1
|
Zheng Z, Wang X, Zheng Y, Wu H. Enhanced expression of miR-204 attenuates LPS stimulated inflammatory injury through inhibiting the Wnt/β-catenin pathway via targeting CCND2. Int Immunopharmacol 2024; 126:111334. [PMID: 38061119 DOI: 10.1016/j.intimp.2023.111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023]
Abstract
One of the most common bacterial diseases of the reproductive system in dairy cows is endometritis, which will cause huge economic loss. Here, we investigate the mechanisms of miR-204 on LPS-stimulated endometritis in vitro and in vivo. Experiments displayed that the expression of miR-204 was lower in bovine uterine tissue samples or bovine endometrial epithelial cell line (BEND) that stimulated by LPS. Compared with the negative group, miR-204 treatment significantly suppressed the production of proinflammatory factors and the Wnt/β-catenin pathway activation. Additionally, the result of the dual luciferase assay showed that miR-204 targeted cyclin D2. More importantly, up-regulation of miR-204 alleviated LPS induced uterine injury was confirmed in vivo studies. Molecular experiments indicated that the expression level of tight junctional proteins Claudin3 and cadherin1 were both enchanced by miR-204 treatment. Accordingly, miR-204 may serve as a new measure to prevent and treat endometritis caused by LPS.
Collapse
Affiliation(s)
- Zhijie Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Xiaoyan Wang
- College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, PR China
| | - Yonghui Zheng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Haichong Wu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
2
|
Liu L, Li X, Chen Y, Li YZ, Liu Z, Duan Y, Chen Y. Interleukin-22 promotes proliferation and reverses LPS-induced apoptosis and steroidogenesis attenuation in human ovarian granulosa cells: implications for polycystic ovary syndrome pathogenesis. J Matern Fetal Neonatal Med 2023; 36:2253347. [PMID: 37661176 DOI: 10.1080/14767058.2023.2253347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023]
Abstract
OBJECTIVE Interleukin 22 (IL-22) plays a role in inflammatory diseases. However, whether IL-22 affects the function of ovarian granulosa cells (GCs) and its relationship with Polycystic Ovary Syndrome (PCOS)remains unclear. METHODS We investigated the level of IL-22 in human follicular fluid using ELISA. The expression and localization of the IL-22 receptor 1 (IL-22R1) in GCs were investigated by RT-PCR and immunofluorescence staining, respectively. The proliferation of KGN cells (human GCs line) was assessed by CCK-8 assay and EdU assay after treatment with recombinant human IL-22 (rhIL-22) and lipopolysaccharide (LPS). Apoptosis was assessed using flow cytometry. Apoptotic proteins and steroidogenic genes were detected by western blotting. RESULTS ELISA's results showed that compared with the control group, PCOS patients showed lower expression of IL-22 in follicular fluid. Immunofluorescence showed that IL-22R1 is expressed and localized in human granulosa cell membranes. IL-22 promoted cell proliferation and reversed LPS-induced inhibition of cell proliferation. IL-22 alone did not affect apoptotic or steroidogenic protein expression, however, it reversed LPS-induced apoptosis via downregulation of Bcl-2, upregulation of Bax and cleaved caspase-3, and restoration of LPS-downregulated StAR, CYP11A1, and CYP19A1 expression. Western blotting confirmed that IL-22 activated the JAK2/STAT3 signaling. CONCLUSION IL-22 promotes cell proliferation, inhibits apoptosis, and regulates KGN cell steroidogenesis confronted with LPS, and decreased IL-22 may be involved in the development of PCOS.
Collapse
Affiliation(s)
- Linhong Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xu Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Zhe Li
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhen Liu
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuhan Duan
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ying Chen
- Reproductive Medicine Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Dickson MJ, Sheldon IM, Bromfield JJ. Lipopolysaccharide alters CEBPβ signaling and reduces estradiol production in bovine granulosa cells. CABI AGRICULTURE AND BIOSCIENCE 2022; 3:66. [PMID: 37576606 PMCID: PMC10419969 DOI: 10.1186/s43170-022-00133-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/27/2022] [Indexed: 08/15/2023]
Abstract
Background Bacterial infection of the uterus in postpartum dairy cows limits ovarian follicle growth, reduces blood estradiol concentrations, and leads to accumulation of bacterial lipopolysaccharide (LPS) in ovarian follicular fluid. Although treating granulosa cells with LPS in vitro decreases the expression of the estradiol synthesis enzyme CYP19A1 and reduces estradiol secretion, the molecular mechanisms are unclear. The transcription factor CCAAT enhancer binding protein beta (CEBPβ) not only facilitates the transcription of LPS regulated cytokines, but also binds to the promoter region of CYP19A1 in humans, mice, and buffalo. We hypothesized that LPS alters CEBPβ signaling to reduce CYP19A1 expression, resulting in decreased estradiol secretion. Methods Bovine granulosa cells were isolated from small/medium or large follicles and treated with LPS in the presence of FSH and androstenedione for up to 24 h. Results Treatment with LPS increased CXCL8 and IL6 gene expression and reduced estradiol secretion in granulosa cells from both small/medium and large follicles. However, LPS only reduced CYP19A1 expression in granulosa cells from large follicles. Treatment with LPS increased CEBPB expression and reduced CEBPβ nuclear localization in granulosa cells from small/medium follicles, but not granulosa cells from large follicles. Conclusions Although LPS reduces estradiol synthesis in bovine granulosa cells, the effects of LPS on CYP19A1 and CEBPβ are dependent on follicle size.
Collapse
Affiliation(s)
| | - I. Martin Sheldon
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
4
|
Umar T, Ma X, Yin B, Umer S, Zahoor A, Akhtar M, Umar Z, Shaukat A, Deng G. miR-424-5p overexpression inhibits LPS-stimulated inflammatory response in bovine endometrial epithelial cells by targeting IRAK2. J Reprod Immunol 2021; 150:103471. [PMID: 35032930 DOI: 10.1016/j.jri.2021.103471] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/26/2022]
Abstract
Endometritis is inflammation of endometrium due to various factors and is a common cause of infertility. Several remedies used for endometritis like antibiotics, hormones, and herbs. Studies confirm that microRNAs play a significant role in various inflammatory diseases. However, the role of miR-424-5p in endometritis is not clear. In our study, histopathology, real-time quantitative polymerase chain reaction, Western blot analysis, immunofluorescence, ELISA, and dual-luciferase reporter assay were used to elucidate the effect of miR-424-5p in lipopolysaccharide (LPS)-primed inflammatory response in bovine endometrial epithelial cells (BEECs) and clarify the potential mechanism. Our results revealed that miR-424-5p mimics noticeably decrease the production of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), while miR-424-5p inhibitors have inverse effects in BEECs. Moreover, overexpression of miR-424-5p on BEECs cells also suppressed NF-κB p65 activation. Afterwards, we verified that miR-424-5p inhibited Interleukin 1 Receptor Associated Kinase 2 (IRAK2) expression by binding to the 3'-UTR of IRAK2 mRNA. Further, co-transfection of miR-424-5p inhibitors and siRNA-IRAK2 revealed that negative regulation of miR-424-5p on LPS-induced inflammatory response in BEECs was mediated by IRAK2.Mutually, miR-424-5p pharmacologic stabilization represents an entirely unique medical aid for cow endometritis and other inflammation-related diseases.
Collapse
Affiliation(s)
- Talha Umar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Xiaofei Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Baoyi Yin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Saqib Umer
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, PR China; Department of Theriogenology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000 Punjab, Pakistan
| | - Arshad Zahoor
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Akhtar
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Zaima Umar
- Department of Anatomy and Histology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38000 Punjab, Pakistan
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ganzhen Deng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
5
|
Molehin D, Filleur S, Pruitt K. Regulation of aromatase expression: Potential therapeutic insight into breast cancer treatment. Mol Cell Endocrinol 2021; 531:111321. [PMID: 33992735 DOI: 10.1016/j.mce.2021.111321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/14/2021] [Accepted: 05/09/2021] [Indexed: 12/13/2022]
Abstract
Estrogen signaling has been implicated in hormone-dependent breast cancer which constitutes >75% of breast cancer diagnosis and other malignancies. Aromatase, the key enzyme involved in the synthesis of estrogen, is often dysregulated in breast cancers. This has led to the administration of aromatase-inhibitors (AIs), commonly used for hormone-dependent breast cancers. Unfortunately, the increasing development of acquired resistance to the current AIs and modulators of estrogen receptors, following initial disease steadiness, has posed a serious clinical challenge in breast cancer treatment. In this review we highlight historical and recent advances on the transcriptional and post-translational regulation of aromatase in both physiological and pathological contexts. We also discuss the different drug combinations targeting various tumor promoting cell signaling pathways currently being developed and tested both in laboratory settings and in the clinic.
Collapse
Affiliation(s)
- Deborah Molehin
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Stephanie Filleur
- Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Department of Immunology & Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
6
|
Farhadi Z, Esmailidehaj M, Rezvani ME, Shahbazian M, Jafary F, Ghafari MA, Alizade J, Azizian H. A review of the Effects of 17 β-Estradiol on Endoplasmic Reticulum Stress: Mechanisms and Pathway. PHYSIOLOGY AND PHARMACOLOGY 2021; 0:0-0. [DOI: 10.52547/phypha.26.3.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
7
|
Zhou X, He Y, Li N, Bai G, Pan X, Zhang Z, Zhang H, Li J, Yuan X. DNA methylation mediated RSPO2 to promote follicular development in mammals. Cell Death Dis 2021; 12:653. [PMID: 34175894 PMCID: PMC8236063 DOI: 10.1038/s41419-021-03941-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
In female mammals, the proliferation, apoptosis, and estradiol-17β (E2) secretion of granulosa cells (GCs) have come to decide the fate of follicles. DNA methylation and RSPO2 gene of Wnt signaling pathway have been reported to involve in the survival of GCs and follicular development. However, the molecular mechanisms for how DNA methylation regulates the expression of RSPO2 and participates in the follicular development are not clear. In this study, we found that the mRNA and protein levels of RSPO2 significantly increased during follicular development, but the DNA methylation level of RSPO2 promoter decreased gradually. Inhibition of DNA methylation or DNMT1 knockdown could decrease the methylation level of CpG island (CGI) in RSPO2 promoter and upregulate the expression level of RSPO2 in porcine GCs. The hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of transcription factor E2F1 and promoted the transcriptional activity of RSPO2. Moreover, RSPO2 promoted the proliferation of GCs with increasing the expression level of PCNA, CDK1, and CCND1 and promoted the E2 secretion of GCs with increasing the expression level of CYP19A1 and HSD17B1 and inhibited the apoptosis of GCs with decreasing the expression level of Caspase3, cleaved Caspase3, cleaved Caspase8, cleaved Caspase9, cleaved PARP, and BAX. In addition, RSPO2 knockdown promoted the apoptosis of GCs, blocked the development of follicles, and delayed the onset of puberty with decreasing the expression level of Wnt signaling pathway-related genes (LGR4 and CTNNB1) in vivo. Taken together, the hypomethylation of -758/-749 and -563/-553 regions in RSPO2 promoter facilitated the occupancy of E2F1 and enhanced the transcription of RSPO2, which further promoted the proliferation and E2 secretion of GCs, inhibited the apoptosis of GCs, and ultimately ameliorated the development of follicles through Wnt signaling pathway. This study will provide useful information for further exploration on DNA-methylation-mediated RSPO2 pathway during follicular development.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yingting He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Nian Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Guofeng Bai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhe Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hao Zhang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Laboratory Animals, Guangdong Laboratory Animals Monitoring Institute, Guangzhou, China.
| |
Collapse
|
8
|
Zhang Y, Xu L. Preliminary study of Yulin mixture affecting the miR-320/SF-1/Cyp19a1 on mouse polycystic ovary syndrome model. Gynecol Endocrinol 2021; 37:546-553. [PMID: 33150797 DOI: 10.1080/09513590.2020.1843623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this study, the polycystic ovary syndrome (PCOS) mice model was randomly divided into 6 groups: blank control group, Clomiphene group, PCOS group, and Yulin mixture high-/medium-/low-dose group. Rats were killed after 5 weeks of administration. The expression levels of serum E2,T,Insulin and LH were detected by ELISA. The localizations and quantities of Steroid-generating factor-1 (SF-1) and Cytochrome protein P450 a1 (Cyp19a1) were detected by immunohistochemistry and western blot. The quantities of miR-320 were detected by RT-PCR. The results showed that the mechanism of Yulin mixture inhibiting the growth of polycystic ovary on mouse PCOS model may be through the decreasing of serum T and LH levels and then reducing local estrogen content to make the polycystic ovary atrophy. Yulin mixture can decrease the level of miR-320 and increase the expression of SF-1 and Cyp19a1 in ovary, thereby regulating the ovarian granulosa cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Yuxuan Zhang
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingling Xu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
9
|
Qu X, Guo S, Yan L, Zhu H, Li H, Shi Z. TNFα-Erk1/2 signaling pathway-regulated SerpinE1 and SerpinB2 are involved in lipopolysaccharide-induced porcine granulosa cell proliferation. Cell Signal 2020; 73:109702. [PMID: 32619562 DOI: 10.1016/j.cellsig.2020.109702] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Lipopolysaccharide (LPS) is an inhibitory factor that causes hormonal imbalance and subsequently affects ovarian function and fertility in mammals. Previous studies have shown that the exposure of granulosa cells (GC) to LPS leads to steroidogenesis dysfunction. However, the effects of LPS on the viability of GC remain largely unclear. In the present study, we aimed to address this question and unveil the underlying molecular mechanisms using cultured porcine GC. Results showed that GC proliferation and tumor necrosis factor α (TNFα) secretion were significantly increased after exposure to LPS, and these effects were completely reversed by blocking the TNFα sheddase, ADAM17. Moreover, GC proliferation induced by LPS was mimicked by treatment with recombinant TNFα. In addition, SerpinE1 and SerpinB2 expression levels increased in GC after treatment with LPS or recombinant TNFα, whereas blocking the Erk1/2 pathway completely abolished these effects and also inhibited GC proliferation. Further, consistent with the effects of blocking the Erk1/2 pathway, cell proliferation was completely inhibited by knocking down SerpinE1 or SerpinB2 in the presence of LPS or recombinant TNFα. Mitochondrial membrane potential (MMP) polarization in GC was increased by LPS or recombinant TNFα treatment, and these changes were completely negated by Erk1/2 inhibition, but not by SerpinE1 or SerpinB2 knockdown. Taken together, these results suggested that the TNFα-mediated upregulation of SerpinE1 and SerpinB2, through activation of the Erk1/2 pathway plays a crucial role in LPS-stimulated GC proliferation, and the increase in GC MMP may synergistically influence this process.
Collapse
Affiliation(s)
- Xiaolu Qu
- College of Animal Science and technology, Jilin Agricultural University, Changchun 130118, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Shuangshuang Guo
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Leyan Yan
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Huanxi Zhu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China
| | - Hui Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China.
| | - Zhendan Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key laboratory of Animal Breeding and Reproduction, Nanjing 210014, China.
| |
Collapse
|
10
|
Chaurasiya V, Kumari S, Onteru SK, Singh D. miR-326 down-regulate CYP19A1 expression and estradiol-17b production in buffalo granulosa cells through CREB and C/EBP-β. J Steroid Biochem Mol Biol 2020; 199:105608. [PMID: 31996328 DOI: 10.1016/j.jsbmb.2020.105608] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/02/2020] [Accepted: 01/24/2020] [Indexed: 01/17/2023]
Abstract
Ovarian granulosa cells, known to be endocrine cells, have well active TLR4-/NFKB signalling mediated innate immune capabilities. We have previously shown that endotoxin not only transiently regulates proinflammatory cytokines but cells become tolerant on repeated exposure to endotoxin and impaired granulosa cells functions, which includes downregulation of CYP19A1 gene. To understand further endotoxin tolerance and impaired granulosa cells function, genome-wide transcriptomic profiling in endotoxin tolerant buffalo granulosa cells (bGCs) identified miR-326 as upregulated amongst top 5 DE miRNAs [unpublished data] and qPCR validation confirmed its upregulation during endotoxin tolerance. In silico analyses showed that miR-326 targets CYP19A1 gene. Therefore, in the present study, we elucidated the role of miR-326 in buffalo granulosa cells (bGCs). We first validated its expression vis-à-vis CYP19A1 gene expression in bGCs, both in vivo and in vitro. Results showed an inverse relationship between miR-326 and CYP19A1 expression. Similarly, transcription factors, known to be involved in CYP19A1 gene regulation, CREB and C/EBP-β expression was also found to be decreased in granulosa cells mimicking pre-ovulatory follicular stage. Further, miR-326 mimic was transfected to bGCs in culture and expression of CYP19A1 and CREB & C/EBP-β and genes encoding other enzymes of steroidogenesis pathway were also analyzed. The present study results showed that miR-326 significantly inhibits the expression of CYP19A1 gene while expression of transcription factors CREB and C/EBP-β was found to be upregulated. The expression of STAR and CYP11A1 was found to be unaffected. To elucidate the molecular mechanism of miR-326 mediated downregulation of CYP19A1, binding analyses of RNA polymerase II and CEBP-β to CYP19A1 gene promoter II was analyzed. The result also showed decreased binding of RNA polymerase II with increased binding of CEBP-β to CYP19A1 gene promoter II in bGCs, transfected with miR-326 as compared to control. In summary, our results suggest that miR-326 upregulate CREB and CREB may activate C/EBP-β and later inhibited the transcription of CYP19A1 and decreased estradiol-17b production. The miR-326 mediated down-regulation of the CYP19A1 gene involving CREB-C/EBP-β can be exploited in developing strategies to attenuate endotoxin-mediated tolerance induced impaired granulosa cells function to ensure proper fertility in females.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suman Kumari
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, 132001, Haryana, India.
| |
Collapse
|
11
|
Pandey M, Singh C, Goud ESK, Vedamurthy VG, Singh D, Onteru SK. Effect of Vedic music on steroidogenic gene expression in 3D-cultured buffalo granulosa cell spheroids model system, a pilot study. Reprod Domest Anim 2020; 56:231-238. [PMID: 32144832 DOI: 10.1111/rda.13671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/02/2020] [Indexed: 11/29/2022]
Abstract
Music is known for reducing stress, anxiety and depression, improving cognitive performance, and enhancing oestrogen levels. However, its effect on non-auditory mammalian cell system and the molecular events leading to higher oestrogen levels is less explored. Therefore, the present study targeted to know the direct effects of a peaceful Vedic music on 3D cultured buffalo granulosa cell spheroids. The spheroids were daily exposed to the Mahamrityunjaya mantra, a kind of Vedic chants, for 1.5 hr for 6 days. After 6 days, the music effect was analysed by the expression analysis of steroidogenic (CYP19A1, STAR and HSD17β1) and proliferative marker (PCNA) genes. Interestingly, the CYP19A1 gene expression was significantly upregulated by 3.464 ± 0.15 folds in the music exposed spheroids than the non-exposed spheroids. However, the expression of other steroidogenic and proliferative genes was unaltered. These observations provided a transcriptional clue for higher estradiol levels by the music and a scope to use Vedic chants for increasing the CYP19A1 expression to help tackle some pathophysiological conditions.
Collapse
Affiliation(s)
- Mamta Pandey
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Chhama Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Emmagouni Sharath K Goud
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Veerappa G Vedamurthy
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Chaurasiya V, Kumari S, Onteru SK, Singh D. Up-regulation of miR-326 regulates pro-inflammatory cytokines targeting TLR-4 in buffalo granulosa cells. Mol Immunol 2020; 119:154-158. [DOI: 10.1016/j.molimm.2020.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 01/30/2023]
|
13
|
Lei L, Ge J, Zhao H, Wang X, Yang L. Role of endoplasmic reticulum stress in lipopolysaccharide-inhibited mouse granulosa cell estradiol production. J Reprod Dev 2019; 65:459-465. [PMID: 31406023 PMCID: PMC6815742 DOI: 10.1262/jrd.2019-052] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/24/2019] [Indexed: 12/17/2022] Open
Abstract
The decrease in the level of estradiol (E2) in granulosa cells caused by lipopolysaccharide (LPS) is one of the major causes of infertility underlying postpartum uterine infections; the precise molecular mechanism of which remains elusive. This study investigated the role of endoplasmic reticulum (ER) stress in LPS-induced E2 decrease in mouse granulosa cells. Our results showed that LPS increased the pro-inflammatory cytokines [(interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α)], activated ER stress marker protein expression [(glucose-regulated protein 78 (GRP78) and CCAAT/enhancer-binding protein homologous protein (CHOP)], and decreased cytochrome P450 family 19 subfamily A member 1 (Cyp19a1) expression and E2 production. Moreover, inhibition of ER stress by 4-phenylbutyrate (4-PBA) attenuated thapsigargin-(TG, ER stress agonist) or LPS-induced reduction of Cyp19a1 and E2, pro-inflammatory cytokines expression (IL-1β, IL-6, IL-8, and TNF-α), and the expression of CHOP and GRP78. Additionally, inhibition of toll-like receptor 4 (TLR4) by resatorvid (TAK-242) reversed the inhibitory effects of LPS on Cyp19a1 expression and E2 production, activation of GRP78 and CHOP, and expression of IL-1β, IL-6, IL-8, and TNF-α. In summary, our study suggests that ER stress is involved in LPS-inhibited E2 production in mouse granulosa cells.
Collapse
Affiliation(s)
- Lanjie Lei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| | - Junbang Ge
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hui Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Beijing Key Laboratory of New Technique in Agricultural Application, Beijing University of Agriculture, Beijing 102206, China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, China
| |
Collapse
|
14
|
Dahiya S, Onteru SK, Singh D. Inhibition of indoleamine 2,3-dioxygenase attenuates endotoxin-mediated tolerance in granulosa cells through kynurenine pathway. J Cell Biochem 2019; 120:11931-11940. [PMID: 30983018 DOI: 10.1002/jcb.28476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/08/2018] [Accepted: 12/14/2018] [Indexed: 01/24/2023]
Abstract
Ovarian granulosa cells (GCs) have been shown to have innate immune capabilities, which modulate their native endocrine functions through toll-like receptors (TLRs). We have recently shown that GCs exposed to lipopolysaccharide (LPS; 1.0 µg/mL) transiently regulate proinflammatory cytokine expression (interleukin 1β [IL-1β], IL-6, and tumor necrosis factor α) through chromatin remodeling. In the present study, we have demonstrated that GCs become tolerant to LPS on repeated exposure of LPS. To understand the mechanism of this endotoxin tolerance (ET) phenomenon in buffalo GCs, we have further studied the genome-wide transcriptomic analyses in buffalo GCs (unpublished data) and identified indoleamine 2,3-dioxygenase 1 (IDO1) gene, known to be involved in tryptophan catabolism, was found to be highly upregulated in endotoxin-tolerant GCs. Real-time gene expression analyses also showed similar results. Further analyses of tryptophan and tryptophan metabolite, kynurenine, showed that tryptophan was found to be depleted with the accumulation of kynurenine in the endotoxin-tolerant GCs. The effect of IDO1 induced ET was reversed when cells were pretreated with IDO1 inhibitor (1-methyl tryptophan, 1 mM). To the best of our knowledge, this is the first report describing the role of IDO1 gene in ET in GCs mimicked by repeated endotoxin exposure in vitro. In summary, the present study convincingly demonstrated that the tryptophan catabolism, through the kynurenine pathway, plays a crucial role as an immunomodulatory mechanism of ET in GCs. The finding could be exploited in developing potential therapeutics to treat impaired GCs function due to the ET underlying prolonged uterine or systemic infection leads to accumulation of endotoxin in follicular fluid.
Collapse
Affiliation(s)
- Sunita Dahiya
- Molecular Endocrinology, Functional Genomics, and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics, and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics, and Systems Biology Laboratory, Animal Biochemistry Division, National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
15
|
Decreased levels of H3K9ac and H3K27ac in the promotor region of ovarian P450 aromatase mediated low estradiol synthesis in female offspring rats induced by prenatal nicotine exposure as well as in human granulosa cells after nicotine treatment. Food Chem Toxicol 2019; 128:256-266. [DOI: 10.1016/j.fct.2019.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/18/2019] [Accepted: 03/30/2019] [Indexed: 12/27/2022]
|
16
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Dahiya S, Kumari S, Rani P, Onteru SK, Singh D. Postpartum uterine infection & ovarian dysfunction. Indian J Med Res 2018; 148:S64-S70. [PMID: 30964082 PMCID: PMC6469370 DOI: 10.4103/ijmr.ijmr_961_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 11/04/2022] Open
Abstract
Postpartum uterine infections such as metritis, endometritis and mastitis have been considered as underlying causes for ovarian dysfunction in mammals. Almost all mammals, particularly dairy animals are susceptible to postpartum uterine infections, resulting in impaired fertility and economic loss. One of the factors for low fertility in females is ovarian dysfunction, which is exhibited as impaired growth and function of ovarian follicles by the postpartum infection. Immune system of mammals provides a host defence mechanism against pathogenic microbes through the recognition of pathogen-associated molecular patterns (PAMPs) and forming inflammasomes. Like immune cells, ovarian granulosa cells also exhibit a similar pattern of cytokine gene expressions on exposure to PAMPs. Genome-wide transcriptomic approaches explored the molecular mechanisms underlying the immune function of buffalo granulosa cells during endotoxin exposure. Understanding the molecular mechanism of ovarian dysfunction due to uterine infection would be helpful to implement various strategies to handle the adverse effects of postpartum uterine disease on fertility by developing potential therapeutics. Therefore, this article focuses on key factors that are responsible for postpartum infection and particularly summarizes the molecular mechanism of infection underlying the ovarian dysfunction in dairy animals.
Collapse
Affiliation(s)
- Sunita Dahiya
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suman Kumari
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics & System Biology Laboratory, Animal Biochemistry Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
18
|
Pandey M, Singh D, Onteru SK. Reverse transcription loop‐mediated isothermal amplification (RT‐LAMP), a light for mammalian transcript analysis in low‐input laboratories. J Cell Biochem 2018; 119:4334-4338. [DOI: 10.1002/jcb.26624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 01/31/2023]
Affiliation(s)
- Mamta Pandey
- Animal Biochemistry DivisionNational Dairy Research InstituteKarnalHaryanaIndia
| | - Dheer Singh
- Animal Biochemistry DivisionNational Dairy Research InstituteKarnalHaryanaIndia
| | - Suneel K. Onteru
- Animal Biochemistry DivisionNational Dairy Research InstituteKarnalHaryanaIndia
| |
Collapse
|
19
|
Ning R, Zhan Y, He S, Hu J, Zhu Z, Hu G, Yan B, Yang J, Liu W. Interleukin-6 Induces DEC1, Promotes DEC1 Interaction with RXRα and Suppresses the Expression of PXR, CAR and Their Target Genes. Front Pharmacol 2017; 8:866. [PMID: 29234281 PMCID: PMC5712319 DOI: 10.3389/fphar.2017.00866] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory burden is a primary cellular event in many liver diseases, and the overall capacity of drug elimination is decreased. PXR (pregnane X receptor) and CAR (constitutive androstane receptor) are two master regulators of genes encoding drug-metabolizing enzymes and transporters. DEC1 (differentiated embryonic chondrocyte-expressed gene 1) is a ligand-independent transcription factor and reportedly is induced by many inflammatory cytokines including IL-6. In this study, we used primary hepatocytes (human and mouse) as well as HepG2 cell line and demonstrated that IL-6 increased DEC1 expression and decreased the expressions of PXR, CAR, and their target genes. Overexpression of DEC1 had similar effect as IL-6 on the expression of these genes, and knockdown of DEC1 reversed their downregulation by IL-6. Interestingly, neither IL-6 nor DEC1 altered the expression of RXRα, a common dimerization partner for many nuclear receptors including PXR and CAR. Instead, DEC1 was found to interact with RXRα and IL-6 enhanced the interaction. These results conclude that DEC1 uses diverse mechanisms of action and supports IL-6 downregulation of drug-elimination genes and their regulators.
Collapse
Affiliation(s)
- Rui Ning
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yunran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jinhua Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Bingfang Yan
- Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, University of Rhode Island, Kingston, RI, United States
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Vashisht M, Rani P, Sunita, Onteru SK, Singh D. Curcumin primed exosomes reverses LPS‐induced pro‐inflammatory gene expression in buffalo granulosa cells. J Cell Biochem 2017; 119:1488-1500. [DOI: 10.1002/jcb.26309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Monika Vashisht
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry DivisionICAR‐National Dairy Research InstituteKarnalHaryanaIndia
| | - Payal Rani
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry DivisionICAR‐National Dairy Research InstituteKarnalHaryanaIndia
| | - Sunita
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry DivisionICAR‐National Dairy Research InstituteKarnalHaryanaIndia
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry DivisionICAR‐National Dairy Research InstituteKarnalHaryanaIndia
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and System Biology Laboratory, Animal Biochemistry DivisionICAR‐National Dairy Research InstituteKarnalHaryanaIndia
| |
Collapse
|
21
|
Epigenetic regulation of pro-inflammatory cytokine genes in lipopolysaccharide -stimulated peripheral blood mononuclear cells from broilers. Immunobiology 2017; 222:308-315. [DOI: 10.1016/j.imbio.2016.09.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/24/2016] [Accepted: 09/17/2016] [Indexed: 12/11/2022]
|
22
|
Orriols M, Varona S, Martí-Pàmies I, Galán M, Guadall A, Escudero JR, Martín-Ventura JL, Camacho M, Vila L, Martínez-González J, Rodríguez C. Down-regulation of Fibulin-5 is associated with aortic dilation: role of inflammation and epigenetics. Cardiovasc Res 2016; 110:431-42. [DOI: 10.1093/cvr/cvw082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 04/14/2016] [Indexed: 01/04/2023] Open
|
23
|
Cacabelos R, Torrellas C. Epigenetics of Aging and Alzheimer's Disease: Implications for Pharmacogenomics and Drug Response. Int J Mol Sci 2015; 16:30483-543. [PMID: 26703582 PMCID: PMC4691177 DOI: 10.3390/ijms161226236] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 12/08/2015] [Indexed: 02/07/2023] Open
Abstract
Epigenetic variability (DNA methylation/demethylation, histone modifications, microRNA regulation) is common in physiological and pathological conditions. Epigenetic alterations are present in different tissues along the aging process and in neurodegenerative disorders, such as Alzheimer’s disease (AD). Epigenetics affect life span and longevity. AD-related genes exhibit epigenetic changes, indicating that epigenetics might exert a pathogenic role in dementia. Epigenetic modifications are reversible and can potentially be targeted by pharmacological intervention. Epigenetic drugs may be useful for the treatment of major problems of health (e.g., cancer, cardiovascular disorders, brain disorders). The efficacy and safety of these and other medications depend upon the efficiency of the pharmacogenetic process in which different clusters of genes (pathogenic, mechanistic, metabolic, transporter, pleiotropic) are involved. Most of these genes are also under the influence of the epigenetic machinery. The information available on the pharmacoepigenomics of most drugs is very limited; however, growing evidence indicates that epigenetic changes are determinant in the pathogenesis of many medical conditions and in drug response and drug resistance. Consequently, pharmacoepigenetic studies should be incorporated in drug development and personalized treatments.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| | - Clara Torrellas
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165-Bergondo, Corunna, Spain.
- Chair of Genomic Medicine, Camilo José Cela University, 28692-Madrid, Spain.
| |
Collapse
|