this study was to determine the relationship between cochlear function and HT, independent of thyroid function. MATERIALS AND METHODS The study included 48 children and adolescents (42 females and 6 males) aged 9-18 years that were diagnosed as HT, and 30 gender- and age-matched healthy controls. Hearing was assessed via otoscopy, tympanometry, pure-tone audiometry, and measurement of distortion product otoacoustic emissions. RESULTS There weren't any significant differences in pure tone thresholds between the 2 groups based on pure-tone audiometry, except in the right ear at 6kHz and 8kHz. Distortion product otoacoustic emissions signal to noise ratios were significantly lower in the HT group than in the control group at 4 different frequencies (6kHz [left ear], 8kHz [left ear], 1.5kHz [right ear], and 6kHz [right ear]) (P<0.05). The signal to noise ratios at all frequencies were <6dB in 3% of left ears and 2.5% of right ears in the control group, versus 12.5% of left ears and 9.6% of right ears in the HT group. Distortion product amplitudes were significantly lower in the HT group than in the control group for both left and right ears at 1kHz, 1.5kHz, 3kHz, and 8kHz, and at 2kHz for left ears only (P<0.05). CONCLUSIONS The present findings show that cochlear function was lower in the HT group than in the control group. Accordingly, we think that hearing in patients with HT should be monitored periodically, even if their hearing thresholds are within normal limits. Thyroid autoimmunity appears to play an important role in a decrease in cochlear activity in pediatric HT patients.
Collapse
Affiliation(s)
- Levent Renda
- Department of Otolaryngology - Head and Neck Surgery, Antalya Research and Education Hospital, Antalya, Turkey.
| | - Mesut Parlak
- Department of Pediatric Endocrinology, Antalya Research and Education Hospital, Antalya, Turkey
| | - Ömer Tarık Selçuk
- Department of Otolaryngology - Head and Neck Surgery, Antalya Research and Education Hospital, Antalya, Turkey
| | - Rahime Renda
- Department of Pediatric Nephrology, Antalya Research and Education Hospital, Antalya, Turkey
| | - Hülya Eyigör
- Department of Otolaryngology - Head and Neck Surgery, Antalya Research and Education Hospital, Antalya, Turkey
| | - Mustafa Deniz Yılmaz
- Department of Otolaryngology - Head and Neck Surgery, Antalya Research and Education Hospital, Antalya, Turkey
| | - Üstün Osma
- Department of Otolaryngology - Head and Neck Surgery, Antalya Research and Education Hospital, Antalya, Turkey
| | - Serkan Filiz
- Department of Pediatric Allergy, Antalya Research and Education Hospital, Antalya, Turkey
| |
Collapse
|
9
|
Sundaresan S, Balasubbu S, Mustapha M. Thyroid hormone is required for the pruning of afferent type II spiral ganglion neurons in the mouse cochlea. Neuroscience 2015; 312:165-78. [PMID: 26592716 DOI: 10.1016/j.neuroscience.2015.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Afferent connections to the sensory inner (IHCs) and outer hair cells (OHCs) in the cochlea refine and functionally mature during the thyroid hormone (TH)-critical period of inner ear development that occurs perinatally in rodents. In this study, we investigated the effects of hypothyroidism on afferent type II innervation to outer hair cells using the Snell dwarf mouse (Pit1(dw)). Using a transgenic approach to specifically label type II spiral ganglion neurons (SGNs), we found that lack of TH causes persistence of excess type II SGN connections to the OHCs, as well as continued expression of the hair cell functional marker, otoferlin (OTOF), in the OHCs beyond the maturation period. We also observed a concurrent delay in efferent attachment to the OHCs. Supplementing with TH during the early postnatal period from postnatal day (P) 3 to P4 reversed the defect in type II SGN pruning but did not alter OTOF expression. Our results show that hypothyroidism causes a defect in the large-scale pruning of afferent type II SGNs in the cochlea, and a delay in efferent attachment and the maturation of OTOF expression. Our data suggest that the state of maturation of hair cells, as determined by OTOF expression, may not regulate the pruning of their afferent innervation.
Collapse
Affiliation(s)
- S Sundaresan
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States
| | - S Balasubbu
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States
| | - M Mustapha
- Department of Otolaryngology-Head & Neck Surgery, 300 Pasteur Drive, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
10
|
Ghaemi N, Bagheri S, Elmi S, Mohammadzade Rezaee S, Elmi S, Erfani Sayyar R. Delayed Diagnosis of Hypothyroidism in Children: Report of 3 Cases. IRANIAN RED CRESCENT MEDICAL JOURNAL 2015; 17:e20306. [PMID: 26734478 PMCID: PMC4698140 DOI: 10.5812/ircmj.20306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 01/30/2023]
Abstract
Introduction: Hypothyroidism is the most common endocrine disorder in children and presented with various sign and symptoms; its diagnosis needs a high index of suspicion. Case Presentation: We report 3 cases with unusual presentations of hypothyroidism and with delay in diagnosis that referred to Pediatric Endocrine Outpatient Clinic in Mashhad University of Medical Sciences, Mashhad, Iran with different clinical manifestations. They had decreased Thyroxin (T4) and increased thyroid stimulating hormone (TSH) levels. One case had mental retardation and deafness, but the other two cases had normal neurodevelopment. Some additional interesting findings were as follows: short stature, delayed bone age, teeth eruption impairment, hair loss, anemia and hypercholesterolemia, persistent and long-term constipation that had led to several abdominal surgeries. After a year of hormonal replacement therapy, their growth parameters and hematological values improved. Conclusions: We recommend thyroid hormonal evaluation for any children with short stature, especially with delayed bone age, in order to detect and treat hypothyroidism at the right time. It seems that more attention to pediatric growth is necessary.
Collapse
Affiliation(s)
- Nosrat Ghaemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Sepideh Bagheri
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Saghi Elmi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
- Corresponding Author: Saghi Elmi, Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-9155181130, Fax: +98-5137273943, E-mail:
| | - Saber Mohammadzade Rezaee
- Department of Pediatrics, School of Medicine, Birjand University of Medical Sciences, Birjand, IR Iran
| | - Sam Elmi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| | - Reza Erfani Sayyar
- Department of Anesthesiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
| |
Collapse
|
11
|
Ng L, Cordas E, Wu X, Vella KR, Hollenberg AN, Forrest D. Age-Related Hearing Loss and Degeneration of Cochlear Hair Cells in Mice Lacking Thyroid Hormone Receptor β1. Endocrinology 2015; 156:3853-65. [PMID: 26241124 PMCID: PMC4588828 DOI: 10.1210/en.2015-1468] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A key function of the thyroid hormone receptor β (Thrb) gene is in the development of auditory function. However, the roles of the 2 receptor isoforms, TRβ1 and TRβ2, expressed by the Thrb gene are unclear, and it is unknown whether these isoforms promote the maintenance as well as development of hearing. We investigated the function of TRβ1 in mice with a Thrb(b1) reporter allele that expresses β-galactosidase instead of TRβ1. In the immature cochlea, β-galactosidase was detected in the greater epithelial ridge, sensory hair cells, spiral ligament, and spiral ganglion and in adulthood, at low levels in the hair cells, support cells and root cells of the outer sulcus. Although deletion of all TRβ isoforms causes severe, early-onset deafness, deletion of TRβ1 or TRβ2 individually caused no obvious hearing loss in juvenile mice. However, over subsequent months, TRβ1 deficiency resulted in progressive loss of hearing and loss of hair cells. TRβ1-deficient mice had minimal changes in serum thyroid hormone and thyrotropin levels, indicating that hormonal imbalances were unlikely to cause hearing loss. The results suggest mutually shared roles for TRβ1 and TRβ2 in cochlear development and an unexpected requirement for TRβ1 in the maintenance of hearing in adulthood.
Collapse
Affiliation(s)
- Lily Ng
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Emily Cordas
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Xuefeng Wu
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Kristen R Vella
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Anthony N Hollenberg
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Douglas Forrest
- Laboratory of Endocrinology and Receptor Biology (L.N., E.C., X.W., D.F.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; and Division of Endocrinology, Diabetes and Metabolism (K.R.V., A.N.H.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
12
|
Knipper M, Panford-Walsh R, Singer W, Rüttiger L, Zimmermann U. Specific synaptopathies diversify brain responses and hearing disorders: you lose the gain from early life. Cell Tissue Res 2015; 361:77-93. [PMID: 25843689 PMCID: PMC4487345 DOI: 10.1007/s00441-015-2168-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/05/2015] [Indexed: 01/08/2023]
Abstract
Before hearing onset, inner hair cell (IHC) maturation proceeds under the influence of spontaneous Ca(2+) action potentials (APs). The temporal signature of the IHC Ca(2+) AP is modified through an efferent cholinergic feedback from the medial olivocochlear bundle (MOC) and drives the IHC pre- and post-synapse phenotype towards low spontaneous (spike) rate (SR), high-threshold characteristics. With sensory experience, the IHC pre- and post-synapse phenotype matures towards the instruction of low-SR, high-threshold and of high-SR, low-threshold auditory fiber characteristics. Corticosteroid feedback together with local brain-derived nerve growth factor (BDNF) and catecholaminergic neurotransmitters (dopamine) might be essential for this developmental step. In this review, we address the question of whether the control of low-SR and high-SR fiber characteristics is linked to various degrees of vulnerability of auditory fibers in the mature system. In particular, we examine several IHC synaptopathies in the context of various hearing disorders and exemplified shortfalls before and after hearing onset.
Collapse
Affiliation(s)
- Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | | | - Wibke Singer
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Elfriede-Aulhorn-Straße 5, 72076 Tübingen, Germany
| |
Collapse
|
13
|
Hayashi L, Sheth M, Young A, Kruger M, Wayman GA, Coffin AB. The effect of the aquatic contaminants bisphenol-A and PCB-95 on the zebrafish lateral line. Neurotoxicology 2014; 46:125-36. [PMID: 25556122 DOI: 10.1016/j.neuro.2014.12.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/18/2014] [Accepted: 12/22/2014] [Indexed: 01/18/2023]
Abstract
Environmental toxicants such as bisphenol-A (BPA) and polychlorinated biphenyls (PCBs) are prevalent in our water supply, soil, and many food products and can profoundly affect the central nervous system. Both BPA and PCBs can disrupt endocrine signaling, which is important for auditory development and function, but the effect of these toxicants on the auditory periphery is not understood. In this study we investigated the effect of PCB-95 and BPA on lateral line development, function, and regeneration in larval zebrafish. The lateral line is a system of mechanosensory hair cells on the exterior of the fish that are homologous to the hair cells located in the mammalian inner ear. We found that PCB-95 had no effect on lateral line development or hair cell survival. BPA also did not affect lateral line development, but instead had a significant effect on both hair cell survival and regeneration. BPA-induced hair cell loss is both dose- and time-dependent, with concentrations of 1 μM or higher killing lateral line hair cells during a 24h exposure period. Pharmacologic manipulation experiments suggest that BPA kills hair cells via activation of oxidative stress pathways, similar to prior reports of BPA toxicity in other tissues. We also observed that hair cells killed with neomycin, a known ototoxin, failed to regenerate normally when BPA was present, suggesting that BPA in aquatic environments could impede innate regenerative responses in fishes. Collectively, these data demonstrate that BPA can have detrimental effects on sensory systems, both in aquatic life and perhaps in terrestrial organisms, including humans.
Collapse
Affiliation(s)
- Lauren Hayashi
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Meghal Sheth
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Alexander Young
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Matthew Kruger
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA.
| | - Gary A Wayman
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| | - Allison B Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| |
Collapse
|
14
|
Ortiga-Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 2014; 10:582-91. [PMID: 25135573 PMCID: PMC4578869 DOI: 10.1038/nrendo.2014.143] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Thyroid hormone action is predominantly mediated by thyroid hormone receptors (THRs), which are encoded by the thyroid hormone receptor α (THRA) and thyroid hormone receptor β (THRB) genes. Patients with mutations in THRB present with resistance to thyroid hormone β (RTHβ), which is a disorder characterized by elevated levels of thyroid hormone, normal or elevated levels of TSH and goitre. Mechanistic insights about the contributions of THRβ to various processes, including colour vision, development of the cochlea and the cerebellum, and normal functioning of the adult liver and heart, have been obtained by either introducing human THRB mutations into mice or by deletion of the mouse Thrb gene. The introduction of the same mutations that mimic human THRβ alterations into the mouse Thra and Thrb genes resulted in distinct phenotypes, which suggests that THRA and THRB might have non-overlapping functions in human physiology. These studies also suggested that THRA mutations might not be lethal. Seven patients with mutations in THRα have since been described. These patients have RTHα and presented with major abnormalities in growth and gastrointestinal function. The hypothalamic-pituitary-thyroid axis in these individuals is minimally affected, which suggests that the central T3 feedback loop is not impaired in patients with RTHα, in stark contrast to patients with RTHβ.
Collapse
Affiliation(s)
- Tânia M Ortiga-Carvalho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, S/N, Cidade Universitária, 21941-902, Rio de Janeiro, Brazil
| | - Aniket R Sidhaye
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| | - Fredric E Wondisford
- Departments of Paediatrics and Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 10-113, Baltimore, MD 21287, USA
| |
Collapse
|
15
|
Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 2014; 28:429-41. [PMID: 24617548 DOI: 10.1210/me.2013-1414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
T3, the active form of thyroid hormone, binds nuclear receptors that regulate the transcription of a large number of genes in many cell types. Unraveling the direct and indirect effect of this hormonal stimulation, and establishing links between these molecular events and the developmental and physiological functions of the hormone, is a major challenge. New mouse genetics tools, notably those based on Cre/loxP technology, are suitable to perform a multiscale analysis of T3 signaling and achieve this task.
Collapse
Affiliation(s)
- Frédéric Picou
- Université de Lyon, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Claude Bernard Lyon 1, École Normale, Supérieure de Lyon, Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | | | | | | | | |
Collapse
|
16
|
Chiang DY, Cuthbertson DW, Ruiz FR, Li N, Pereira FA. A coregulatory network of NR2F1 and microRNA-140. PLoS One 2013; 8:e83358. [PMID: 24349493 PMCID: PMC3857795 DOI: 10.1371/journal.pone.0083358] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/11/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Both nuclear receptor subfamily 2 group F member 1 (NR2F1) and microRNAs (miRNAs) have been shown to play critical roles in the developing and functional inner ear. Based on previous studies suggesting interplay between NR2F1 and miRNAs, we investigated the coregulation between NR2F1 and miRNAs to better understand the regulatory mechanisms of inner ear development and functional maturation. RESULTS Using a bioinformatic approach, we identified 11 potential miRNAs that might coregulate target genes with NR2F1 and analyzed their targets and potential roles in physiology and disease. We selected 6 miRNAs to analyze using quantitative real-time (qRT) -PCR and found that miR-140 is significantly down-regulated by 4.5-fold (P=0.004) in the inner ear of NR2F1 knockout (Nr2f1(-/-)) mice compared to wild-type littermates but is unchanged in the brain. Based on this, we performed chromatin-immunoprecipitation followed by qRT-PCR and confirmed that NR2F1 directly binds and regulates both miR-140 and Klf9 in vivo. Furthermore, we performed luciferase reporter assay and showed that miR-140 mimic directly regulates KLF9-3'UTR, thereby establishing and validating an example coregulatory network involving NR2F1, miR-140, and Klf9. CONCLUSIONS We have described and experimentally validated a novel tissue-dependent coregulatory network for NR2F1, miR-140, and Klf9 in the inner ear and we propose the existence of many such coregulatory networks important for both inner ear development and function.
Collapse
Affiliation(s)
- David Y. Chiang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - David W. Cuthbertson
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fernanda R. Ruiz
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Na Li
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fred A. Pereira
- Bobby R. Alford Department of Otolaryngology- Head and Neck Surgery, Baylor College of Medicine, Houston, Texas, United States of America
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| |
Collapse
|