1
|
Sekar J, Attaway AH. The intersection of HIF-1α, O-GlcNAc, and skeletal muscle loss in chronic obstructive pulmonary disease. Glycobiology 2023; 33:873-878. [PMID: 37812446 PMCID: PMC10859630 DOI: 10.1093/glycob/cwad081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Sarcopenia, defined as the loss of muscle mass and strength, is a major cause of morbidity and mortality in COPD (chronic obstructive pulmonary disease) patients. However, the molecular mechanisms that cause sarcopenia remain to be determined. In this review, we will highlight the unique molecular and metabolic perturbations that occur in the skeletal muscle of COPD patients in response to hypoxia, and emphasize important areas of future research. In particular, the mechanisms related to the glycolytic shift that occurs in skeletal muscle in response to hypoxia may occur via a hypoxia-inducible factor 1-alpha (HIF-1α)-mediated mechanism. Upregulated glycolysis in skeletal muscle promotes a unique post-translational glycosylation of proteins known as O-GlcNAcylation, which further shifts metabolism toward glycolysis. Molecular changes in the skeletal muscle of COPD patients are associated with fiber-type shifting from Type I (oxidative) muscle fibers to Type II (glycolytic) muscle fibers. The metabolic shift toward glycolysis caused by HIF-1α and O-GlcNAc modified proteins suggests a potential cause for sarcopenia in COPD, which is an emerging area of future research.
Collapse
Affiliation(s)
- Jinendiran Sekar
- Division of Infectious Diseases, Harbor-UCLA Medical Center, 1000 West Carson Street, MRL Building, Box 466; Torrance, CA 90502, United States
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W Carson St, Torrance, CA 90502, United States
| | - Amy H Attaway
- Respiratory Institute, Cleveland Clinic, Cleveland Clinic Main Campus, Mail Code A90, 9500 Euclid Avenue, Cleveland, OH 44195, United States
| |
Collapse
|
2
|
Sadanandan J, Sathyanesan M, Liu Y, Tiwari NK, Newton SS. Carbamoylated Erythropoietin-Induced Cerebral Blood Perfusion and Vascular Gene Regulation. Int J Mol Sci 2023; 24:11507. [PMID: 37511274 PMCID: PMC10380798 DOI: 10.3390/ijms241411507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cerebral hypoperfusion is associated with enhanced cognitive decline and increased risk of neuropsychiatric disorders. Erythropoietin (EPO) is a neurotrophic factor known to improve cognitive function in preclinical and clinical studies of neurodegenerative and psychiatric disorders. However, the clinical application of EPO is limited due to its erythropoietic activity that can adversely elevate hematocrit in non-anemic populations. Carbamoylated erythropoietin (CEPO), a chemically engineered non-erythropoietic derivative of EPO, does not alter hematocrit and maintains neurotrophic and behavioral effects comparable to EPO. Our study aimed to investigate the role of CEPO in cerebral hemodynamics. Magnetic resonance imaging (MRI) analysis indicated increased blood perfusion in the hippocampal and striatal region without altering tight junction integrity. In vitro and in vivo analyses indicated that hippocampal neurotransmission was unaltered and increased cerebral perfusion was likely due to EDRF, CGRP, and NOS-mediated vasodilation. In vitro analysis using human umbilical vein endothelial cells (HUVEC) and hippocampal vascular gene expression analysis showed CEPO to be a non-angiogenic agent which regulates the MEOX2 gene expression. The results from our study demonstrate a novel role of CEPO in modulating cerebral vasodilation and blood perfusion.
Collapse
Affiliation(s)
- Jayanarayanan Sadanandan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Monica Sathyanesan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| | - Yutong Liu
- Radiology Research Division, Department of Radiology, Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Samuel S Newton
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA
| |
Collapse
|
3
|
Fang L, Feng Z, Mei J, Zhou J, Lin Z. [Hypoxia promotes differentiation of human induced pluripotent stem cells into embryoid bodies in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:929-936. [PMID: 35790445 DOI: 10.12122/j.issn.1673-4254.2022.06.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate effects of physiological hypoxic conditions on suspension and adherence of embryoid bodies (EBs) during differentiation of human induced pluripotent stem cells (hiPSCs) and explore the underlying mechanisms. METHODS EBs in suspension culture were divided into normoxic (21% O2) and hypoxic (5% O2) groups, and those in adherent culture were divided into normoxic, hypoxic and hypoxia + HIF-1α inhibitor (echinomycin) groups. After characterization of the pluripotency with immunofluorescence assay, the hiPSCs were digested and suspended under normoxic and hypoxic conditions for 5 days, and the formation and morphological changes of the EBs were observed microscopically; the expressions of the markers genes of the 3 germ layers in the EBs were detected. The EBs were then inoculated into petri dishes for further culture in normoxic and hypoxic conditions for another 2 days, after which the adhesion and peripheral expansion rate of the adherent EBs were observed; the changes in the expressions of HIF-1α, β-catenin and VEGFA were detected in response to hypoxic culture and echinomycin treatment. RESULTS The EBs cultured in normoxic and hypoxic conditions were all capable of differentiation into the 3 germ layers. The EBs cultured in hypoxic conditions showed reduced apoptotic debris around them with earlier appearance of cystic EBs and more uniform sizes as compared with those in normoxic culture. Hypoxic culture induced more adherent EBs than normoxic culture (P < 0.05) with also a greater outgrowth rate of the adherent EBs (P < 0.05). The EBs in hypoxic culture showed significantly up-regulated mRNA expressions of β-catenin and VEGFA (P < 0.05) and protein expressions of HIF-1 α, β-catenin and VEGFA (P < 0.05), and their protein expresisons levels were significantly lowered after treatment with echinomycin (P < 0.05). CONCLUSION Hypoxia can promote the formation and maturation of suspended EBs and enhance their adherence and post-adherent proliferation without affecting their pluripotency for differentiation into all the 3 germ layers. Our results provide preliminary evidence that activation of HIF-1α/β-catenin/VEGFA signaling pathway can enhance the differentiation potential of hiPSCs.
Collapse
Affiliation(s)
- L Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Feng
- Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan 528200, China
| | - J Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - J Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Z Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
4
|
Fang L, Mei J, Yao B, Liu J, Liu P, Wang X, Zhou J, Lin Z. Hypoxia facilitates proliferation of smooth muscle cells derived from pluripotent stem cells for vascular tissue engineering. J Tissue Eng Regen Med 2022; 16:744-756. [PMID: 35633489 DOI: 10.1002/term.3324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/07/2022]
Abstract
Tissue-engineered blood vessels (TEBVs) show significant therapeutic potential for replacing diseased blood vessels. Vascular smooth muscle cells (VSMCs) derived from human induced pluripotent stem cells (hiPSCs) via embryoid body (EB)-based differentiation, are promising seed cells to construct TEBVs. However, obtaining sufficient high-quality hiPSC-VSMCs remains challenging. Stem cells are located in a niche characterized by hypoxia. Hence, we explored molecular and cellular functions at different induction stages from the EB formation commencement to the end of directed differentiation under normoxic and hypoxic conditions, respectively. Hypoxia enhanced the formation, adhesion and amplification rates of EBs. During directed differentiation, hiPSC-VSMCs exhibited increased cell viability under hypoxic conditions. Moreover, seeding hypoxia-pretreated cells on biodegradable scaffolds, facilitated collagen I and elastin secretion, which has significant application value for TEBV development. Hence, we proposed that hypoxic treatment during differentiation effectively induces proliferative hiPSC-VSMCs, expanding high-quality seed cell sources for TEBV construction.
Collapse
Affiliation(s)
- Lijun Fang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jingyi Mei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Boqian Yao
- Songshan Lake Central Hospital of Dongguan City, Dongguan, Guangdong, China
| | - Jiang Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.,Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guanzhou, China
| | - Peng Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Xichun Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Jiahui Zhou
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China
| | - Zhanyi Lin
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,Ji Hua Institute of Biomedical Engineering Technology, Ji Hua Laboratory, Foshan, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Lee LYH, Oldham WM, He H, Wang R, Mulhern R, Handy DE, Loscalzo J. Interferon-γ Impairs Human Coronary Artery Endothelial Glucose Metabolism by Tryptophan Catabolism and Activates Fatty Acid Oxidation. Circulation 2021; 144:1612-1628. [PMID: 34636650 DOI: 10.1161/circulationaha.121.053960] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endothelial cells depend on glycolysis for much of their energy production. Impaired endothelial glycolysis has been associated with various vascular pathobiologies, including impaired angiogenesis and atherogenesis. IFN-γ (interferon-γ)-producing CD4+ and CD8+ T lymphocytes have been identified as the predominant pathological cell subsets in human atherosclerotic plaques. Although the immunologic consequences of these cells have been extensively evaluated, their IFN-γ-mediated metabolic effects on endothelial cells remain unknown. The purpose of this study was to determine the metabolic consequences of the T-lymphocyte cytokine, IFN-γ, on human coronary artery endothelial cells. METHODS The metabolic effects of IFN-γ on primary human coronary artery endothelial cells were assessed by unbiased transcriptomic and metabolomic analyses combined with real-time extracellular flux analyses and molecular mechanistic studies. Cellular phenotypic correlations were made by measuring altered endothelial intracellular cGMP content, wound-healing capacity, and adhesion molecule expression. RESULTS IFN-γ exposure inhibited basal glycolysis of quiescent primary human coronary artery endothelial cells by 20% through the global transcriptional suppression of glycolytic enzymes resulting from decreased basal HIF1α (hypoxia-inducible factor 1α) nuclear availability in normoxia. The decrease in HIF1α activity was a consequence of IFN-γ-induced tryptophan catabolism resulting in ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF1β sequestration by the kynurenine-activated AHR (aryl hydrocarbon receptor). In addition, IFN-γ resulted in a 23% depletion of intracellular nicotinamide adenine dinucleotide in human coronary artery endothelial cells. This altered glucose metabolism was met with concomitant activation of fatty acid oxidation, which augmented its contribution to intracellular ATP balance by >20%. These metabolic derangements were associated with adverse endothelial phenotypic changes, including decreased basal intracellular cGMP, impaired endothelial migration, and a switch to a proinflammatory state. CONCLUSIONS IFN-γ impairs endothelial glucose metabolism by altered tryptophan catabolism destabilizing HIF1, depletes nicotinamide adenine dinucleotide, and results in a metabolic shift toward increased fatty acid oxidation. This work suggests a novel mechanistic basis for pathological T lymphocyte-endothelial interactions in atherosclerosis mediated by IFN-γ, linking endothelial glucose, tryptophan, and fatty acid metabolism with the nicotinamide adenine dinucleotide balance and ATP generation and their adverse endothelial functional consequences.
Collapse
Affiliation(s)
- Laurel Yong-Hwa Lee
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - William M Oldham
- Division of Pulmonary and Critical Care (W.M.O.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Huamei He
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ruisheng Wang
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ryan Mulhern
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Diane E Handy
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine (L.Y.-H.L., H.H., R.W., R.M., D.E.H., J.L.), Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
6
|
Peng WX, He PX, Liu LJ, Zhu T, Zhong YQ, Xiang L, Peng K, Yang JJ, Xiang GD. LncRNA GAS5 activates the HIF1A/VEGF pathway by binding to TAF15 to promote wound healing in diabetic foot ulcers. J Transl Med 2021; 101:1071-1083. [PMID: 33875793 DOI: 10.1038/s41374-021-00598-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/14/2022] Open
Abstract
A diabetic foot ulcer (DFU) is one of the most devastating complications of diabetes. It has been reported that lncRNA GAS5 plays a vital role in wound healing in DFUs. However, the specific mechanism remains unclear. In this research, we aimed to investigate the role of GAS5 in wound healing in DFUs as well as the underlying mechanism. qPCR or western blotting was performed to measure the expression levels of GAS5, HIF1A, VEGF and TAF15. CCK-8 or EdU assays, flow cytometry, wound healing assays and tube formation assays were carried out to assess the proliferation, apoptosis, wound healing and in vitro angiogenesis of HUVECs, respectively. RNA pull-down and RIP assays were performed to verify the interaction between GAS5 and TAF15. ChIP and luciferase assays were conducted to verify the binding of TAF15 to the HIF1A promoter. In the DFU mouse model, H&E and Masson staining were used to determine epidermal and dermal thickness and collagen formation. GAS5 and HIF1A were downregulated in the skin tissues of DFU patients, and GAS5 overexpression promoted cell proliferation, wound healing and tubule formation in HG-treated HUVECs. In addition, GAS5 facilitated HIF1A expression by interacting with TAF15. Rescue assays demonstrated that the suppression of HIF1A/VEGF pathway activation partially reversed the functional roles of GAS5 in HUVECs. Furthermore, GAS5 accelerated wound healing by activating the HIF1A/VEGF pathway in mice with DFUs. GAS5 activates the HIF1A/VEGF pathway by binding to TAF15, resulting in accelerated wound healing in DFUs. Our findings may provide a theoretical basis for the clinical treatment of DFUs.
Collapse
Affiliation(s)
- Wei-Xia Peng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Pei-Xiang He
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Li-Jun Liu
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Ting Zhu
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Ya-Qin Zhong
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Lin Xiang
- Department of Endocrine, Central Theater General Hospital of PLA, Wuhan, Hubei, PR China
| | - Ke Peng
- Department of Endocrine, Yiyang Central Hospital, Yiyang, Hunan, PR China
| | - Jing-Jin Yang
- Department of Endocrine, Huaihua First People's Hospital, Huaihua, Hunan, PR China
| | - Guang-Da Xiang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, PR China.
- Department of Endocrine, Central Theater General Hospital of PLA, Wuhan, Hubei, PR China.
| |
Collapse
|
7
|
Downregulation of HIF-2α Enhances Apoptosis and Limits Invasion in Human Placental JEG-3 Trophoblast Cells. Reprod Sci 2021; 28:2710-2717. [PMID: 34031851 DOI: 10.1007/s43032-021-00581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/11/2021] [Indexed: 09/29/2022]
Abstract
Pre-eclampsia, one of the major disorders of pregnancy, is characterized by inadequate trophoblast invasion and defective trophoblast-mediated remodeling of placental vasculature. Hypoxia-inducible transcription factor (HIF)-2α plays a critical role in regulating cellular function of trophoblasts; however, its role in placental development and in the pathogenesis of pre-eclampsia remains elusive. CCK-8 assay was used to detect cell viability. Invasion assay was performed to determine the effect of HIF-2α on trophoblast function. Flow cytometry was used for detecting apoptosis and cell cycle. The mRNA and protein expressions of HIF-2α, VEGF, iNOS, and ET-1 were determined by quantitative real-time PCR and western blot techniques. The roles of HIF-2α in JEG-3 trophoblast cells were examined using siRNA technology. The presence of HIF-2α siRNA reduced the levels of cell viability after 48 h incubation, and the cell viability further reduced at 72 h. Besides, HIF-2α siRNA enhanced trophoblast apoptosis, as determined by flow cytometric measurement. Increased G1-phase and decreased S-phase cell population were induced by HIF-2α siRNA based on the determination of cell cycle distribution using propidium iodide staining. Furthermore, the invasive ability of JEG-3 trophoblasts was significantly reduced by HIF-2α siRNA. In addition, knockdown of the HIF-2α gene significantly decreased VEGF, iNOS, and ET-1 levels in JEG-3 human trophoblasts. Our findings provide preliminary evidence of the functions of HIF-2α in trophoblast biology and suggest that the downregulation of HIF-2α enhances cell apoptosis and limits trophoblast invasion.
Collapse
|
8
|
Zhou C, Zou QY, Jiang YZ, Zheng J. Role of oxygen in fetoplacental endothelial responses: hypoxia, physiological normoxia, or hyperoxia? Am J Physiol Cell Physiol 2020; 318:C943-C953. [PMID: 32267717 DOI: 10.1152/ajpcell.00528.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During pregnancy, placental vascular growth, which is essential for supporting the rapidly growing fetus, is associated with marked elevations in blood flow. These vascular changes take place under chronic physiological low O2 (less than 2-8% O2 in human; chronic physiological normoxia, CPN) throughout pregnancy. O2 level below CPN pertinent to the placenta results in placental hypoxia. Such hypoxia can cause severe endothelial dysfunction, which is associated with adverse pregnancy outcomes (e.g., preeclampsia) and high risk of adult-onset cardiovascular diseases in children born to these pregnancy complications. However, our current knowledge about the mechanisms underlying fetoplacental endothelial function is derived primarily from cell models established under atmospheric O2 (~21% O2 at sea level, hyperoxia). Recent evidence has shown that fetoplacental endothelial cells cultured under CPN have distinct gene expression profiles and cellular responses compared with cells cultured under chronic hyperoxia. These data indicate the critical roles of CPN in programming fetal endothelial function and prompt us to re-examine the mechanisms governing fetoplacental endothelial function under CPN. Better understanding these mechanisms will facilitate us to develop preventive and therapeutic strategies for endothelial dysfunction-associated diseases (e.g., preeclampsia). This review will provide a brief summary on the impacts of CPN on endothelial function and its underlying mechanisms with a focus on fetoplacental endothelial cells.
Collapse
Affiliation(s)
- Chi Zhou
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Qing-Yun Zou
- Department of Vascular Surgery, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Zhou Jiang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Jing Zheng
- Perinatal Research Laboratories, Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
9
|
Deodati A, Inzaghi E, Cianfarani S. Epigenetics and In Utero Acquired Predisposition to Metabolic Disease. Front Genet 2020; 10:1270. [PMID: 32082357 PMCID: PMC7000755 DOI: 10.3389/fgene.2019.01270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 11/18/2019] [Indexed: 01/21/2023] Open
Abstract
Epidemiological evidence has shown an association between prenatal malnutrition and a higher risk of developing metabolic disease in adult life. An inadequate intrauterine milieu affects both growth and development, leading to a permanent programming of endocrine and metabolic functions. Programming may be due to the epigenetic modification of genes implicated in the regulation of key metabolic mechanisms, including DNA methylation, histone modifications, and microRNAs (miRNAs). The expression of miRNAs in organs that play a key role in metabolism is influenced by in utero programming, as demonstrated by both experimental and human studies. miRNAs modulate multiple pathways such as insulin signaling, immune responses, adipokine function, lipid metabolism, and food intake. Liver is one of the main target organs of programming, undergoing structural, functional, and epigenetic changes following the exposure to a suboptimal intrauterine environment. The focus of this review is to provide an overview of the effects of exposure to an adverse in utero milieu on epigenome with a focus on the molecular mechanisms involved in liver programming.
Collapse
Affiliation(s)
- Annalisa Deodati
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Elena Inzaghi
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy
| | - Stefano Cianfarani
- Dipartimento Pediatrico Universitario Ospedaliero "Bambino Gesù" Children's Hospital, Tor Vergata University, Rome, Italy.,Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Zou QY, Zhao YJ, Zhou C, Liu AX, Zhong XQ, Yan Q, Li Y, Yi FX, Bird IM, Zheng J. G Protein α Subunit 14 Mediates Fibroblast Growth Factor 2-Induced Cellular Responses in Human Endothelial Cells. J Cell Physiol 2018; 234:10184-10195. [PMID: 30387149 DOI: 10.1002/jcp.27688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
During pregnancy, a tremendous increase in fetoplacental angiogenesis is associated with elevated blood flow. Aberrant fetoplacental vascular function may lead to pregnancy complications including pre-eclampsia. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental endothelial function. G protein α subunit 14 (GNA14), a member of Gαq/11 subfamily is involved in mediating hypertensive diseases and tumor vascularization. However, little is known about roles of GNA14 in mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using human umbilical vein endothelial cells (HUVECs) cultured under physiological chronic low oxygen (3% O2 ) as a cell model, we show that transfecting cells with adenovirus carrying GNA14 complementary DNA (cDNA; Ad-GNA14) increases (p < 0.05) protein expression of GNA14. GNA14 overexpression blocks (p < 0.05) FGF2-stimulated endothelial migration, whereas it enhances (p < 0.05) endothelial monolayer integrity (maximum increase of ~35% over the control at 24 hr) in response to FGF2. In contrast, GNA14 overexpression does not significantly alter VEGFA-stimulated cell migration, VEGFA-weakened cell monolayer integrity, and intracellular Ca++ mobilization in response to adenosine triphosphate (ATP), FGF2, and VEGFA. GNA14 overexpression does not alter either FGF2- or VEGFA-induced phosphorylation of ERK1/2. However, GNA14 overexpression time-dependently elevates (p < 0.05) phosphorylation of phospholipase C-β3 (PLCβ3) at S1105 in response to FGF2, but not VEGFA. These data suggest that GNA14 distinctively mediates fetoplacental endothelial cell migration and permeability in response to FGF2 and VEGFA, possibly in part by altering activation of PLCβ3 under physiological chronic low oxygen.
Collapse
Affiliation(s)
- Qing-Yun Zou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Rheumatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ai-Xia Liu
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Reproductive Endocrinology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin-Qi Zhong
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qin Yan
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Fu-Xian Yi
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ian M Bird
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin.,Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
11
|
Pang LP, Li Y, Zou QY, Zhou C, Lei W, Zheng J, Huang SA. ITE inhibits growth of human pulmonary artery endothelial cells. Exp Lung Res 2018; 43:283-292. [PMID: 29140133 DOI: 10.1080/01902148.2017.1367868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM Pulmonary arterial hypertension (PAH), a deadly disorder is associated with excessive growth of human pulmonary artery endothelial (HPAECs) and smooth muscle (HPASMCs) cells. Current therapies primarily aim at promoting vasodilation, which only ameliorates clinical symptoms without a cure. 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) is an endogenous aryl hydrocarbon receptor (AhR) ligand, and mediates many cellular function including cell growth. However, the roles of ITE in human lung endothelial cells remain elusive. Herein, we tested a hypothesis that ITE inhibits growth of human pulmonary artery endothelial cells via AhR. MATERIALS AND METHODS Immunohistochemistry was performed to localize AhR expression in human lung tissues. The crystal violet method and MTT assay were used to determine ITE's effects on growth of HPAECs. The AhR activation in HPAECs was confirmed using Western blotting and RT-qPCR. The role of AhR in ITE-affected proliferation of HPAECs was assessed using siRNA knockdown method followed by the crystal violet method. RESULTS Immunohistochemistry revealed that AhR was present in human lung tissues, primarily in endothelial and smooth muscle cells of pulmonary veins and arteries, as well as in bronchial and alveolar sac epithelia. We also found that ITE dose- and time-dependently inhibited proliferation of HPAECs with a maximum inhibition of 83% at 20 µM after 6 days of treatment. ITE rapidly decreased AhR protein levels, while it increased mRNA levels of cytochrome P450 (CYP), family 1, member A1 (CYP1A1) and B1 (CYP1B1), indicating activation of the AhR/CYP1A1 and AhR/CYP1B1 pathways in HPAECs. The AhR siRNA significantly suppressed AhR protein expression, whereas it did not significantly alter ITE-inhibited growth of HPAECs. CONCLUSIONS ITE suppresses growth of HPAECs independent of AhR, suggesting that ITE may play an important role in preventing excessive growth of lung endothelial cells.
Collapse
Affiliation(s)
- Ling-Pin Pang
- a Cardiovascular Medicine Center , Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , P.R. China.,b Department of Obstetrics and Gynecology , University of Wisconsin-Madison , Madison , WI , USA
| | - Yan Li
- b Department of Obstetrics and Gynecology , University of Wisconsin-Madison , Madison , WI , USA
| | - Qing-Yun Zou
- b Department of Obstetrics and Gynecology , University of Wisconsin-Madison , Madison , WI , USA
| | - Chi Zhou
- b Department of Obstetrics and Gynecology , University of Wisconsin-Madison , Madison , WI , USA
| | - Wei Lei
- a Cardiovascular Medicine Center , Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , P.R. China
| | - Jing Zheng
- a Cardiovascular Medicine Center , Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , P.R. China.,b Department of Obstetrics and Gynecology , University of Wisconsin-Madison , Madison , WI , USA
| | - Shi-An Huang
- a Cardiovascular Medicine Center , Affiliated Hospital of Guangdong Medical University , Zhanjiang , Guangdong , P.R. China
| |
Collapse
|
12
|
Zou Q, Zhao Y, Li H, Wang X, Liu A, Zhong X, Yan Q, Li Y, Zhou C, Zheng J. GNA11 differentially mediates fibroblast growth factor 2- and vascular endothelial growth factor A-induced cellular responses in human fetoplacental endothelial cells. J Physiol 2018; 596:2333-2344. [PMID: 29659033 PMCID: PMC6002203 DOI: 10.1113/jp275677] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Fetoplacental vascular growth is critical to fetal growth. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are two major regulators of fetoplacental vascular growth. G protein α subunit 11 (GNA11) transmits signals from many external stimuli to the cellular interior and may mediate endothelial function. It is not known whether GNA11 mediates FGF2- and VEGFA-induced endothelial cell responses under physiological chronic low O2 . In the present study, we show that knockdown of GNA11 significantly decreases FGF2- and VEGFA-induced fetoplacental endothelial cell migration but not proliferation and permeability. Such decreases in endothelial migration are associated with increased phosphorylation of phospholipase C-β3. The results of the present study suggest differential roles of GNA11 with respect to mediating FGF2- and VEGFA-induced fetoplacental endothelial function. ABSTRACT During pregnancy, fetoplacental angiogenesis is dramatically increased in association with rapidly elevated blood flow. Any disruption of fetoplacental angiogenesis may lead to pregnancy complications such as intrauterine growth restriction. Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor A (VEGFA) are crucial regulators of fetoplacental angiogenesis. G protein α subunits q (GNAq) and 11 (GNA11) are two members of the Gαq/11 subfamily involved in mediating vascular growth and basal blood pressure. However, little is known about the roles of GNA11 alone with respect to mediating the FGF2- and VEGFA-induced fetoplacental endothelial function. Using a cell model of human umbilical cord vein endothelial cells cultured under physiological chronic low O2 (3% O2 ), we showed that GNA11 small interfering RNA (siRNA) dramatically inhibited (P < 0.05) FGF2- and VEGFA-stimulated fetoplacental endothelial migration (by ∼36% and ∼50%, respectively) but not proliferation and permeability. GNA11 siRNA also elevated (P < 0.05) FGF2- and VEGFA-induced phosphorylation of phospholipase C-β3 (PLCβ3) at S537 in a time-dependent fashion but not mitogen-activated protein kinase 3/1 (ERK1/2) and v-akt murine thymoma viral oncogene homologue 1 (AKT1). These data suggest that GNA11 mediates FGF2- and VEGFA-stimulated fetoplacental endothelial cell migration partially via altering the activation of PLCβ3.
Collapse
Affiliation(s)
- Qing‐yun Zou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Ying‐jie Zhao
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology, Qilu HospitalShandong UniversityJinanShandongChina
| | - Hua Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Rheumatology and ImmunologyAffiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Xiang‐zhen Wang
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Obstetrics and GynecologyNanshan District Maternal and Child Healthcare HospitalShenzhenGuangdongChina
| | - Ai‐xia Liu
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Reproductive EndocrinologyZhejiang UniversityHangzhouZhejiangChina
| | - Xin‐qi Zhong
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Pediatrics3rd Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Qin Yan
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Gynecology, Shanghai First Maternity and Infant HospitalTongji University School of MedicineShanghaiChina
| | - Yan Li
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Chi Zhou
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jing Zheng
- Department of Obstetrics and GynecologyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Cardiovascular Medicine CenterAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdongChina
| |
Collapse
|
13
|
Lee YC, Chang YC, Wu CC, Huang CC. Hypoxia-Preconditioned Human Umbilical Vein Endothelial Cells Protect Against Neurovascular Damage After Hypoxic Ischemia in Neonatal Brain. Mol Neurobiol 2018; 55:7743-7757. [PMID: 29460267 DOI: 10.1007/s12035-018-0867-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 01/07/2018] [Indexed: 12/22/2022]
Abstract
Therapy targeting the neurovascular unit may provide effective neuroprotection against neonatal hypoxia-ischemia (HI). We hypothesized that the peripheral injection of hypoxia-preconditioned human umbilical vein endothelial cells (HUVECs) following HI protects against neurovascular damage and provides long-term neuroprotection in a postpartum (P) day-7 rat pup model. Compared with normoxic HUVECs, hypoxic HUVECs showed enhanced migration and angiogenesis in vitro and had augmented migration effects into the brain when administered intraperitoneally in vivo after HI. Moreover, 24 and 72 h post-HI, the hypoxic HUVECs group but not the normoxic HUVECs or culture-medium groups had significantly higher preservation of microvessels and neurons, and attenuation of blood-brain barrier damage than the normal-saline group. Compared to control or normal-saline groups, only the hypoxic HUVECs group had no impaired foot steps and showed a significant reduction of brain area loss at P42. Next-generation sequencing showed hypoxia-induced upregulation and downregulation of 209 and 215 genes in HUVECs, respectively. Upstream regulator analysis by ingenuity pathway analysis (IPA) identified hypoxia-inducible factor 1-alpha as the key predicted activated transcription regulator. After hypoxia, 12 genes (ADAMTS1, EFNA1, HIF1A, LOX, MEOX2, SELE, VEGFA, VEGFC, CX3CL1, HMMR, SDC, and SERPINE) associated with migration and/or angiogenesis were regulated in HUVECs. In addition, 6 genes (VEGFA, VEGFC, NTN4, TGFA, SERPINE1, and CX3CL1) involved in the survival of endothelial and neuronal cells were also markedly altered in hypoxic HUVECs. Thus, cell therapy by using hypoxic HUVECs that enhance migration and neurovascular protection may provide an effective therapeutic strategy for treating neonatal asphyxia.
Collapse
Affiliation(s)
- Yi-Chao Lee
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei, Taiwan
| | - Ying-Chao Chang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Pediatrics Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ching Huang
- Department of Pediatrics, College of Medicine, Taipei Medical University, Taipei City, Taiwan. .,Department of Pediatrics, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Department of Pediatrics, National Cheng Kung University Hospital and College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
14
|
Zhou C, Zou QY, Li H, Wang RF, Liu AX, Magness RR, Zheng J. Preeclampsia Downregulates MicroRNAs in Fetal Endothelial Cells: Roles of miR-29a/c-3p in Endothelial Function. J Clin Endocrinol Metab 2017; 102:3470-3479. [PMID: 28911139 PMCID: PMC5587062 DOI: 10.1210/jc.2017-00849] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022]
Abstract
CONTEXT Preeclampsia is a leading cause of fetal and maternal morbidity and mortality during pregnancy. Although the etiology of preeclampsia is unknown, preeclampsia offspring have increased risks of developing cardiovascular disorders in adulthood, implicating that preeclampsia programs fetal vasculature in utero. OBJECTIVE We hypothesize that preeclampsia alters expression profiles of endothelial microRNAs (miRNAs) in fetal endothelial cells and disturbs the vascular endothelial growth factor A (VEGFA)- and fibroblast growth factor 2 (FGF2)-induced endothelial function. DESIGN AND SETTING Unpassaged (P0) human umbilical vein endothelial cells (HUVECs) were isolated immediately after cesarean-section delivery from normotensive (NT) and preeclamptic (PE) pregnancies. Differentially expressed miRNAs between P0-HUVECs from NT and PE pregnancies were identified using a miRNA polymerase chain reaction (PCR) array and confirmed using reverse transcription quantitative PCR. To determine the function of these differentially expressed miRNAs, miRNAs of interest were knocked down in NT-HUVECs following by cell functional assays. RESULTS Sixteen miRNAs, including miR-29a/c-3p, were downregulated in P0-HUVECs from the PE group compared with the NT group. Bioinformatics analysis predicted the PI3K-v-akt murine thymoma viral oncogene homolog 1 (AKT) signaling pathway was dysregulated in P0-HUVECs from the PE group, which was associated with the miR-29a/c-3p downregulation. We further demonstrated that miR-29a/c-3p knockdown inhibited the VEGFA- and FGF2-induced endothelial migration as well as FGF2-induced AKT1 phosphorylation in HUVECs. However, miR-29a/c-3p knockdown did not alter the extracellular signal-regulated kinase 1/2 phosphorylation, cell proliferation, and endothelial monolayer integrity in response to VEGFA and FGF2 in HUVECs. CONCLUSIONS Preeclampsia-downregulated miR-29a/c-3p may impair fetal endothelial function by disturbing the FGF2-activated PI3K-AKT signaling pathway, hence inhibiting endothelial cell migration.
Collapse
Affiliation(s)
- Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Qing-yun Zou
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Hua Li
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Department of Rheumatology and Immunology, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Rui-fang Wang
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- 302 Military Hospital of China, Beijing 100039, China
| | - Ai-xia Liu
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Department of Reproductive Endocrinology, Zhejiang University, Hangzhou 310006, Zhejiang, China
| | - Ronald R. Magness
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin–Madison, Madison, Wisconsin 53715
- Cardiovascular Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
15
|
Zhang J, Peng X, Yuan A, Xie Y, Yang Q, Xue L. Peroxisome proliferator‑activated receptor γ mediates porcine placental angiogenesis through hypoxia inducible factor‑, vascular endothelial growth factor‑ and angiopoietin‑mediated signaling. Mol Med Rep 2017; 16:2636-2644. [PMID: 28677792 PMCID: PMC5548051 DOI: 10.3892/mmr.2017.6903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 04/27/2017] [Indexed: 12/24/2022] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR) γ has been reported to be implicated in placentation in mice. Previous studies have demonstrated that PPARγ is also expressed in porcine placenta, primarily localized in vascular endothelial cells (VECs). The present study aimed to investigate the roles of PPARγ during porcine placental angiogenesis and examine the molecular mechanisms involved in its actions. VECs were incubated with the PPARγ agonist rosiglitazone and the antagonist T0070907, and their angiogenic potential was evaluated using cellular impedance, wound healing and tube formation assays. Reverse transcription-quantitative polymerase chain reaction was used to assess the mRNA expression levels of angiogenic factors, including hypoxia-inducible factors (HIFs), vascular endothelial growth factor (VEGF) isoforms, VEGF receptors (VEGFRs) and angiopoietins (Angs). The results demonstrated that the adhesive, proliferative and migratory capabilities of VECs were potentiated by rosiglitazone and suppressed by T0070907. Notably, tube formation was invariably promoted during PPARγ activation and blockade. The mRNA expression levels of HIF1α, HIF2α, VEGFR2, VEGF188 and Ang-1 were revealed to be upregulated following treatment of VECs with rosiglitazone, whereas they were downregulated following treatment with T0070907. However, the mRNA expression levels of placental growth factor and VEGF120 were consistently downregulated following PPARγ activation and blockade, whereas VEGF164 mRNA levels remained unaltered. The results of the present study suggested that PPARγ may mediate porcine placental angiogenesis, by interfering with HIF-, VEGF- and angiopoietin-mediated signaling pathways.
Collapse
Affiliation(s)
- Juzuo Zhang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Xuan Peng
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Anwen Yuan
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Yang Xie
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Qing Yang
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| | - Liqun Xue
- Department of Clinic Veterinary Medicine, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan 410128, P.R. China
| |
Collapse
|
16
|
Duan P, Yang M, Wei M, Liu J, Tu P. Serum Osteoprotegerin Is a Potential Biomarker of Insulin Resistance in Chinese Postmenopausal Women with Prediabetes and Type 2 Diabetes. Int J Endocrinol 2017; 2017:8724869. [PMID: 28255300 PMCID: PMC5308197 DOI: 10.1155/2017/8724869] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/28/2016] [Accepted: 11/14/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to investigate the circulating OPG levels in postmenopausal women with diabetes and prediabetes and explore the relationships between serum OPG and insulin resistance. A total of 271 unrelated Chinese postmenopausal women were recruited in this study. The subjects were divided into type 2 diabetes mellitus (T2DM) group (n = 93), impaired glucose regulation (IGR) (n = 90), and normal glucose regulation group (NGR) (n = 88), according to different glucose regulation categories. Serum OPG levels were measured by enzyme-linked immunosorbent assay. The serum OPG concentration in NGR group, 151.00 ± 45.72 pg/mL, was significantly lower than that in IGR group (169.28 ± 64.91 pg/mL) (p = 0.031) and T2DM group (183.20 ± 56.53 pg/mL) (p < 0.01), respectively. In multiple linear regression analysis, HOMA-IR, age, 2hPG, AST, ALP, and eGFR were found to be independent predictors of OPG. Increased serum OPG levels (OR = 1.009, p = 0.006) may be a risk factor for insulin resistance. The present study suggests that OPG might be implicated in the pathogenesis of diabetes and is a potential biomarker of insulin resistance in subjects with diabetes and prediabetes.
Collapse
Affiliation(s)
- Peng Duan
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Min Yang
- Department of Finance, Nanchang Normal University, No. 889 Ruixiang Road, Nanchang, Jiangxi 330009, China
| | - Meilin Wei
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Jia Liu
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
| | - Ping Tu
- Department of Endocrinology and Metabolism, Nanchang Key Laboratory of Diabetes, The Third Hospital of Nanchang, No. 2 Xiangshan South Road, Nanchang, Jiangxi 330009, China
- *Ping Tu:
| |
Collapse
|
17
|
Wu Y, Chen X, Chang X, Huang YJ, Bao S, He Q, Li Y, Zheng J, Duan T, Wang K. Potential involvement of placental AhR in unexplained recurrent spontaneous abortion. Reprod Toxicol 2015; 59:45-52. [PMID: 26593447 DOI: 10.1016/j.reprotox.2015.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/05/2015] [Accepted: 11/16/2015] [Indexed: 11/29/2022]
Abstract
Recurrent spontaneous abortion (RSA) is a common complication of pregnancy. Recent studies have demonstrated that the aryl hydrocarbon receptor (AhR) might play important roles in establishing and maintaining early pregnancy. In this study, we found that placental AhR protein levels were significantly lower and placental CYP1A1 mRNA levels were higher in unexplained RSA (URSA) patients than in control subjects. The results of immunohistochemical analyzes showed that placental AhR was expressed in syncytiotrophoblast cells and that the level of AhR was markedly lower in these cells in URSA subjects than in control subjects. β-Naphthoflavone (β-NF, an AhR ligand) at 5μM significantly inhibited proliferation and migration in HTR-8/SVneo cells and was associated with the activation of AhR. Moreover, overexpressing AhR in JAR cells significantly increased CYP1A1 mRNA levels and inhibited cell migration. These results indicate that AhR is highly activated in URSA placentas and that the activation of AhR in the placenta might impair trophoblast cell proliferation and migration, possibly leading to the occurrence of URSA.
Collapse
Affiliation(s)
- Y Wu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - X Chen
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - X Chang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Y J Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - S Bao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Q He
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China
| | - Y Li
- Department of Ob./Gyn., University of Wisconsin-Madison, Madison, WI 53715 USA
| | - J Zheng
- Department of Ob./Gyn., University of Wisconsin-Madison, Madison, WI 53715 USA
| | - T Duan
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China; Department of Obstetrics, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China.
| | - K Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040 PR China.
| |
Collapse
|
18
|
Li Y, Wang K, Jiang YZ, Chang XW, Dai CF, Zheng J. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) inhibits human ovarian cancer cell proliferation. Cell Oncol (Dordr) 2014; 37:429-37. [PMID: 25404385 DOI: 10.1007/s13402-014-0206-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, mediates a broad spectrum of biological processes, including ovarian growth and ovulation. Recently, we found that an endogenous AhR ligand (ITE) can inhibit ovarian cancer proliferation and migration via the AhR. Here, we tested whether 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, an exogenous AhR ligand) may exert similar anti-ovarian cancer activities using human ovarian cancer and non-cancerous human ovarian surface epithelial cells. METHODS Two human ovarian cancer cell lines (SKOV-3 and OVCAR-3) and one human ovarian surface epithelial cell line (IOSE-385) were used. Cell proliferation and migration activities were determined using crystal violet and FluoroBlok insert system assays, respectively. AhR protein expression was assessed by Western blotting. Expression of cytochrome P450, family 1, member A1 (CYP1A1) and member B1 (CYP1B1) mRNA was assessed by qPCR. Small interfering RNAs (siRNAs) were used to knock down AhR expression. RESULTS We found that TCDD dose-dependently suppressed OVCAR-3 cell proliferation, with a maximum effect (~70% reduction) at 100 nM. However, TCDD did not affect SKOV-3 and IOSE-385 cell proliferation and migration. The estimated IC50 of TCDD for inhibiting OVCAR-3 cell proliferation was 4.6 nM. At 10 nM, TCDD time-dependently decreased AhR protein levels, while it significantly increased CYP1A1 and CYP1B1 mRNA levels in SKOV-3, OVCAR-3 and IOSE-385 cells, indicating activation of AhR signaling. siRNA-mediated AhR knockdown readily blocked TCDD-mediated suppression of OVCAR-3 cell proliferation. CONCLUSION Our data indicate that TCDD can suppress human ovarian cancer cell proliferation via the AhR signaling pathway and that TCDD exhibits an anti-proliferative activity in at least a subset of human ovarian cancer cells.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, 202 S. Park St., Madison, WI, 53715, USA
| | | | | | | | | | | |
Collapse
|
19
|
Li Y, Zhao YJ, Zou QY, Zhang K, Wu YM, Zhou C, Wang K, Zheng J. Preeclampsia does not alter vascular growth and expression of CD31 and vascular endothelial cadherin in human placentas. J Histochem Cytochem 2014; 63:22-31. [PMID: 25362142 DOI: 10.1369/0022155414558063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Preeclampsia is characterized by maternal endothelial dysfunction (e.g., increased maternal vascular permeability caused by the disassembly of endothelial junction proteins). However, it is unclear if preeclampsia is associated with impaired vascular growth and expression of endothelial junction proteins in human placentas. Herein, we examined vascular growth in placentas from women with normal term (NT) and preeclamptic (PE) pregnancies using two endothelial junction proteins as endothelial markers: CD31 and vascular endothelial-cadherin (VE-Cad). We also compared protein and mRNA expression of CD31 and VE-Cad between NT and PE placentas, and determined the alternatively spliced expression of CD31 using PCR. We found that CD31 and VE-Cad were immunolocalized predominantly in villous endothelial cells. However, capillary number density (total capillary number per unit villous area) and capillary area density (total capillary lumen area per unit villous area) as well as CD31 and VE-Cad protein and mRNA levels were similar between NT and PE placentas. PCR in combination with sequence analysis revealed a single, full-length CD31, suggesting that there are no alternatively spliced isoform of CD31 expressed in placentas. These data indicate that preeclampsia does not significantly affect vascular growth or the expression of endothelial junction proteins in human placentas.
Collapse
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin (YL, YJZ, QYZ, CZ, JZ)
| | - Ying-Jie Zhao
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin (YL, YJZ, QYZ, CZ, JZ),Department of Rheumatology, Qilu Hospital of Shandong University, Jinan 250012, Shandong, China (YJZ)
| | - Qing-Yun Zou
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin (YL, YJZ, QYZ, CZ, JZ)
| | - Kevin Zhang
- Department of Biological Sciences, Dartmouth College, Hanover, NH (KZ)
| | - Yan-Ming Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China (YMW, KW)
| | - Chi Zhou
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin (YL, YJZ, QYZ, CZ, JZ)
| | - Kai Wang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China (YMW, KW)
| | - Jing Zheng
- Department of Obstetrics and Gynecology, University of Wisconsin, Madison, Wisconsin (YL, YJZ, QYZ, CZ, JZ),Department of Cardiovascular Medicine, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong, P.R. China (JZ)
| |
Collapse
|