1
|
Alam S, Giri PK. Novel players in the development of chemoresistance in ovarian cancer: ovarian cancer stem cells, non-coding RNA and nuclear receptors. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:6. [PMID: 38434767 PMCID: PMC10905178 DOI: 10.20517/cdr.2023.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/03/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Ovarian cancer (OC) ranks as the fifth leading factor for female mortality globally, with a substantial burden of new cases and mortality recorded annually. Survival rates vary significantly based on the stage of diagnosis, with advanced stages posing significant challenges to treatment. OC is primarily categorized as epithelial, constituting approximately 90% of cases, and correct staging is essential for tailored treatment. The debulking followed by chemotherapy is the prevailing treatment, involving platinum-based drugs in combination with taxanes. However, the efficacy of chemotherapy is hindered by the development of chemoresistance, both acquired during treatment (acquired chemoresistance) and intrinsic to the patient (intrinsic chemoresistance). The emergence of chemoresistance leads to increased mortality rates, with many advanced patients experiencing disease relapse shortly after initial treatment. This review delves into the multifactorial nature of chemoresistance in OC, addressing mechanisms involving transport systems, apoptosis, DNA repair, and ovarian cancer stem cells (OCSCs). While previous research has identified genes associated with these mechanisms, the regulatory roles of non-coding RNA (ncRNA) and nuclear receptors in modulating gene expression to confer chemoresistance have remained poorly understood and underexplored. This comprehensive review aims to shed light on the genes linked to different chemoresistance mechanisms in OC and their intricate regulation by ncRNA and nuclear receptors. Specifically, we examine how these molecular players influence the chemoresistance mechanism. By exploring the interplay between these factors and gene expression regulation, this review seeks to provide a comprehensive mechanism driving chemoresistance in OC.
Collapse
Affiliation(s)
| | - Pankaj Kumar Giri
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
2
|
Silva TCD, Santos WAD, Pinto SAG, Rocha PRD, Hurtado ECP, Bonamin LV. Phenotypic Changes in Mammary Adenocarcinoma (4T1) cells In Vitro after Treatment with Carcinosinum. HOMEOPATHY 2022; 111:278-287. [PMID: 35477183 DOI: 10.1055/s-0041-1740967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The present study aimed to identify possible phenotypic changes in 4T1 (murine mammary adenocarcinoma) cells in vitro, including viability, HER-2 (human epidermal growth factor receptor-type 2) expression, and metastatic potential, after treatment with Carcinosinum in different homeopathic dilutions (12cH, 30cH, 200cH) shaken mechanically in pure, sterile, water from a commercial stock dilution. METHOD Treated cells were cultured in R10 medium, using 24-well plates, 105 cells per well, and treated with vehicle, Carcinosinum 12cH, 30cH or 200cH; untreated cells were used as the baseline control. After 24 hours of treatment, the percentage of apoptotic cells was analyzed by annexin V. Cell morphology was evaluated by microscopy after hematoxylin-eosin and Giemsa staining, whilst HER-2 expression was assessed using immunocytochemistry. The metastatic potential was determined by the expression and activity of the enzyme matrix metalloproteinase 9 (MMP-9) using zymography. The cytokine profile was established using the cytometric bead array method. RESULT Treatment of 4T1 cells in vitro with Carcinosinum 30cH produced an increase in the number of annexin V-positive cells (apoptosis) and decreased expression of proactivated MMP-9. Cells treated with Carcinosinum 200cH presented hyper-expression of HER-2 on the plasma membrane, identified by immunocytochemistry. There were no differences in cytokine production among treatments. CONCLUSION The data show promising results for Carcinosinum 30cH in vitro, but in vivo studies are also required to evaluate the role of tumor microenvironment in its effects.
Collapse
Affiliation(s)
- Thaís Cristina da Silva
- Research Center, Graduation Program in Environmental and Experimental Pathology, University Paulista-UNIP, São Paulo, Brazil
| | - William Alves Dos Santos
- Research Center, Graduation Program in Environmental and Experimental Pathology, University Paulista-UNIP, São Paulo, Brazil
| | - Sandra A G Pinto
- Research Center, Graduation Program in Environmental and Experimental Pathology, University Paulista-UNIP, São Paulo, Brazil
| | | | | | - Leoni Villano Bonamin
- Research Center, Graduation Program in Environmental and Experimental Pathology, University Paulista-UNIP, São Paulo, Brazil
| |
Collapse
|
3
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
4
|
Meng X, Zhao Y, Liu J, Wang L, Dong Z, Zhang T, Gu X, Zheng Z. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp Ther Med 2019; 18:2219-2230. [PMID: 31452712 DOI: 10.3892/etm.2019.7808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the epigenetic alterations caused by histone modifications have important roles in the genesis of gastric cancer (GC), particularly the well-studied acetylation and methylation modifications. In the present study, a Bioinformatics analysis of the expression of histone modification-associated genes in GC and normal tissues was performed by using datasets from Oncomine, the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The clinical data of GC patients were downloaded from TCGA to determine the association between histone modification-associated gene expression and clinicopathological parameters or survival of GC. Finally, lysine acetyltransferase 2A (KAT2A), nuclear receptor coactivator 1 (NCOA1), SMYD family member 5 (SMYD5), protein arginine methyltransferase 1 (PRMT1) and PRDF1-RIZ (PR)/Su(var)3-9, enhancer-of-zeste and trithorax (SET) domain 16 (PRDM16) were screened; KAT2A, SMYD5 and PRMT1 were upregulated, while PRDM16 expression was downregulated in GC. Analysis of the GEO and Oncomine datasets revealed that NCOA1 was upregulated, which was contrary to the result obtained with the TCGA stomach adenocarcinoma dataset. Aberrant expression of KAT2A, NCOA1, SMYD5 and PRMT1 was more obvious in gastric intestinal-type adenocarcinoma; low NCOA1 expression was associated with better overall survival of GC patients [hazard ratio (HR)=0.690, 95% CI=0.570-0.840, P<0.001] and was an independent predictor for patients diagnosed with GC (HR=0.639, 95% CI=0.437-0.933, P=0.020). Correlation analysis and protein-protein interaction network analysis indicated a close association between ATAD2 and estrogen receptor 1 (ESR1), PRMT1, NCOA1 and KAT2A. In conclusion, differential expression of KAT2A, NCOA1, SMYD5, PRMT1 and PRDM16 was identified in GC vs. normal tissues, low NCOA1 expression was associated with poor survival of GC and ATAD2 may interact with ESR1 to regulate NCOA1 and PRMT1 in GC.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jingwei Liu
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Wang
- Department of Ultrasonography, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Zhe Dong
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaohu Gu
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
5
|
Tang H, Bai Y, Xiong L, Zhang L, Wei Y, Zhu M, Wu X, Long D, Yang J, Yu L, Xu S, Zhao J. Interaction of estrogen receptor β5 and interleukin 6 receptor in the progression of non-small cell lung cancer. J Cell Biochem 2019; 120:2028-2038. [PMID: 30216513 DOI: 10.1002/jcb.27510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
Numerous studies have shown that the estrogen receptor beta (ERβ) and interleukin 6 receptor (IL-6R) had interaction in many tumors, including lung cancer. Previous studies found that ERβ5 exhibits a different biological function compared with the other subtypes of ERβ. Therefore, this study mainly explores the interaction between ERβ5 and IL-6R in the progression of lung cancer. We found that the expression of ERβ5, IL-6 and glycoprotein 130 (GP130) were significantly increased (P < 0.001) and the 5-year survival rate with the co-expression of ERβ5 and GP130 is significantly lower (P = 0.0315) in non-small cell lung cancer (NSCLC) patients. The cell proliferation, invasion, and cell cycle were markedly increased, and the cell apoptotic was markedly inhibited with the concurrent action of ERβ5 and IL-6 in A549 cells (P < 0.05). In addition, the expression of ERβ5, GP130, p-AKT, and p-44/42 MAPK was also significantly increased in A549 cells (P < 0.05). These results indicate that ERβ5 and GP130 can synergistically promote the progression of NSCLC and maybe combined as an independent prognostic factor in patients. In addition, these results also provide a theoretical basis for the combined targeting therapy of ERβ5 and GP130 in NSCLC.
Collapse
Affiliation(s)
- Hexiao Tang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuquan Bai
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lecai Xiong
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zhang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yanhong Wei
- Department of Nephrology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglin Zhu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Wu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Long
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhui Yang
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shufang Xu
- Department of Critical Care Medicine, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Sousa LMMDC, Silva RDS, Fonseca VUD, Leandro RM, Di Vincenzo TS, Alves-Wagner AB, Machado UF, Papa PDC. Is the canine corpus luteum an insulin-sensitive tissue? J Endocrinol 2016; 231:223-233. [PMID: 27679426 DOI: 10.1530/joe-16-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to determine in the canine corpus luteum throughout the dioestrus (1) the influence of insulin on glucose uptake; (2) the regulation of genes potentially involved; and (3) the influence of hypoxia on glucose transporter expression and steroidogenesis, after treatment with cobalt chloride (CoCl2). Glucose uptake by luteal cells increased 2.7 folds (P < 0.05) in response to insulin; a phenomenon related to increased expression of glucose transporter (GLUT) 4 and phosphorylation of protein kinase B (AKT). The gene expression of insulin receptor and SLC2A4 (codifier of GLUT4) genes after insulin stimulation increased on day 20 post ovulation (p.o.) and declined on day 40 p.o. (P < 0.05). Regarding potentially involved molecular mechanisms, the nuclear factor kappa B gene RELA was upregulated on days 30/40 p.o., when SLC2A4 mRNA was low, and the interleukin 6 (IL6) gene was upregulated in the first half of dioestrus, when SLC2A4 mRNA was high. CoCl2 in luteal cell cultures increased the hypoxia-inducible factor HIF1A/HIF1A and the SLC2A4/GLUT4 expression, and decreased progesterone (P4) production and hydroxyl-delta-5-steroid dehydrogenase 3 beta (HSD3B) mRNA expression (P < 0.05). This study shows that the canine luteal cells are responsive to insulin, which stimulates glucose uptake in AKT/GLUT4-mediated pathway; that may be related to local activity of RELA and IL6. Besides, the study reveals that luteal cells under hypoxia activate HIF1A-modulating luteal function and insulin-stimulated glucose uptake. These data indicate that insulin regulates luteal cells' glucose disposal, participating in the maintenance and functionality of the corpus luteum.
Collapse
Affiliation(s)
| | - Renata Dos Santos Silva
- Department of SurgerySchool of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa Uemura da Fonseca
- Department of SurgerySchool of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Rafael Magdanelo Leandro
- Department of SurgerySchool of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Thiago Senna Di Vincenzo
- Department of SurgerySchool of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Ana Bárbara Alves-Wagner
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula de Carvalho Papa
- Department of SurgerySchool of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Pierdominici M, Maselli A, Varano B, Barbati C, Cesaro P, Spada C, Zullo A, Lorenzetti R, Rosati M, Rainaldi G, Limiti MR, Guidi L, Conti L, Gessani S. Linking estrogen receptor β expression with inflammatory bowel disease activity. Oncotarget 2016; 6:40443-51. [PMID: 26497217 PMCID: PMC4747344 DOI: 10.18632/oncotarget.6217] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/02/2015] [Indexed: 12/13/2022] Open
Abstract
Crohn disease (CD) and ulcerative colitis (UC) are chronic forms of inflammatory bowel disease (IBD) whose pathogenesis is only poorly understood. Estrogens have a complex role in inflammation and growing evidence suggests that these hormones may impact IBD pathogenesis. Here, we demonstrated a significant reduction (p < 0.05) of estrogen receptor (ER)β expression in peripheral blood T lymphocytes from CD/UC patients with active disease (n = 27) as compared to those in remission (n = 21) and healthy controls (n = 29). Accordingly, in a subgroup of CD/UC patients undergoing to anti-TNF-α therapy and responsive to treatment, ERβ expression was higher (p < 0.01) than that observed in not responsive patients and comparable to that of control subjects. Notably, ERβ expression was markedly decreased in colonic mucosa of CD/UC patients with active disease, reflecting the alterations observed in peripheral blood T cells. ERβ expression inversely correlated with interleukin (IL)-6 serum levels and exogenous exposure of both T lymphocytes and intestinal epithelial cells to this cytokine resulted in ERβ downregulation. These results demonstrate that the ER profile is altered in active IBD patients at both mucosal and systemic levels, at least in part due to IL-6 dysregulation, and highlight the potential exploitation of T cell-associated ERβ as a biomarker of endoscopic disease activity.
Collapse
Affiliation(s)
- Marina Pierdominici
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Angela Maselli
- Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Varano
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Barbati
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Cesaro
- Digestive Endoscopy Unit, Catholic University, Rome, Italy
| | | | - Angelo Zullo
- Gastroenterology and Digestive Endoscopy, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Roberto Lorenzetti
- Gastroenterology and Digestive Endoscopy, Nuovo Regina Margherita Hospital, Rome, Italy
| | - Marco Rosati
- Histopathology Complex Unit, Santo Spirito Hospital, Rome, Italy
| | - Gabriella Rainaldi
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Luisa Guidi
- IBD Unit, Complesso Integrato Columbus, Catholic University, Rome, Italy
| | - Lucia Conti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Sandra Gessani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
8
|
Kabel AM, Elkhoely AA. Ameliorative potential of fluoxetine/raloxifene combination on experimentally induced breast cancer. Tissue Cell 2016; 48:89-95. [PMID: 26881735 DOI: 10.1016/j.tice.2016.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/29/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
Breast cancer is one of the most common types of malignancies in females worldwide. Targeting the estrogen receptors alone with raloxifene (RAL) reduces the incidence of estrogen receptor positive tumors. Fluoxetine (FLX) is one of selective serotonin reuptake inhibitors that was proven to have anticancer properties. Our aim was to detect the effects of RAL/FLX combination on experimentally induced breast cancer. Eighty female Wistar rats were divided into four equal groups: 7,12-Dimethyl Benzanthracene (DMBA) induced breast cancer group, DMBA+RAL, DMBA+FLX and DMBA+RAL+FLX. Tumor volume, tissue malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6) and transforming growth factor beta1 (TGF-β1) were determined in the tumor tissues. Parts of the tumor were subjected to histopathological examination. RAL or FLX alone or in combination induced significant increase in tumor CAT and SOD with significant decrease in tumor volume, tissue MDA, TNF-α, IL-6 and TGF-β1 and alleviated the histopathological and immunohistochemical changes compared to DMBA group. In conclusion, RAL/FLX combination had a better effect than each of RAL or FLX alone against DMBA-induced breast cancer in rats which may represent a new therapeutic modality for management of breast cancer.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt; Clinical Pharmacy Department, College of Pharmacy, Taif University, Taif, Saudi Arabia.
| | - Abeer A Elkhoely
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Egypt
| |
Collapse
|
9
|
Bharti R, Dey G, Mandal M. Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer Lett 2016; 375:51-61. [PMID: 26945971 DOI: 10.1016/j.canlet.2016.02.048] [Citation(s) in RCA: 174] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 02/24/2016] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Interleukin-6 (IL-6) is a cytokine present in tumor microenvironment. Elevated level of IL-6 is associated with cancer cell proliferation, angiogenesis and metastasis through fueling STAT3, MAPK and Akt signaling. It promotes epithelial to mesenchymal transition (EMT) through altered expression of N-cadherin, vimentin, snail, twist and E-cadherin leading to cancer metastasis. IL-6 boosts mammosphere formation, self-renewal of stem cells, stemness properties of cancer cells and recruitment of mesenchymal stem cells. IL-6 is also a contributing factor for multidrug resistance in cancer due to gp130/MAPK/STAT3 mediated activation of transcription factors C/EBPβ/δ, overexpression of p-glycoprotein, EMT transition and expansion of stem cells. The in-depth investigation of IL-6 mediated cellular effects and its signaling pathway can provide the new window for future research and clinical development of IL-6 targeted therapy in cancer. Thus, an overview is delivered in this review deciphering the emerging aspect of the predominant influence of IL-6 in malignant transformation, EMT, cancer-associated stem cells and chemoresistance.
Collapse
Affiliation(s)
- Rashmi Bharti
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Goutam Dey
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science & Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
10
|
Ho LJ, Luo SF, Lai JH. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem Pharmacol 2015; 97:16-26. [DOI: 10.1016/j.bcp.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023]
|
11
|
Masoumi-Moghaddam S, Amini A, Wei AQ, Robertson G, Morris DL. Intratumoral interleukin-6 predicts ascites formation in patients with epithelial ovarian cancer: A potential tool for close monitoring. J Ovarian Res 2015; 8:58. [PMID: 26282935 PMCID: PMC4539669 DOI: 10.1186/s13048-015-0183-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/29/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The implication of IL-6 in the pathogenesis of epithelial ovarian cancer (EOC) is well documented. Accordingly, the clinicopathological significance of this cytokine in patients' ascites fluid or serum has largely been investigated. Since the main source of IL-6 secreted into the biological fluids is the tumor tissue, this study was designed to investigate the status and possible clinical relevance of the IL-6 expression in an array of EOC tissue specimens. METHODS Tissue samples obtained from ninety-eight consecutive patients with EOC were studied using immunohistochemistry. Clinicopathological characteristics and treatment related factors were collected from patient files. The relationship between the expression of the protein of interest and the study endpoints of disease-free survival (DFS) and overall survival (OS) were analyzed using the Kaplan-Meier method. For evaluating the predictive value of IL-6, logistic regression and cox proportional hazards models were employed. RESULTS An upregulation of IL-6 expression was observed in EOC tissues as compared with the normal samples (p < 0.0001). As regards the clinical relevance, IL-6 failed to predict OS, DFS and response to the platinum-based chemotherapy in EOC patients. In multivariate analysis, however, IL-6 was identified as an independent predictive factor for the development of post-treatment ascites (p:0.033). CONCLUSIONS Having the capability to predict the ascites formation, IL-6 might serve as a biomarker and a useful tool in EOC for monitoring purposes. IL-6 targeting for the prevention of the ascites development is a potential avenue for further investigation.
Collapse
Affiliation(s)
- Samar Masoumi-Moghaddam
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney, NSW 2217, Australia.
| | - Afshin Amini
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney, NSW 2217, Australia.
| | - Ai-Qun Wei
- Department of Orthopedic Surgery, St. George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney, NSW 2217, Australia.
| | - Gregory Robertson
- Department of Gynecology Oncology, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney, NSW 2217, Australia.
| | - David L Morris
- Department of Surgery, St George Hospital, The University of New South Wales, Gray Street, Kogarah, Sydney, NSW 2217, Australia.
| |
Collapse
|
12
|
Engström W, Darbre P, Eriksson S, Gulliver L, Hultman T, Karamouzis MV, Klaunig JE, Mehta R, Moorwood K, Sanderson T, Sone H, Vadgama P, Wagemaker G, Ward A, Singh N, Al-Mulla F, Al-Temaimi R, Amedei A, Colacci AM, Vaccari M, Mondello C, Scovassi AI, Raju J, Hamid RA, Memeo L, Forte S, Roy R, Woodrick J, Salem HK, Ryan EP, Brown DG, Bisson WH. The potential for chemical mixtures from the environment to enable the cancer hallmark of sustained proliferative signalling. Carcinogenesis 2015; 36 Suppl 1:S38-S60. [PMID: 26106143 PMCID: PMC4565610 DOI: 10.1093/carcin/bgv030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023] Open
Abstract
The aim of this work is to review current knowledge relating the established cancer hallmark, sustained cell proliferation to the existence of chemicals present as low dose mixtures in the environment. Normal cell proliferation is under tight control, i.e. cells respond to a signal to proliferate, and although most cells continue to proliferate into adult life, the multiplication ceases once the stimulatory signal disappears or if the cells are exposed to growth inhibitory signals. Under such circumstances, normal cells remain quiescent until they are stimulated to resume further proliferation. In contrast, tumour cells are unable to halt proliferation, either when subjected to growth inhibitory signals or in the absence of growth stimulatory signals. Environmental chemicals with carcinogenic potential may cause sustained cell proliferation by interfering with some cell proliferation control mechanisms committing cells to an indefinite proliferative span.
Collapse
Affiliation(s)
- Wilhelm Engström
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden,
| | - Philippa Darbre
- School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Staffan Eriksson
- Department of Biochemistry, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, Box 575, 75123 Uppsala, Sweden
| | - Linda Gulliver
- Faculty of Medicine, University of Otago, PO Box 913, Dunedin 9050, New Zealand
| | - Tove Hultman
- Department of Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Swedish University of Agricultural Sciences, PO Box 7028, 75007 Uppsala, Sweden, School of Biological Sciences, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Michalis V Karamouzis
- Department of Biological Chemistry Medical School, Institute of Molecular Medicine and Biomedical Research, University of Athens, Marasli 3, Kolonaki, Athens 10676, Greece
| | - James E Klaunig
- Department of Environmental Health, School of Public Health, Indiana University Bloomington , 1025 E. 7th Street, Suite 111, Bloomington, IN 47405, USA
| | - Rekha Mehta
- Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, 251 Sir F.G. Banting Driveway, AL # 2202C, Tunney's Pasture, Ottawa, Ontario K1A 0K9, Canada
| | - Kim Moorwood
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Thomas Sanderson
- INRS-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, Quebec H7V 1B7, Canada
| | - Hideko Sone
- Environmental Exposure Research Section, Center for Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibraki 3058506, Japan
| | - Pankaj Vadgama
- IRC in Biomedical Materials, School of Engineering & Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Gerard Wagemaker
- Center for Stem Cell Research and Development, Hacettepe University, Ankara 06100, Turkey
| | - Andrew Ward
- Department of Biochemistry and Biology, University of Bath , Claverton Down, Bath BA2 7AY, UK
| | - Neetu Singh
- Centre for Advanced Research, King George's Medical University, Chowk, Lucknow, Uttar Pradesh 226003, India
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze 50134, Italy
| | - Anna Maria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Jayadev Raju
- Regulatoty Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, HPFB, Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Roslida A Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Lorenzo Memeo
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Stefano Forte
- Mediterranean Institute of Oncology, Viagrande 95029, Italy
| | - Rabindra Roy
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Jordan Woodrick
- Molecular Oncology Program, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Hosni K Salem
- Urology Dept. kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - Dustin G Brown
- Department of Environmental and Radiological Sciences, Colorado State University//Colorado School of Public Health, Fort Collins CO 80523-1680, USA and
| | - William H Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
13
|
Wang Y, Niu XL, Guo XQ, Yang J, Li L, Qu Y, Xiu Hu C, Mao LQ, Wang D. IL6 induces TAM resistance via kinase-specific phosphorylation of ERα in OVCA cells. J Mol Endocrinol 2015; 54:351-61. [PMID: 25943392 DOI: 10.1530/jme-15-0011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2015] [Indexed: 01/16/2023]
Abstract
About 40-60% of ovarian cancer (OVCA) cases express ERα, but only a small proportion of patients respond clinically to anti-estrogen treatment with estrogen receptor (ER) antagonist tamoxifen (TAM). The mechanism of TAM resistance in the course of OVCA progression remains unclear. However, IL6 plays a critical role in the development and progression of OVCA. Our recent results indicated that IL6 secreted by OVCA cells may promote the resistance of these cells to TAM via ER isoforms and steroid hormone receptor coactivator-1. Here we demonstrate that both exogenous (a relatively short period of treatment with recombinant IL6) and endogenous IL6 (generated as a result of transfection with a plasmid encoding sense IL6) increases expression of pERα-Ser118 and pERα-Ser167 in non-IL6-expressing A2780 cells, while deleting endogenous IL6 expression in IL6-overexpressing CAOV-3 cells (by transfection with a plasmid encoding antisense IL6) reduces expression of pERα-Ser118 and pERα-Ser167, indicating that IL6-induced TAM resistance may also be associated with increased expression of pERα-Ser118 and pERα-Ser167 in OVCA cells. Results of further investigation indicate that IL6 phosphorylates ERα at Ser118 and Ser167 by triggering activation of MEK/ERK and phosphotidylinositol 3 kinase/Akt signaling, respectively, to activate the ER pathway and thereby induce OVCA cells resistance to TAM. These results indicate that IL6 secreted by OVCA cells may also contribute to the refractoriness of these cells to TAM via the crosstalk between ER and IL6-mediated intracellular signal transduction cascades. Overexpression of IL6 not only plays an important role in OVCA progression but also promotes TAM resistance. Our results indicate that TAM-IL6-targeted adjunctive therapy may lead to a more effective intervention than TAM alone.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiu Long Niu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Xiao Qin Guo
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Jing Yang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ling Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ye Qu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Cun Xiu Hu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Li Qun Mao
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Dan Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental HazardTianjin, People's Republic of ChinaDepartment of Pathogenic Biology and ImmunologyLogistics College of Chinese People's Armed Police Forces, Dongli District, Huizhi Ring Road, Number 1, Tianjin 300309, People's Republic of ChinaDepartment of Infectious DiseasesAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of PharmacologyLogistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of ChinaDepartment of Gynecology and ObstetricsAffiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| |
Collapse
|
14
|
Stasenko M, Plegue M, Sciallis AP, McLean K. Clinical response to antiestrogen therapy in platinum-resistant ovarian cancer patients and the role of tumor estrogen receptor expression status. Int J Gynecol Cancer 2015; 25:222-8. [PMID: 25500503 DOI: 10.1097/igc.0000000000000334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE This study aimed to determine the progression-free interval (PFI) for patients with platinum-resistant ovarian cancer on antiestrogen therapy (AET), and to correlate PFI with tumor estrogen receptor (ER) expression status. MATERIALS AND METHODS This single-institution retrospective cohort study investigated platinum-resistant epithelial ovarian, fallopian tube, and primary peritoneal cancers treated with tamoxifen or an aromatase inhibitor from January 1999 to January 2012. Median PFI was calculated and a 95% confidence interval was constructed by bootstrapping. Relationships of PFI with disease characteristics were examined using 1-way analysis of variance or Pearson correlation. Estrogen receptor status of tumor specimens was assessed by immunohistochemistry. Progression-free interval was compared between ER groups with the Mann-Whitney test. Kaplan-Meier estimate was used to determine overall survival. RESULTS Ninety-nine patients met inclusion criteria: 77 (78%) received tamoxifen and 22 (22%) an aromatase inhibitor. Patients had a mean of 4 prior chemotherapy regimens (range, 1-14). Median PFI for any AET was 4.0 months (range, 1-49; 95% confidence interval, 3.0-5.0). Progression-free interval was independent of the number of prior treatments and type of AET, but longer with earlier stage at diagnosis. Estrogen receptor status was obtained for 63 patients, 44 were positive and 19 were negative. Progression-free interval was not statistically significant between ER-positive (median, 4.0 months) and ER-negative (median, 2.0 months) tumor status (P = 0.36). CONCLUSIONS This is the largest study to date investigating AET in heavily pretreated, platinum-resistant ovarian cancer patients. The median PFI of 4.0 months is comparable to standard cytotoxic therapies, and some patients with PFI greater than this median interval had ER-negative tumors. Given the limited adverse effects of AET, as well as low cost including oral administration, this treatment should be considered in all patients with platinum-resistant ovarian cancer.
Collapse
Affiliation(s)
- Marina Stasenko
- *Division of Gynecologic Oncology, †Center for Statistical Consultation and Research, and ‡Department of Pathology, University of Michigan, Ann Arbor, MI
| | | | | | | |
Collapse
|
15
|
Chang Q, Daly L, Bromberg J. The IL-6 feed-forward loop: a driver of tumorigenesis. Semin Immunol 2014; 26:48-53. [PMID: 24613573 DOI: 10.1016/j.smim.2014.01.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 12/19/2022]
Abstract
IL-6 signaling plays a prominent role in tumorigenesis and metastasis. In this review we discuss the recent evidence describing the tumor intrinsic and extrinsic functions of this signaling pathway. Although blockade of this pathway in pre-clinical models leads to a reduction in tumor growth and metastasis, its clinical success is less evident. Thus, identifying the features of tumors/patients that predict response to anti-IL6 therapy are needed.
Collapse
Affiliation(s)
- Qing Chang
- Department of Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Laura Daly
- Department of Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY, USA; Weill Cornell Medical College (WCMC), New York, NY, USA.
| |
Collapse
|