1
|
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025; 14:561. [PMID: 40277887 PMCID: PMC12026394 DOI: 10.3390/cells14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension-length relationship was studied in CM mechanically loaded by carbon fibers. The actin-myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension-length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT.
Collapse
Affiliation(s)
- Tatiana A. Myachina
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Xenia A. Butova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Raisa A. Simonova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Denis A. Volzhaninov
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620026 Yekaterinburg, Russia
| | | |
Collapse
|
2
|
Quiroga D, Roman B, Salih M, Daccarett-Bojanini WN, Garbus H, Ebenebe OV, Dodd-O JM, O'Rourke B, Kohr M, Das S. Sex-dependent phosphorylation of Argonaute 2 reduces the mitochondrial translocation of miR-181c and induces cardioprotection in females. J Mol Cell Cardiol 2024; 194:59-69. [PMID: 38880194 PMCID: PMC11345856 DOI: 10.1016/j.yjmcc.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
Obesity-induced cardiac dysfunction is growing at an alarming rate, showing a dramatic increase in global prevalence. Mitochondrial translocation of miR-181c in cardiomyocytes results in excessive reactive oxygen species (ROS) production during obesity. ROS causes Sp1, a transcription factor for MICU1, to be degraded via post-translational modification. The subsequent decrease in MICU1 expression causes mitochondrial Ca2+ accumulation, ultimately leading to a propensity for heart failure. Herein, we hypothesized that phosphorylation of Argonaute 2 (AGO2) at Ser 387 (in human) or Ser 388 (in mouse) inhibits the translocation of miR-181c into the mitochondria by increasing the cytoplasmic stability of the RNA-induced silencing complex (RISC). Initially, estrogen offers cardioprotection in pre-menopausal females against the consequences of mitochondrial miR-181c upregulation by driving the phosphorylation of AGO2. Neonatal mouse ventricular myocytes (NMVM) treated with insulin showed an increase in pAGO2 levels and a decrease in mitochondrial miR-181c expression by increasing the binding affinity of AGO2-GW182 in the RISC. Thus, insulin treatment prevented excessive ROS production and mitochondrial Ca2+ accumulation. In human cardiomyocytes, we overexpressed miR-181c to mimic pathological conditions, such as obesity/diabetes. Treatment with estradiol (E2) for 48 h significantly lowered miR-181c entry into the mitochondria through increased pAGO2 levels. E2 treatment also normalized Sp1 degradation and MICU1 transcription that normally occurs in response to miR-181c overexpression. We then investigated these findings using an in vivo model, with age-matched male, female and ovariectomized (OVX) female mice. Consistent with the E2 treatment, we show that female hearts express higher levels of pAGO2 and thus, exhibit higher association of AGO2-GW182 in cytoplasmic RISC. This results in lower expression of mitochondrial miR-181c in female hearts compared to male or OVX groups. Further, female hearts had fewer consequences of mitochondrial miR-181c expression, such as lower Sp1 degradation and significantly decreased MICU1 transcriptional regulation. Taken together, this study highlights a potential therapeutic target for conditions such as obesity and diabetes, where miR-181c is upregulated. NEW AND NOTEWORTHY: In this study, we show that the phosphorylation of Argonaute 2 (AGO2) stabilizes the RNA-induced silencing complex in the cytoplasm, preventing miR-181c entry into the mitochondria. Furthermore, we demonstrate that treatment with estradiol can inhibit the translocation of miR-181c into the mitochondria by phosphorylating AGO2. This ultimately eliminates the downstream consequences of miR-181c overexpression by mitigating excessive reactive oxygen species production and calcium entry into the mitochondria.
Collapse
Affiliation(s)
- Diego Quiroga
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - Marwan Salih
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America
| | - William N Daccarett-Bojanini
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Haley Garbus
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Obialunanma V Ebenebe
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Jeffrey M Dodd-O
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America
| | - Mark Kohr
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, United States of America
| | - Samarjit Das
- Department of Anesthesiology & Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, United States of America; Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States of America.
| |
Collapse
|
3
|
Shorthill SK, Jones TLM, Woulfe KC, Cherrington BD, Bruns DR. The influence of estrogen on myocardial post-translational modifications and cardiac function in women. Can J Physiol Pharmacol 2024; 102:452-464. [PMID: 38266237 DOI: 10.1139/cjpp-2023-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The lifetime risk of heart failure (HF) is comparable in men and women; nevertheless, disparities exist in our understanding of how HF differs between sexes. Several differences in cardiac physiology exist between men and women including the propensity to develop specific HF phenotypes. Men are more likely to be diagnosed with HF failure with reduced ejection fraction, while women have a greater propensity to develop HF with preserved ejection fraction. The mechanisms responsible for these differences remain unclear. Post-translational modifications (PTMs) of myofilament proteins likely contribute to these sex-specific propensities. The role of PTMs in heart disease is an expanding field with immense potential therapeutic targets. However, numerous PTMs remain underexplored, particularly in the context of the female heart. Estrogen, a key gonadal hormone, cardioprotective in pre-menopausal women and its loss with menopause likely contributes to disease in aging women. However, how estrogen regulates PTMs to contribute to HF development is not fully clear. This review outlines key sex differences in HF along with characterizing the contributions of novel myocardial PTMs in cardiac physiology and their regulation by estrogen. Collectively, we highlight the necessity for further investigation into women's heart health and the distinctive mechanisms distinguishing women from men.
Collapse
Affiliation(s)
| | - Timothy L M Jones
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kathleen C Woulfe
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Brian D Cherrington
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, WY, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
4
|
Martin TG, Leinwand LA. Hearts apart: sex differences in cardiac remodeling in health and disease. J Clin Invest 2024; 134:e180074. [PMID: 38949027 PMCID: PMC11213513 DOI: 10.1172/jci180074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
Abstract
Biological sex is an important modifier of physiology and influences pathobiology in many diseases. While heart disease is the number one cause of death worldwide in both men and women, sex differences exist at the organ and cellular scales, affecting clinical presentation, diagnosis, and treatment. In this Review, we highlight baseline sex differences in cardiac structure, function, and cellular signaling and discuss the contribution of sex hormones and chromosomes to these characteristics. The heart is a remarkably plastic organ and rapidly responds to physiological and pathological cues by modifying form and function. The nature and extent of cardiac remodeling in response to these stimuli are often dependent on biological sex. We discuss organ- and molecular-level sex differences in adaptive physiological remodeling and pathological cardiac remodeling from pressure and volume overload, ischemia, and genetic heart disease. Finally, we offer a perspective on key future directions for research into cardiac sex differences.
Collapse
Affiliation(s)
- Thomas G. Martin
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, USA
| |
Collapse
|
5
|
Luo Y, Safabakhsh S, Palumbo A, Fiset C, Shen C, Parker J, Foster LJ, Laksman Z. Sex-Based Mechanisms of Cardiac Development and Function: Applications for Induced-Pluripotent Stem Cell Derived-Cardiomyocytes. Int J Mol Sci 2024; 25:5964. [PMID: 38892161 PMCID: PMC11172775 DOI: 10.3390/ijms25115964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Males and females exhibit intrinsic differences in the structure and function of the heart, while the prevalence and severity of cardiovascular disease vary in the two sexes. However, the mechanisms of this sex-based dimorphism are yet to be elucidated. Sex chromosomes and sex hormones are the main contributors to sex-based differences in cardiac physiology and pathophysiology. In recent years, the advances in induced pluripotent stem cell-derived cardiac models and multi-omic approaches have enabled a more comprehensive understanding of the sex-specific differences in the human heart. Here, we provide an overview of the roles of these two factors throughout cardiac development and explore the sex hormone signaling pathways involved. We will also discuss how the employment of stem cell-based cardiac models and single-cell RNA sequencing help us further investigate sex differences in healthy and diseased hearts.
Collapse
Affiliation(s)
- Yinhan Luo
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Sina Safabakhsh
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| | - Alessia Palumbo
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Céline Fiset
- Research Centre, Montreal Heart Institute, Faculty of Pharmacy, Université de Montréal, Montréal, QC H1T 1C8, Canada;
| | - Carol Shen
- Department of Integrated Sciences, University of British Columbia, Vancouver, BC V6T 1Z2, Canada;
| | - Jeremy Parker
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
| | - Leonard J. Foster
- Michael Smith Laboratories, Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.P.); (L.J.F.)
| | - Zachary Laksman
- Centre for Heart Lung Innovation, Department of Medicine, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada; (Y.L.); (J.P.)
- Centre for Cardiovascular Innovation, Division of Cardiology, University of British Columbia, Vancouver, BC V6T 2A1, Canada;
| |
Collapse
|
6
|
Visniauskas B, Kilanowski-Doroh I, Ogola BO, Mcnally AB, Horton AC, Imulinde Sugi A, Lindsey SH. Estrogen-mediated mechanisms in hypertension and other cardiovascular diseases. J Hum Hypertens 2023; 37:609-618. [PMID: 36319856 PMCID: PMC10919324 DOI: 10.1038/s41371-022-00771-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 06/08/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally for men and women. Premenopausal women have a lower incidence of hypertension and other cardiovascular events than men of the same age, but diminished sex differences after menopause implicates 17-beta-estradiol (E2) as a protective agent. The cardioprotective effects of E2 are mediated by nuclear estrogen receptors (ERα and ERβ) and a G protein-coupled estrogen receptor (GPER). This review summarizes both established as well as emerging estrogen-mediated mechanisms that underlie sex differences in the vasculature during hypertension and CVD. In addition, remaining knowledge gaps inherent in the association of sex differences and E2 are identified, which may guide future clinical trials and experimental studies in this field.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alexandra B Mcnally
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Alec C Horton
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ariane Imulinde Sugi
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.
- Tulane Center of Excellence in Sex-Based Biology and Medicine, New Orleans, LA, USA.
- Tulane Brain Institute, New Orleans, LA, USA.
| |
Collapse
|
7
|
Jefferi NES, Shamhari A‘A, Noor Azhar NKZ, Shin JGY, Kharir NAM, Azhar MA, Hamid ZA, Budin SB, Taib IS. The Role of ERα and ERβ in Castration-Resistant Prostate Cancer and Current Therapeutic Approaches. Biomedicines 2023; 11:biomedicines11030826. [PMID: 36979805 PMCID: PMC10045750 DOI: 10.3390/biomedicines11030826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023] Open
Abstract
Castration-resistant prostate cancer, or CRPC, is an aggressive stage of prostate cancer (PCa) in which PCa cells invade nearby or other parts of the body. When a patient with PCa goes through androgen deprivation therapy (ADT) and the cancer comes back or worsens, this is called CRPC. Instead of androgen-dependent signalling, recent studies show the involvement of the estrogen pathway through the regulation of estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) in CRPC development. Reduced levels of testosterone due to ADT lead to low ERβ functionality in inhibiting the proliferation of PCa cells. Additionally, ERα, which possesses androgen independence, continues to promote the proliferation of PCa cells. The functions of ERα and ERβ in controlling PCa progression have been studied, but further research is needed to elucidate their roles in promoting CRPC. Finding new ways to treat the disease and stop it from becoming worse will require a clear understanding of the molecular processes that can lead to CRPC. The current review summarizes the underlying processes involving ERα and ERβ in developing CRPC, including castration-resistant mechanisms after ADT and available medication modification in mitigating CRPC progression, with the goal of directing future research and treatment.
Collapse
Affiliation(s)
- Nur Erysha Sabrina Jefferi
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Asma’ ‘Afifah Shamhari
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Khayrin Zulaikha Noor Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Joyce Goh Yi Shin
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Annisa Mohd Kharir
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Muhammad Afiq Azhar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Zariyantey Abd Hamid
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Balkis Budin
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Izatus Shima Taib
- Center of Diagnostics, Therapeutics and Investigative Studies (CODTIS), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +0603-92897608
| |
Collapse
|
8
|
Tham YK, Bernardo BC, Claridge B, Yildiz GS, Woon LML, Bond S, Fang H, Ooi JYY, Matsumoto A, Luo J, Tai CMK, Harmawan CA, Kiriazis H, Donner DG, Mellett NA, Abel ED, Khan SA, De Souza DP, Doomun SNE, Liu K, Xiang R, Singh M, Inouye M, Meikle PJ, Weeks KL, Drew BG, Greening DW, McMullen JR. Estrogen receptor alpha deficiency in cardiomyocytes reprograms the heart-derived extracellular vesicle proteome and induces obesity in female mice. NATURE CARDIOVASCULAR RESEARCH 2023; 2:268-289. [PMID: 39196021 DOI: 10.1038/s44161-023-00223-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/30/2023] [Indexed: 08/29/2024]
Abstract
Dysregulation of estrogen receptor alpha (ERα) has been linked with increased metabolic and cardiovascular disease risk. Here, we generate and characterize cardiomyocyte-specific ERα knockout (ERαHKO) mice to assess the role of ERα in the heart. The most striking phenotype was obesity in female ERαHKO but not male ERαHKO mice. Female ERαHKO mice showed cardiac dysfunction, mild glucose and insulin intolerance and reduced ERα gene expression in skeletal muscle and white adipose tissue. Transcriptomic, proteomic, lipidomic and metabolomic analyses revealed evidence of contractile and/or metabolic dysregulation in heart, skeletal muscle and white adipose tissue. We show that heart-derived extracellular vesicles from female ERαHKO mice contain a distinct proteome associated with lipid and metabolic regulation, and have the capacity to metabolically reprogram the target skeletal myocyte proteome with functional impacts on glycolytic capacity and reserve. This multi-omics study uncovers a cardiac-initiated and sex-specific cardiometabolic phenotype regulated by ERα and provides insights into extracellular vesicle-mediated interorgan communication.
Collapse
Affiliation(s)
- Yow Keat Tham
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Bianca C Bernardo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Bethany Claridge
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Gunes S Yildiz
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Simon Bond
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jenny Y Y Ooi
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
| | - Aya Matsumoto
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jieting Luo
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Celeste M K Tai
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - E Dale Abel
- David Geffen School of Medicine, University of California, Los Angeles, California, CA, USA
| | - Sohaib A Khan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Kevin Liu
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Ruidong Xiang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Manika Singh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Michael Inouye
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Brian G Drew
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria, Australia.
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia.
- Central Clinical School, Monash University, Melbourne, Victoria, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia.
- Department of Physiology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
9
|
Brooks L, Dolton M, Langenhorst J, Yoshida K, Lien YTK, Malhi V, Li C, Perez-Moreno P, Bond J, Chen YC, Yu J. Concentration QTc analysis of giredestrant: Overcoming QT/heart rate confounding in the presence of drug-induced heart rate changes. Clin Transl Sci 2023; 16:823-834. [PMID: 36772881 PMCID: PMC10175970 DOI: 10.1111/cts.13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Concentration-QTc (C-QTc) analysis has become a common approach for evaluating proarrhythmic risk and delayed cardiac repolarization of oncology drug candidates. Significant heart rate (HR) change has been associated with certain classes of oncology drugs and can result in over- or underestimation of the true QT prolongation risk. Because oncology early clinical trials typically lack a placebo control arm or time-matched, treatment-free baseline electrocardiogram collection, significant HR change brings additional challenges to C-QTc analysis in the oncology setting. In this work, a spline-based correction method (QTcSPL) was explored to mitigate the impact of HR changes in giredestrant C-QTc analysis. Giredestrant is a selective estrogen receptor degrader being developed for the treatment of patients with estrogen receptor-positive (ER+) breast cancer. A dose-related HR decrease has been observed in patients under giredestrant treatment, with significant reductions (>10 bpm) observed at supratherapeutic doses. The QTcSPL method demonstrated superior functionality to reduce the correlation between QTc and HR as compared with the Fridericia correction (QTcF). The effect of giredestrant exposure on QTc was evaluated at the clinical dose of 30 mg and supratherapeutic dose of 100 mg based on a prespecified linear mixed effect model. The upper 90% confidence interval of ΔQTcSPL and ΔQTcF were below the 10 ms at both clinical and supratherapeutic exposures, suggesting giredestrant has a low risk of QT prolongation at clinically relevant concentrations. This work demonstrated the use case of QTcSPL to address HR confounding challenges in the context of oncology drug development for the first time.
Collapse
Affiliation(s)
- Logan Brooks
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Michael Dolton
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | | | - Kenta Yoshida
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Yi Ting Kayla Lien
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Vikram Malhi
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Chunze Li
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Pablo Perez-Moreno
- Product Development Oncology, Genentech, Inc., South San Francisco, California, USA
| | - John Bond
- Product Development Oncology, Genentech, Inc., South San Francisco, California, USA
| | - Ya-Chi Chen
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| | - Jiajie Yu
- Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA
| |
Collapse
|
10
|
Fu L, Adu-Amankwaah J, Sang L, Tang Z, Gong Z, Zhang X, Li T, Sun H. Gender differences in GRK2 in cardiovascular diseases and its interactions with estrogen. Am J Physiol Cell Physiol 2023; 324:C505-C516. [PMID: 36622065 DOI: 10.1152/ajpcell.00407.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
G protein-coupled receptor kinase 2 (GRK2) is a multifunctional protein involved in regulating G protein-coupled receptor (GPCR) and non-GPCR signaling in the body. In the cardiovascular system, increased expression of GRK2 has been implicated in the occurrence and development of several cardiovascular diseases (CVDs). Recent studies have found gender differences in GRK2 in the cardiovascular system under physiological and pathological conditions, where GRK2's expression and activity are increased in males than in females. The incidence of CVDs in premenopausal women is lower than in men of the same age, which is related to estrogen levels. Given the shared location of GRK2 and estrogen receptors, estrogen may interact with GRK2 by modulating vital molecules such as calmodulin (CaM), caveolin, RhoA, nitrate oxide (NO), and mouse double minute 2 homolog (Mdm2), via signaling pathways mediated by estrogen's genomic (ERα and ERβ), and non-genomic (GPER) receptors, conferring cardiovascular protection in females. Highlighting the gender differences in GRK2 and understanding its interaction with estrogen in the cardiovascular system is pertinent in treating gender-related CVDs. As a result, this article explores the gender differences of GRK2 in the cardiovascular system and its relationship with estrogen during disease conditions. Estrogen's protective and therapeutic effects and its mechanism on GRK2-related cardiovascular diseases have also been discussed.
Collapse
Affiliation(s)
- Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Lili Sang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,National Demonstration Center for Experimental Basic Medical Science Education, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Ziqing Tang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Zheng Gong
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China.,School of Public Affairs & Governance, Silliman University, Dumaguete, Philippines
| | - Xiaoyan Zhang
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Tao Li
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
11
|
Renke G, Kemen E, Scalabrin P, Braz C, Baêsso T, Pereira MB. Cardio-Metabolic Health and HRT in Menopause: Novel Insights in Mitochondrial Biogenesis and RAAS. Curr Cardiol Rev 2023; 19:e060223213459. [PMID: 36748220 PMCID: PMC10494270 DOI: 10.2174/1573403x19666230206130205] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
Recent evidence shows the cardiometabolic effects of estrogen administration in postmenopausal women. Women have a cardiometabolic advantage during their reproductive years, which is lost at menopause due to declining estradiol (E2). E2, also known as 17-beta-estradiol, has diverse effects in its target tissues, including the cardiovascular (CV) system, through genomic and non-genomic signaling. Metabolic changes characteristic of menopause include a worsening lipid profile, changes in body fat distribution, epicardial and pericardial fat deposition, increased susceptibility to weight gain, and increased blood pressure, resulting in an increased risk of accelerated cardiovascular disease (CVD) development. E2 mediates its cardioprotective actions by increasing mitochondrial biogenesis, angiogenesis, and vasodilation, decreasing reactive oxygen species (ROS) and oxidative stress, and modulating the renin-angiotensin-aldosterone system (RAAS). In this review, we assess whether it is prudent to develop an approach to managing postmenopausal women based on modifying the patient's CV risk that includes human-identical hormone replacement therapy (HRT), modulation of RAAS, and stimulating mitochondrial biogenesis. Further research is needed to assess the safety and benefit of HRT to reduce cardiometabolic risk.
Collapse
Affiliation(s)
- Guilherme Renke
- National Institute of Cardiology, Brazilian Ministry of Health, Rio de Janeiro, Brazil
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro, Brazil
| | - Elaine Kemen
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro, Brazil
| | - Priscila Scalabrin
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro, Brazil
| | - Cleibe Braz
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro, Brazil
| | - Thomáz Baêsso
- Nutrindo Ideais Performance and Nutrition Research Center, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
13
|
Francis AJ, Firth JM, Sanchez-Alonso JL, Gorelik J, MacLeod KT. GPER limits adverse changes to Ca 2+ signalling and arrhythmogenic activity in ovariectomised guinea pig cardiomyocytes. Front Physiol 2022; 13:1023755. [PMID: 36439245 PMCID: PMC9686394 DOI: 10.3389/fphys.2022.1023755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Background: The increased risk of post-menopausal women developing abnormalities of heart function emphasises the requirement to understand the effect of declining oestrogen levels on cardiac electrophysiology and structure, and investigate possible therapeutic targets, namely the G protein-coupled oestrogen receptor 1 (GPER). Methods: Female guinea pigs underwent sham or ovariectomy (OVx) surgeries. Cardiomyocytes were isolated 150-days post-operatively. Membrane structure was assessed using di-8-ANEPPs staining and scanning ion conductance microscopy. Imunnohistochemistry (IHC) determined the localisation of oestrogen receptors. The effect of GPER activation on excitation-contraction coupling mechanisms were assessed using electrophysiological and fluorescence techniques. Downstream signalling proteins were investigated by western blot. Results: IHC staining confirmed the presence of nuclear oestrogen receptors and GPER, the latter prominently localised to the peri-nuclear region and having a clear striated pattern elsewhere in the cells. Following OVx, GPER expression increased and its activation reduced Ca2+ transient amplitude (by 40%) and sarcomere shortening (by 32%). In these cells, GPER activation reduced abnormal spontaneous Ca2+ activity, shortened action potential duration and limited drug-induced early after-depolarisation formation. Conclusion: In an animal species with comparable steroidogenesis and cardiac physiology to humans, we show the expression and localisation of all three oestrogen receptors in cardiac myocytes. We found that following oestrogen withdrawal, GPER expression increased and its activation limited arrhythmogenic behaviours in this low oestrogen state, indicating a potential cardioprotective role of this receptor in post-menopausal women.
Collapse
|
14
|
Félix Vélez NE, Gorashi RM, Aguado BA. Chemical and molecular tools to probe biological sex differences at multiple length scales. J Mater Chem B 2022; 10:7089-7098. [PMID: 36043366 PMCID: PMC9632480 DOI: 10.1039/d2tb00871h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological sex differences are observed at multiple different length scales and across organ systems. Gaps in knowledge remain regarding our understanding of how molecular, cellular, and environmental factors contribute to physiological sex differences. Here, we provide our perspective on how chemical and molecular tools can be leveraged to explore sex differences in biology at the molecular, intracellular, extracellular, tissue, and organ length scales. We provide examples where chemical and molecular tools were used to explore sex differences in the cardiovascular, nervous, immune, and reproductive systems. We also provide a future outlook where chemical and molecular tools can be applied to continue investigating sex differences in biology, with the ultimate goal of addressing inequities in biomedical research and approaches to clinical treatments.
Collapse
Affiliation(s)
- Nicole E Félix Vélez
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Rayyan M Gorashi
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| | - Brian A Aguado
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
- Sanford Consortium for Regenerative Medicine, 2880 Torrey Pines Scenic Drive, La Jolla, CA 92037, USA
| |
Collapse
|
15
|
Sex Steroid Receptors in Polycystic Ovary Syndrome and Endometriosis: Insights from Laboratory Studies to Clinical Trials. Biomedicines 2022; 10:biomedicines10071705. [PMID: 35885010 PMCID: PMC9312843 DOI: 10.3390/biomedicines10071705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) and endometriosis are reproductive disorders that may cause infertility. The pathology of both diseases has been suggested to be associated with sex steroid hormone receptors, including oestrogen receptors (ER), progesterone receptors (PRs) and androgen receptors (ARs). Therefore, with this review, we aim to provide an update on the available knowledge of these receptors and how their interactions contribute to the pathogenesis of PCOS and endometriosis. One of the main PCOS-related medical conditions is abnormal folliculogenesis, which is associated with the downregulation of ER and AR expression in the ovaries. In addition, metabolic disorders in PCOS are caused by dysregulation of sex steroid hormone receptor expression. Furthermore, endometriosis is related to the upregulation of ER and the downregulation of PR expression. These receptors may serve as therapeutic targets for the treatment of PCOS-related disorders and endometriosis, considering their pathophysiological roles. Receptor agonists may be applied to increase the expression of a specific receptor and treat endometriosis or metabolic disorders. In contrast, receptor antagonist functions to reduce receptor expression and can be used to treat endometriosis and induce ovulation. Understanding PCOS and the pathological roles of endometriosis sex steroid receptors is crucial for developing potential therapeutic strategies to treat infertility in both conditions. Therefore, research should be continued to fill the knowledge gap regarding the subject.
Collapse
|
16
|
Ghnenis A, Padmanabhan V, Vyas A. Sexual dimorphism in testosterone programming of cardiomyocyte development in sheep. Am J Physiol Heart Circ Physiol 2022; 322:H607-H621. [PMID: 35119334 PMCID: PMC8957338 DOI: 10.1152/ajpheart.00691.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Perturbed in utero hormone milieu leads to intrauterine growth retardation (IUGR), a known risk factor for left ventricular (LV) dysfunction later in life. Gestational testosterone (T) excess predisposes offspring to IUGR and leads to LV myocardial disarray and hypertension in adult females. However, the early impact of T excess on LV programming and if it is female specific is unknown. LV tissues were obtained at day 90 gestation from days 30-90 T-treated or control fetuses (n = 6/group/sex) and morphometric and molecular analyses were conducted. Gestational T treatment increased cardiomyocyte number only in female fetuses. T excess upregulated receptor expression of insulin and insulin-like growth factor. Furthermore, in a sex-specific manner, T increased expression of phosphatidylinositol 3-kinase (PI3K) while downregulating phosphorylated mammalian target of rapamycin (pmTOR)-to-mTOR ratio suggestive of compensatory response. T excess 1) upregulated atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), markers of stress and cardiac hypertrophy and 2) upregulated estrogen receptors1 (ESR1) and 2 (ESR2), but not in androgen receptor (AR). Thus, gestational T excess upregulated markers of cardiac stress and hypertrophy in both sexes while inducing cardiomyocyte hyperplasia only in females, likely mediated via insulin and estrogenic programming.NEW & NOTEWORTHY The present study demonstrates sex-specific effects of gestational T excess between days 30 and 90 of gestation on the cardiac phenotype. Furthermore, the sex-specific programming is likely secondary to perturbation in both estrogen and insulin signaling pathways collectively. These findings are supportive of the role of androgen excess to serve as early biomarkers of CVD and could be critical in identifying therapeutic targets for LV hypertrophy and predict long-term CVD.
Collapse
Affiliation(s)
- Adel Ghnenis
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan
| | | | - Arpita Vyas
- College of Human Medicine, California Northstate University, Elk Grove, California
| |
Collapse
|
17
|
Beikoghli Kalkhoran S, Kararigas G. Oestrogenic Regulation of Mitochondrial Dynamics. Int J Mol Sci 2022; 23:ijms23031118. [PMID: 35163044 PMCID: PMC8834780 DOI: 10.3390/ijms23031118] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Biological sex influences disease development and progression. The steroid hormone 17β-oestradiol (E2), along with its receptors, is expected to play a major role in the manifestation of sex differences. E2 exerts pleiotropic effects in a system-specific manner. Mitochondria are one of the central targets of E2, and their biogenesis and respiration are known to be modulated by E2. More recently, it has become apparent that E2 also regulates mitochondrial fusion–fission dynamics, thereby affecting cellular metabolism. The aim of this article is to discuss the regulatory pathways by which E2 orchestrates the activity of several components of mitochondrial dynamics in the cardiovascular and nervous systems in health and disease. We conclude that E2 regulates mitochondrial dynamics to maintain the mitochondrial network promoting mitochondrial fusion and attenuating mitochondrial fission in both the cardiovascular and nervous systems.
Collapse
|
18
|
Pharmacological Mechanisms of Tinglizi against Chronic Heart Failure Determined by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2152399. [PMID: 35035498 PMCID: PMC8758258 DOI: 10.1155/2022/2152399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022]
Abstract
Objective. Tinglizi has been extensively used to treat chronic heart failure (CHF) in modern times, but the material basis and pharmacological mechanisms are still unclear. To explore the material basis and corresponding potential targets and to elucidate the mechanism of Tinglizi, network pharmacology and molecular docking methods were utilized. Methods. The main chemical compounds and potential targets of Tinglizi were collected from the pharmacological database analysis platform (TCMSP). The corresponding genes of related action targets were queried through gene cards and UniProt database. The corresponding genes of CHF-related targets were searched through Disgenet database, and the intersection targets were obtained by drawing Venn map with the target genes related to pharmacodynamic components. Then, drug targets and disease targets were intersected and put into STRING database to establish a protein interaction network. The “active ingredient-CHF target” network was constructed with Cytoscape 3.8.2. Finally, Gene Ontology (GO) Enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of intersection targets were analyzed using metascape. With the aid of SYBYL software, the key active ingredients and core targets were docked at molecular level, and the results were visualized by PyMOL software. Molecular docking was carried out to investigate interactions between active compounds and potential targets. Results. A total of 12 active components in Tinglizi were chosen from the TCMSP database, and 193 corresponding targets were predicted. Twenty-nine potential targets of Tinglizi on CHF were obtained, of which nine were the core targets of this study. Twenty GO items were obtained by GO function enrichment analysis (
), and 10 signal pathways were screened by KEGG pathway enrichment analysis (
), which is closely related to the treatment of CHF by Tinglizi. The constructed drug compound composition action target disease network shows that quercetin, kaempferol, and other active compounds play a key role in the whole network. The results of molecular docking showed that all the key active ingredients, such as quercetin and isorhamnetin, were able to successfully dock with ADRB2 and HMOX1 with a total score above 5.0, suggesting that these key components have a strong binding force with the targets. Conclusion. Through network pharmacology and molecular docking technology, we found that the main components of Tinglizi in the treatment of CHF are quercetin, kaempferol, β-sitosterol, isorhamnetin, and so on. The action targets are beta 2-adrenergic receptor (ADRB2), heme oxygenase 1 (HMOX1), and so on. The main pathways are advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling pathway in diabetic complications, hypoxia-inducible factor (HIF-1) signaling pathway, estrogen signaling pathway, and so on. They play an integrated role in the treatment of CHF.
Collapse
|
19
|
McMillin SL, Minchew EC, Lowe DA, Spangenburg EE. Skeletal muscle wasting: the estrogen side of sexual dimorphism. Am J Physiol Cell Physiol 2022; 322:C24-C37. [PMID: 34788147 PMCID: PMC8721895 DOI: 10.1152/ajpcell.00333.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the past 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate, or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still needs rigorous scientific tools that will allow the community to address critical hypotheses centered around sex hormones. The focus of this review is on female sex hormones, specifically estrogens, and the roles that these hormones and their receptors play in skeletal muscle wasting conditions. With the overall review goal of assembling the current knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.
Collapse
Affiliation(s)
- Shawna L. McMillin
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Everett C. Minchew
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Dawn A. Lowe
- 1Division of Rehabilitation Science, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota,2Division of Physical Therapy, Department of Rehabilitation Medicine, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Espen E. Spangenburg
- 3Department of Physiology, Brody School of Medicine, East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
20
|
Seelbinder B, Ghosh S, Schneider SE, Scott AK, Berman AG, Goergen CJ, Margulies KB, Bedi K, Casas E, Swearingen AR, Brumbaugh J, Calve S, Neu CP. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat Biomed Eng 2021; 5:1500-1516. [PMID: 34857921 PMCID: PMC9300284 DOI: 10.1038/s41551-021-00823-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 10/20/2021] [Indexed: 01/31/2023]
Abstract
In cardiovascular tissues, changes in the mechanical properties of the extracellular matrix are associated with cellular de-differentiation and with subsequent functional declines. However, the underlying mechanoreceptive mechanisms are largely unclear. Here, by generating high-resolution, full-field strain maps of cardiomyocyte nuclei during contraction in vitro, complemented with evidence from tissues from patients with cardiomyopathy and from mice with reduced cardiac performance, we show that cardiomyocytes establish a distinct nuclear organization during maturation, characterized by the reorganization of H3K9me3-marked chromatin towards the nuclear border. Specifically, we show that intranuclear tension is spatially correlated with H3K9me3-marked chromatin, that reductions in nuclear deformation (through environmental stiffening or through the disruption of complexes of the linker of nucleoskeleton and cytoskeleton) abrogate chromatin reorganization and lead to the dissociation of H3K9me3-marked chromatin from the nuclear periphery, and that the suppression of H3K9 methylation induces chromatin reorganization and reduces the expression of cardiac developmental genes. Overall, our findings indicate that, by integrating environmental mechanical cues, the nuclei of cardiomyocytes guide and stabilize the fate of cells through the reorganization of epigenetically marked chromatin.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Soham Ghosh
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | | | - Adrienne K. Scott
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO)
| | - Alycia G. Berman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Craig J. Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | | | - Kenneth Bedi
- Cardiovascular Institute, University of Pennsylvania, Philadelphia (PA)
| | - Eduard Casas
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Alison R. Swearingen
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Justin Brumbaugh
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder (CO)
| | - Sarah Calve
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Weldon School of Biomedical Engineering, Purdue University, West Lafayette (IN)
| | - Corey P. Neu
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder (CO),Corresponding Author
| |
Collapse
|
21
|
Nuclear Receptors in Myocardial and Cerebral Ischemia-Mechanisms of Action and Therapeutic Strategies. Int J Mol Sci 2021; 22:ijms222212326. [PMID: 34830207 PMCID: PMC8617737 DOI: 10.3390/ijms222212326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Nearly 18 million people died from cardiovascular diseases in 2019, of these 85% were due to heart attack and stroke. The available therapies although efficacious, have narrow therapeutic window and long list of contraindications. Therefore, there is still an urgent need to find novel molecular targets that could protect the brain and heart against ischemia without evoking major side effects. Nuclear receptors are one of the promising targets for anti-ischemic drugs. Modulation of estrogen receptors (ERs) and peroxisome proliferator-activated receptors (PPARs) by their ligands is known to exert neuro-, and cardioprotective effects through anti-apoptotic, anti-inflammatory or anti-oxidant action. Recently, it has been shown that the expression of aryl hydrocarbon receptor (AhR) is strongly increased after brain or heart ischemia and evokes an activation of apoptosis or inflammation in injury site. We hypothesize that activation of ERs and PPARs and inhibition of AhR signaling pathways could be a promising strategy to protect the heart and the brain against ischemia. In this Review, we will discuss currently available knowledge on the mechanisms of action of ERs, PPARs and AhR in experimental models of stroke and myocardial infarction and future perspectives to use them as novel targets in cardiovascular diseases.
Collapse
|
22
|
Escarda-Castro E, Herráez MP, Lombó M. Effects of bisphenol A exposure during cardiac cell differentiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117567. [PMID: 34126515 DOI: 10.1016/j.envpol.2021.117567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Heart development requires a precise temporal regulation of gene expression in cardiomyoblasts. Therefore, the transcriptional changes in differentiating cells can lead to congenital heart diseases. Although the genetic mutations underlie most of these alterations, exposure to environmental contaminants, such as bisphenol A (BPA), has been recently considered as a risk factor as well. In this study we investigated the genotoxic and epigenotoxic effects of BPA throughout cardiomyocyte differentiation. H9c2 cells (rat myoblasts) were exposed to 10 and 30 μM BPA before and during the last two days of cardiac-driven differentiation. Then, we have analysed the phenotypic and molecular modifications (at transcriptional, genetic and epigenetic level). The results showed that treated myoblasts developed a skeletal muscle cell-like phenotype. The transcriptional changes induced by BPA in genes codifying proteins involved in heart differentiation and function depend on the window of exposure to BPA. The exposure before differentiation repressed the expression of heart transcription factors (Hand2 and Gata4), whereas exposure during differentiation reduced the expression of cardiac-specific genes (Tnnt2, Myom2, Sln, and Atp2a1). Additionally, significant effects were observed regarding DNA damage and histone acetylation levels after the two periods of BPA exposure: in cells exposed to the toxicant the percentage of DNA repair foci (formed by the co-localization of γH2AX and 53BP1) increased in a dose-dependent manner, whereas the treatment with the toxicant triggered a decrease in the epigenetic marks H3K9ac and H3K27ac. Our in vitro results reveal that BPA seriously interferes with the process of cardiomyocyte differentiation, which could be related to the reported in vivo effects of this toxicant on cardiogenesis.
Collapse
Affiliation(s)
- Enrique Escarda-Castro
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology, University of León, Campus Vegazana s/n, León, 24071, Spain
| | - Marta Lombó
- Department of Animal Reproduction, INIA, Av. Puerta de Hierro, 18, Madrid, Spain.
| |
Collapse
|
23
|
Querio G, Antoniotti S, Geddo F, Tullio F, Penna C, Pagliaro P, Gallo MP. Ischemic heart disease and cardioprotection: Focus on estrogenic hormonal setting and microvascular health. Vascul Pharmacol 2021; 141:106921. [PMID: 34592428 DOI: 10.1016/j.vph.2021.106921] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022]
Abstract
Ischemic Heart Disease (IHD) is a clinical condition characterized by insufficient blood flow to the cardiac tissue, and the consequent inappropriate oxygen and nutrients supply and metabolic waste removal in the heart. In the last decade a broad scientific literature has underlined the distinct mechanism of onset and the peculiar progress of IHD between female and male patients, highlighting the estrogenic hormonal setting as a key factor of these sex-dependent divergences. In particular, estrogen-activated cardioprotective pathways exert a pivotal role for the microvascular health, and their impairment, both physiologically and pathologically driven, predispose to vascular dysfunctions. Aim of this review is to summarize the current knowledge on the estrogen receptors localization and function in the cardiovascular system, particularly focusing on sex-dependent differences in microvascular vs macrovascular dysfunction and on the experimental models that allowed the researchers to reach the current findings and sketching the leading estrogen-mediated cardioprotective mechanisms.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Francesca Tullio
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.
| |
Collapse
|
24
|
Cooper R, David A, Kudoh T, Tyler CR. Seasonal variation in oestrogenic potency and biological effects of wastewater treatment works effluents assessed using ERE-GFP transgenic zebrafish embryo-larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 237:105864. [PMID: 34118774 DOI: 10.1016/j.aquatox.2021.105864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Effluents from wastewater treatment works (WwTW) exhibit both temporal and spatial variation in oestrogenicity, however few studies have attempted to quantify how this variation affects biological responses in fish. Here we used an oestrogen-responsive green fluorescent protein (ERE-GFP) transgenic zebrafish (Danio rerio) to quantify oestrogenic activity and health effects for exposure to three different WwTW effluents. Endpoints measured included survival/hatching rate, GFP induction (measured in target tissues or gfp mRNA induction in whole embryos) and vtg mRNA induction in whole embryos. Exposure to one of the study effluents (at 100%), resulted in some mortality, and exposure to all three effluents (at 50% and 100%) caused decreases in hatching rates. Higher levels of vtg mRNA corresponded with higher levels of steroidal oestrogens in the different effluents, with lowest-observed-effect concentrations (LOECs) between 31 ng/L and 39 ng/L oestradiol equivalents (EEQs). Tissue patterns of GFP expression for all three WwTWs effluents reflected the known targets for steroidal oestrogens and for some other oestrogenic chemicals likely present in those effluents (i.e. nonylphenol or bisphenolic compounds). GFP induction was similarly responsive to vtg mRNA induction (a well-established biomarker for oestrogen exposure). We thus demonstrate the ERE-GFP transgenic zebrafish as an effective model for monitoring the oestrogenic potency and health effects for exposure to complex mixtures of chemicals contained within WwTW effluents.
Collapse
Affiliation(s)
- Ruth Cooper
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Arthur David
- School of Life Sciences, University of Sussex, Brighton BN1 9QJ, United Kingdom; Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, University of Rennes, F-35000 Rennes, France
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.
| |
Collapse
|
25
|
Deegan DF, Nigam P, Engel N. Sexual Dimorphism of the Heart: Genetics, Epigenetics, and Development. Front Cardiovasc Med 2021; 8:668252. [PMID: 34124200 PMCID: PMC8189176 DOI: 10.3389/fcvm.2021.668252] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
The democratization of genomic technologies has revealed profound sex biases in expression patterns in every adult tissue, even in organs with no conspicuous differences, such as the heart. With the increasing awareness of the disparities in cardiac pathophysiology between males and females, there are exciting opportunities to explore how sex differences in the heart are established developmentally. Although sexual dimorphism is traditionally attributed to hormonal influence, expression and epigenetic sex biases observed in early cardiac development can only be accounted for by the difference in sex chromosome composition, i.e., XX in females and XY in males. In fact, genes linked to the X and Y chromosomes, many of which encode regulatory factors, are expressed in cardiac progenitor cells and at every subsequent developmental stage. The effect of the sex chromosome composition may explain why many congenital heart defects originating before gonad formation exhibit sex biases in presentation, mortality, and morbidity. Some transcriptional and epigenetic sex biases established soon after fertilization persist in cardiac lineages, suggesting that early epigenetic events are perpetuated beyond early embryogenesis. Importantly, when sex hormones begin to circulate, they encounter a cardiac genome that is already functionally distinct between the sexes. Although there is a wealth of knowledge on the effects of sex hormones on cardiac function, we propose that sex chromosome-linked genes and their downstream targets also contribute to the differences between male and female hearts. Moreover, identifying how hormones influence sex chromosome effects, whether antagonistically or synergistically, will enhance our understanding of how sex disparities are established. We also explore the possibility that sexual dimorphism of the developing heart predicts sex-specific responses to environmental signals and foreshadows sex-biased health-related outcomes after birth.
Collapse
Affiliation(s)
| | | | - Nora Engel
- Lewis Katz School of Medicine, Fels Institute for Cancer Research, Temple University, Philadelphia, PA, United States
| |
Collapse
|
26
|
Ndzie Noah ML, Adzika GK, Mprah R, Adekunle AO, Adu-Amankwaah J, Sun H. Sex-Gender Disparities in Cardiovascular Diseases: The Effects of Estrogen on eNOS, Lipid Profile, and NFATs During Catecholamine Stress. Front Cardiovasc Med 2021; 8:639946. [PMID: 33644139 PMCID: PMC7907444 DOI: 10.3389/fcvm.2021.639946] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases (CVDs) characterized by sex-gender differences remain a leading cause of death globally. Hence, it is imperative to understand the underlying mechanisms of CVDs pathogenesis and the possible factors influencing the sex-gender disparities in clinical demographics. Attempts to elucidate the underlying mechanisms over the recent decades have suggested the mechanistic roles of estrogen in modulating cardioprotective and immunoregulatory effect as a factor for the observed differences in the incidence of CVDs among premenopausal and post-menopausal women and men. This review from a pathomechanical perspective aims at illustrating the roles of estrogen (E2) in the modulation of stimuli signaling in the heart during chronic catecholamine stress (CCS). The probable mechanism employed by E2 to decrease the incidence of hypertension, coronary heart disease, and pathological cardiac hypertrophy in premenopausal women are discussed. Initially, signaling via estrogen receptors and β-adrenergic receptors (βARs) during physiological state and CCS were summarized. By reconciling the impact of estrogen deficiency and hyperstimulation of βARs, the discussions were centered on their implications in disruption of nitric oxide synthesis, dysregulation of lipid profiles, and upregulation of nuclear factor of activated T cells, which induces the aforementioned CVDs, respectively. Finally, updates on E2 therapies for maintaining cardiac health during menopause and suggestions for the advancement treatments were highlighted.
Collapse
Affiliation(s)
| | | | - Richard Mprah
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | | | | | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
27
|
Lynch S, Boyett JE, Smith MR, Giordano-Mooga S. Sex Hormone Regulation of Proteins Modulating Mitochondrial Metabolism, Dynamics and Inter-Organellar Cross Talk in Cardiovascular Disease. Front Cell Dev Biol 2021; 8:610516. [PMID: 33644031 PMCID: PMC7905018 DOI: 10.3389/fcell.2020.610516] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/30/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the U.S. and worldwide. Sex-related disparities have been identified in the presentation and incidence rate of CVD. Mitochondrial dysfunction plays a role in both the etiology and pathology of CVD. Recent work has suggested that the sex hormones play a role in regulating mitochondrial dynamics, metabolism, and cross talk with other organelles. Specifically, the female sex hormone, estrogen, has both a direct and an indirect role in regulating mitochondrial biogenesis via PGC-1α, dynamics through Opa1, Mfn1, Mfn2, and Drp1, as well as metabolism and redox signaling through the antioxidant response element. Furthermore, data suggests that testosterone is cardioprotective in males and may regulate mitochondrial biogenesis through PGC-1α and dynamics via Mfn1 and Drp1. These cell-signaling hubs are essential in maintaining mitochondrial integrity and cell viability, ultimately impacting CVD survival. PGC-1α also plays a crucial role in inter-organellar cross talk between the mitochondria and other organelles such as the peroxisome. This inter-organellar signaling is an avenue for ameliorating rampant ROS produced by dysregulated mitochondria and for regulating intrinsic apoptosis by modulating intracellular Ca2+ levels through interactions with the endoplasmic reticulum. There is a need for future research on the regulatory role of the sex hormones, particularly testosterone, and their cardioprotective effects. This review hopes to highlight the regulatory role of sex hormones on mitochondrial signaling and their function in the underlying disparities between men and women in CVD.
Collapse
Affiliation(s)
- Shannon Lynch
- Biomedical Sciences Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL, United States
| | - James E Boyett
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - M Ryan Smith
- Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, GA, United States
| | - Samantha Giordano-Mooga
- Biomedical Sciences Program, Department of Clinical and Diagnostic Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
28
|
Gurrala R, Kilanowski-Doroh IM, Hutson DD, Ogola BO, Zimmerman MA, Katakam PVG, Satou R, Mostany R, Lindsey SH. Alterations in the estrogen receptor profile of cardiovascular tissues during aging. GeroScience 2021; 43:433-442. [PMID: 33558965 PMCID: PMC8050209 DOI: 10.1007/s11357-021-00331-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen exerts protective effects on the cardiovascular system via three known estrogen receptors: alpha (ERα), beta (ERß), and the G protein-coupled estrogen receptor (GPER). Our laboratory has previously showed the importance of GPER in the beneficial cardiovascular effects of estrogen. Since clinical studies indicate that the protective effects of exogenous estrogen on cardiovascular function are attenuated or reversed 10 years post-menopause, the hypothesis was that GPER expression may be reduced during aging. Vascular reactivity and GPER protein expression were assessed in female mice of varying ages. Physiological parameters, blood pressure, and estrogen receptor transcripts via droplet digital PCR (ddPCR) were assessed in the heart, kidney, and aorta of adult, middle-aged, and aged male and female C57BL/6 mice. Vasodilation to estrogen (E2) and the GPER agonist G-1 were reduced in aging female mice and were accompanied by downregulation of GPER protein. However, ERα and GPER were the predominant receptors in all tissues, whereas ERß was detectable only in the kidney. Female sex was associated with higher mRNA for both ERα and GPER in both the aorta and the heart. Aging impacted receptor transcript in a tissue-dependent manner. ERα transcript decreased in the heart with aging, while GPER expression increased in the heart. These data indicate that aging impacts estrogen receptor expression in the cardiovascular system in a tissue- and sex-specific manner. Understanding the impact of aging on estrogen receptor expression is critical for developing selective hormone therapies that protect from cardiovascular damage.
Collapse
Affiliation(s)
- Rakesh Gurrala
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | | | - Dillion D Hutson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Benard O Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Margaret A Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Prasad V G Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Ryousuke Satou
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, 7011, USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA
| | - Sarah H Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, 7011, USA.
- Tulane Brain Institute, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
29
|
Romitan DM, Rădulescu D, Berindan-Neagoe I, Stoicescu L, Grosu A, Rădulescu L, Gulei D, Ciuleanu TE. Cardiomyopathies and Arrhythmias Induced by Cancer Therapies. Biomedicines 2020; 8:biomedicines8110496. [PMID: 33198152 PMCID: PMC7696637 DOI: 10.3390/biomedicines8110496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiology and oncology are two fields dedicated to the study of various types of oncological and cardiac diseases, but when they collide, a new specialty is born, i.e., cardio-oncology. Continuous research on cancer therapy has brought into the clinic novel therapeutics that have significantly improved patient survival. However, these therapies have also been associated with adverse effects that can impede the proper management of oncological patients through the necessity of drug discontinuation due to life-threatening or long-term morbidity risks. Cardiovascular toxicity from oncological therapies is the main issue that needs to be solved. Proper knowledge, interpretation, and management of new drugs are key elements for developing the best therapeutic strategies for oncological patients. Upon continuous investigations, the profile of cardiotoxicity events has been enlarged with the inclusion of myocarditis upon administration of immune checkpoint inhibitors and cardiac dysfunction in the context of cytokine release syndrome with chimeric antigen receptor T cell therapy. Affinity enhanced and chimeric antigen receptor T cells have both been associated with hypotension, arrhythmia, and left ventricular dysfunction, typically in the setting of cytokine release syndrome. Therefore, the cardiologist must adhere to the progressing field of cancer therapy and become familiar with the adverse effects of novel drugs, and not only the ones of standard care, such as anthracycline, trastuzumab, and radiation therapy. The present review provides essential information summarized from the latest studies from cardiology, oncology, and hematology to bring together the three specialties and offers proper management options for oncological patients.
Collapse
Affiliation(s)
- Dragoș-Mihai Romitan
- Department of Cardiology, Municipal Clinical Hospital of Cluj-Napoca, 400139 Cluj-Napoca, Romania; (D.R.); (L.S.); (A.G.); (L.R.)
- Correspondence:
| | - Dan Rădulescu
- Department of Cardiology, Municipal Clinical Hospital of Cluj-Napoca, 400139 Cluj-Napoca, Romania; (D.R.); (L.S.); (A.G.); (L.R.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomic, Biomedicine and Translational Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| | - Laurențiu Stoicescu
- Department of Cardiology, Municipal Clinical Hospital of Cluj-Napoca, 400139 Cluj-Napoca, Romania; (D.R.); (L.S.); (A.G.); (L.R.)
| | - Alin Grosu
- Department of Cardiology, Municipal Clinical Hospital of Cluj-Napoca, 400139 Cluj-Napoca, Romania; (D.R.); (L.S.); (A.G.); (L.R.)
| | - Liliana Rădulescu
- Department of Cardiology, Municipal Clinical Hospital of Cluj-Napoca, 400139 Cluj-Napoca, Romania; (D.R.); (L.S.); (A.G.); (L.R.)
| | - Diana Gulei
- Research Center for Advanced Medicine-Medfuture, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400139 Cluj-Napoca, Romania;
| | - Tudor-Eliade Ciuleanu
- Department of Chemotherapy, Ion Chiricuta Clinical Cancer Center, 400139 Cluj Napoca, Romania;
| |
Collapse
|
30
|
Sex-Dependent Changes in Right Ventricular Gene Expression in Response to Pressure Overload in a Rat Model of Pulmonary Trunk Banding. Biomedicines 2020; 8:biomedicines8100430. [PMID: 33086482 PMCID: PMC7603115 DOI: 10.3390/biomedicines8100430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022] Open
Abstract
Right ventricular hypertrophy (RVH) and subsequent failure are consequences of pulmonary arterial hypertension (PAH). While females are four times more likely to develop PAH, male patients have poorer survival even with treatment, suggesting a sex-dependent dimorphism in right ventricular (RV) hypertrophy/compensation. This may result from differential gene expression in the RV in male vs. female. To date, the sex dependent effect of pressure overload on RV function and changes in gene expression is still unclear. We hypothesize that pressure overload promotes gene expression changes in the RV that may contribute to a poorer outcome in males vs. females. To test this hypothesis, male and female Wistar rats underwent either a sham procedure (sham controls) or moderate pulmonary trunk banding (PTB) (a model of pressure overload induced compensated RV hypertrophy) surgery. Seven weeks post-surgery, RV function was assessed in vivo, and tissue samples were collected for gene expression using qPCR. Compared to sham controls, PTB induced significant increases in the right ventricular systolic pressure, the filling pressure and contractility, which were similar between male and female rats. PTB resulted in an increase in RVH indexes (RV weight, RV weight/tibia length and Fulton index) in both male and female groups. However, RVH indexes were significantly higher in male-PTB when compared to female-PTB rats. Whilst end of procedure body weight was greater in male rats, end of procedure pulmonary artery (PA) diameters were the same in both males and females. RV gene expression analysis revealed that the following genes were increased in PTB-male rats compared with the sham-operated controls: natriuretic peptide A (ANP) and B (BNP), as well as the markers of fibrosis; collagen type I and III. In females, only BNP was significantly increased in the RV when compared to the sham-operated female rats. Furthermore, ANP, BNP and collagen III were significantly higher in the RV from PTB-males when compared to RV from PTB-female rats. Our data suggest that pressure overload-mediated changes in gene expression in the RV from male rats may worsen RVH and increase the susceptibility of males to a poorer outcome when compared to females.
Collapse
|
31
|
Abstract
Purpose of Review Angiotensin-converting enzyme 2 (ACE2), a specific high-affinity angiotensin II-hydrolytic enzyme, is the vector that facilitates cellular entry of SARS-CoV-1 and the novel SARS-CoV-2 coronavirus. SARS-CoV-2, which crossed species barriers to infect humans, is highly contagious and associated with high lethality due to multi-organ failure, mostly in older patients with other co-morbidities. Recent Findings Accumulating clinical evidence demonstrates that the intensity of the infection and its complications are more prominent in men. It has been postulated that potential functional modulation of ACE2 by estrogen may explain the sex difference in morbidity and mortality. Summary We review here the evidence regarding the role of estrogenic hormones in ACE2 expression and regulation, with the intent of bringing to the forefront potential mechanisms that may explain sex differences in SARS-CoV-2 infection and COVID-19 outcomes, assist in management of COVID-19, and uncover new therapeutic strategies.
Collapse
|
32
|
Ramadan M, Cooper B, Posnack NG. Bisphenols and phthalates: Plastic chemical exposures can contribute to adverse cardiovascular health outcomes. Birth Defects Res 2020; 112:1362-1385. [PMID: 32691967 DOI: 10.1002/bdr2.1752] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Phthalates and bisphenols are high production volume chemicals that are used in the manufacturing of consumer and medical products. Given the ubiquity of bisphenol and phthalate chemicals in the environment, biomonitoring studies routinely detect these chemicals in 75-90% of the general population. Accumulating evidence suggests that such chemical exposures may influence human health outcomes, including cardiovascular health. These associations are particularly worrisome for sensitive populations, including fetal, infant and pediatric groups-with underdeveloped metabolic capabilities and developing organ systems. In the presented article, we aimed to review the literature on environmental and clinical exposures to bisphenols and phthalates, highlight experimental work that suggests that these chemicals may exert a negative influence on cardiovascular health, and emphasize areas of concern that relate to vulnerable pediatric groups. Gaps in our current knowledge are also discussed, so that future endeavors may resolve the relationship between chemical exposures and the impact on pediatric cardiovascular physiology.
Collapse
Affiliation(s)
- Manelle Ramadan
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA
| | - Blake Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia, USA.,Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University, School of Medicine, Washington, District of Columbia, USA.,Department of Pharmacology & Physiology, George Washington University, School of Medicine, Washington, District of Columbia, USA
| |
Collapse
|
33
|
Manrique-Acevedo C, Chinnakotla B, Padilla J, Martinez-Lemus LA, Gozal D. Obesity and cardiovascular disease in women. Int J Obes (Lond) 2020; 44:1210-1226. [PMID: 32066824 PMCID: PMC7478041 DOI: 10.1038/s41366-020-0548-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/20/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
As the prevalence of obesity continues to grow worldwide, the health and financial burden of obesity-related comorbidities grows too. Cardiovascular disease (CVD) is clearly associated with increased adiposity. Importantly, women are at higher risk of CVD when obese and insulin resistant, in particular at higher risk of developing heart failure with preserved ejection fraction and ischemic heart disease. Increased aldosterone and mineralocorticoid receptor activation, aberrant estrogenic signaling and elevated levels of androgens are among some of the proposed mechanisms explaining the heightened CVD risk. In addition to traditional cardiovascular risk factors, understanding nontraditional risk factors specific to women, like excess weight gain during pregnancy, preeclampsia, gestational diabetes, and menopause are central to designing personalized interventions aimed to curb the epidemic of CVD. In the present review, we examine the available evidence supporting a differential cardiovascular impact of increased adiposity in women compared with men and the proposed pathophysiological mechanisms behind these differences. We also discuss women-specific cardiovascular risk factors associated with obesity and insulin resistance.
Collapse
Affiliation(s)
- Camila Manrique-Acevedo
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bhavana Chinnakotla
- Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Jaume Padilla
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA
| | - Luis A Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
34
|
Jiao L, Machuki JO, Wu Q, Shi M, Fu L, Adekunle AO, Tao X, Xu C, Hu X, Yin Z, Sun H. Estrogen and calcium handling proteins: new discoveries and mechanisms in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 318:H820-H829. [PMID: 32083972 DOI: 10.1152/ajpheart.00734.2019] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Estrogen deficiency is considered to be an important factor leading to cardiovascular diseases (CVDs). Indeed, the prevalence of CVDs in postmenopausal women exceeds that of premenopausal women and men of the same age. Recent research findings provide evidence that estrogen plays a pivotal role in the regulation of calcium homeostasis and therefore fine-tunes normal cardiomyocyte contraction and relaxation processes. Disruption of calcium homeostasis is closely associated with the pathological mechanism of CVDs. Thus, this paper maps out and summarizes the effects and mechanisms of estrogen on calcium handling proteins in cardiac myocytes, including L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+ release channel named ryanodine receptor, sarco(endo)plasmic reticulum Ca2+-ATPase, and sodium-calcium exchanger. In so doing, we provide theoretical and experimental evidence for the successful design of estrogen-based prevention and treatment therapies for CVDs.
Collapse
Affiliation(s)
- Lijuan Jiao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mingjin Shi
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lu Fu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | | | - Xi Tao
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chenxi Xu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xide Hu
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zeyuan Yin
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong Sun
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
35
|
Whitcomb V, Wauson E, Christian D, Clayton S, Giles J, Tran QK. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem Pharmacol 2019; 171:113727. [PMID: 31759979 DOI: 10.1016/j.bcp.2019.113727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The G protein-coupled estrogen receptor 1 (GPER) produces cardioprotective effects. However, the underlying mechanisms are not well understood. We aimed to investigate the role of GPER in β adrenoceptor-mediated cardiac contraction and myocardial signaling. In anesthetized animals, intrajugular administration of isoproterenol produces a rapid and sustained rise in left ventricular pressure (LVP) and increases ectopic contractions. Administration of the GPER agonist G-1 during the plateau phase of isoproterenol-induced LVP increase rapidly restores LVP to baseline levels and reduces the frequency of ectopic contractions. In freshly isolated cardiomyocytes, isoproterenol potentiates electrically induced peak currents of L-type Ca2+ channels (LTCC) and increases the potential sensitivity of their inactivation. Coadministration of G-1 prevents isoproterenol-induced potentiation of peak LTCC currents and makes channels more sensitive to being inactivated compared to isoproterenol alone. Isoproterenol treatment of cardiomyocytes without electrical stimulation triggers slow-rising Ca2+ signals that are inhibited by the β1AR antagonist metoprolol but not by β2AR antagonist ICI-118551. G-1 pretreatment dose-dependently suppresses isoproterenol-induced total Ca2+ signals and the amplitude and frequency of the intrinsic Ca2+ oscillatory deflections. Pretreatment with the GPER antagonist G-36 produces opposite effects, dose-dependently increasing these signals. ISO promotes robust phosphorylation of Cav1.2 channels at Ser1928. G-1 pretreatment inhibits isoproterenol-stimulated phosphorylation of Cav1.2 at Ser1928, while G-36 pretreatment enhances this signal. Our data indicate that GPER functions as an intrinsic component of β1AR signaling to moderate myocardial Ca2+ dynamics and contraction.
Collapse
Affiliation(s)
- Victoria Whitcomb
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Daniel Christian
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
36
|
G-Protein–Coupled Estrogen Receptor Agonist G1 Improves Diastolic Function and Attenuates Cardiac Renin–Angiotensin System Activation in Estrogen-Deficient Hypertensive Rats. J Cardiovasc Pharmacol 2019; 74:443-452. [DOI: 10.1097/fjc.0000000000000721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Ulhaq ZS. Brain aromatase modulates cardiac functions in embryonic zebrafish. Int J Vet Sci Med 2019; 7:31-34. [PMID: 31692872 PMCID: PMC6818122 DOI: 10.1080/23144599.2019.1675287] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 01/20/2023] Open
Abstract
Oestradiol (E2) is known as a female reproductive hormone with pleiotropic effects on the cardiovascular system. Local E2 biosynthesis such as in the brain and myocardial cells have important physiological and pathophysiological roles. E2 production is catalysed by aromatase (Aro) enzyme. In teleost, two Aro isoforms are distinctly expressed in the ovary and brain. In this study, the role of brain Aro (AroB) in modulating cardiovascular system is investigated. AroB MO-mediated knockdown decreased ventricular functions. Moreover, embryos injected with AroB MO displays a sign in developing heart failure. All the effects caused by AroB MO were partially reversed by exposure to E2. Taken together, this study demonstrates the role of AroB in modulating normal cardiovascular function in zebrafish embryos.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Maulana Malik Ibrahim Islamic State University of Malang, Batu, Indonesia
| |
Collapse
|
38
|
Abstract
The cardiovascular system is particularly sensitive to androgens, but some controversies exist regarding the effect of testosterone on the heart. While among anabolic abusers, cases of sudden cardiac death have been described, recently it was reported that low serum level of testosterone was correlated with increased risk of cardiovascular diseases (CVD) and mortality rate. This review aims to evaluate the effect of testosterone on myocardial tissue function, coronary artery disease (CAD), and death. Low testosterone level is associated with increased incidence of CAD and mortality. Testosterone administration in hypogonadal elderly men and women has a positive effect on cardiovascular function and improved clinical outcomes and survival time. Although at supraphysiologic doses, androgen may have a toxic effect, and at physiological levels, testosterone is safe and exerts a beneficial effect on myocardial function including mechanisms at cellular and mitochondrial level. The interaction with free testosterone and estradiol should be considered. Further studies are necessary to better understand the interaction mechanisms for an optimal androgen therapy in CVD.
Collapse
Affiliation(s)
- Vittorio Emanuele Bianchi
- Clinical Center Stella Maris, Laboratory of Physiology of Exercise, Strada Rovereta 42, 47891, Falciano, Republic of San Marino.
| |
Collapse
|
39
|
Lombó M, González-Rojo S, Fernández-Díez C, Herráez MP. Cardiogenesis impairment promoted by bisphenol A exposure is successfully counteracted by epigallocatechin gallate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:1008-1019. [PMID: 31126002 DOI: 10.1016/j.envpol.2019.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/11/2018] [Accepted: 01/02/2019] [Indexed: 05/18/2023]
Abstract
Exposure to the emerging contaminant bisphenol A (BPA) is ubiquitous and associated with cardiovascular disorders. BPA effect as endocrine disruptor is widely known but other mechanisms underlying heart disease, such as epigenetic modifications, remain still unclear. A compound of green tea, epigallocatechin gallate (EGCG), may act both as anti-estrogen and as inhibitor of some epigenetic enzymes. The aims of this study were to analyze the molecular processes related to BPA impairment of heart development and to prove the potential ability of EGCG to neutralize the toxic effects caused by BPA on cardiac health. Zebrafish embryos were exposed to 2000 and 4000 μg/L BPA and treated with 50 and 100 μM EGCG. Heart malformations were assessed at histological level and by confocal imaging. Expression of genes involved in cardiac development, estrogen receptors and epigenetic enzymes was analyzed by qPCR whereas epigenetic modifications were evaluated by whole mount immunostaining. BPA embryonic exposure led to changes in cardiac phenotype, induced an overexpression of hand2, a crucial factor for cardiomyocyte differentiation, increased the expression of estrogen receptor (esr2b), promoted an overexpression of a histone acetyltransferase (kat6a) and also caused an increase in histone acetylation, both mechanisms being able to act in sinergy. EGCG treatment neutralized all the molecular alterations caused by BPA, allowing the embryos to go on with a proper heart development. Both molecular mechanisms of BPA action (estrogenic and epigenetic) likely lying behind cardiogenesis impairment were successfully counteracted by EGCG treatment.
Collapse
Affiliation(s)
- Marta Lombó
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Silvia González-Rojo
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - Cristina Fernández-Díez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain
| | - María Paz Herráez
- Department of Molecular Biology, Faculty of Biology and Environmental Sciences, Universidad de León, Campus de Vegazana, León, 24071, Spain.
| |
Collapse
|
40
|
Hutson DD, Gurrala R, Ogola BO, Zimmerman MA, Mostany R, Satou R, Lindsey SH. Estrogen receptor profiles across tissues from male and female Rattus norvegicus. Biol Sex Differ 2019; 10:4. [PMID: 30635056 PMCID: PMC6329134 DOI: 10.1186/s13293-019-0219-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/01/2019] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Estrogen is formed by the enzyme aromatase (CYP19A1) and signals via three identified receptors ERα (ESR1), ERß (ESR2), and the G protein-coupled estrogen receptor (GPER). Understanding the relative contribution of each receptor to estrogenic signaling may elucidate the disparate effects of this sex hormone across tissues, and recent developments in PCR technology allow absolute quantification and direct comparison of multiple targets. We hypothesized that this approach would reveal tissue- and sex-specific differences in estrogen receptor mRNA. METHODS ESR1, ESR2, GPER, and CYP19A1 were measured in four cardiovascular tissues (heart, aorta, kidney, and adrenal gland), three brain areas (somatosensory cortex, hippocampus, and prefrontal cortex), and reproductive tissues (ovaries, mammary gland, uterus, testes) from six male and six female adult Sprague-Dawley rats. RESULTS GPER mRNA expression was relatively stable across all tissues in both sexes, ranging from 5.49 to 113 copies/ng RNA, a 21-fold difference. In contrast, ESR1/ESR2 were variable across tissues although similar within an organ system. ESR1 ranged from 4.46 to 614 copies/ng RNA (138-fold difference) while ESR2 ranged from 0.154 to 83.1 copies/ng RNA (540-fold). Significant sex differences were broadly absent except for renal ESR1 (female 206 vs. male 614 copies/ng RNA, P < 0.0001) and GPER (62.0 vs. 30.2 copies/ng RNA, P < 0.05) as well as gonadal GPER (5.49 vs. 47.5 copies/ng RNA, P < 0.01), ESR2 (83.1 vs. 0.299 copies/ng RNA, P < 0.01), and CYP19A1 (322 vs. 7.18 copies/ng RNA, P < 0.01). Cardiovascular tissues showed a predominance of ESR1, followed by GPER. In contrast, GPER was the predominant transcript in the brain with similarly low levels of ESR1 and ESR2. CYP19A1 was detected at very low levels except for reproductive tissues and the hippocampus. CONCLUSION While the data indicates a lack of sex differences in most tissues, significant differences were found in the range of receptor gene expression across tissues as well as in the receptor profile between organ systems. The data provide a guide for future studies by establishing estrogen receptor expression across multiple tissues using absolute PCR quantification. This knowledge on tissue-specific estrogen receptor profiles will aid the development of hormonal therapies that elicit beneficial effects in specific tissues.
Collapse
Affiliation(s)
- Dillion D. Hutson
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Rakesh Gurrala
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Benard O. Ogola
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Margaret A. Zimmerman
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Ricardo Mostany
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Ryousuke Satou
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112 USA
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Tulane Brain Institute, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112 USA
- Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
41
|
Abdelrazek HMA, Mahmoud MMA, Tag HM, Greish SM, Eltamany DA, Soliman MTA. Soy Isoflavones Ameliorate Metabolic and Immunological Alterations of Ovariectomy in Female Wistar Rats: Antioxidant and Estrogen Sparing Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5713606. [PMID: 30733850 PMCID: PMC6348823 DOI: 10.1155/2019/5713606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/23/2018] [Accepted: 10/21/2018] [Indexed: 01/29/2023]
Abstract
Hormone replacement therapy (HRT) can alleviate estrogen deficiency symptoms especially during menopause. The present study aimed at investigating the effect of soy isoflavones as HRT on immunological and bone health-related parameters with a special focus on the interactions between immunological status and metabolism. Thirty healthy cyclic female Wistar rats were used in this experiment. Ten females were sham-operated, and 20 females were subjected to ovariectomy. Overiectomized (OVX) female rats were randomly divided into 2 groups: the control group (G1, OVX/casein) was fed a casein-based diet, and the second group (G2, OVX/soy) was fed a high soy isoflavone diet. Both groups were compared to a sham-operated group (G3, sham/casein). Treatments continued for 7 weeks. Feed intake, weight gain, and lymphoid organ relative weights were recorded. Some metabolic, immunological, and bone health-related parameters were measured. Moreover, nitric oxide (NO), malondialdehyde (MDA), and total antioxidant capacity (TAC) were determined. Bone histopathology and immunohistochemistry to estrogen receptor alpha (ERα) were done. Feeding soy to OVX females reduced feed intake, weight gain, relative lymphoid organ weight, and T-lymphocytes transformation. Soy isoflavone administration normalized nearly all metabolic and immunological parameters to a level comparable to the sham group via oxidative stress amelioration and bone ERα promotion. Soy isoflavones seemed to be good HRT in estrogen deprivation which modulated the appetite, weight gain, lipid profile, proinflammation, and bone turnover.
Collapse
Affiliation(s)
- Heba M. A. Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal M. A. Mahmoud
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hend M. Tag
- Department of Biology, Faculty of Sciences and Arts-Khulais, University of Jeddah, PO Box 355, ISIN Code 21-921, Jeddah, Saudi Arabia
- Department of Zoology, Faculty of Sciences, Suez Canal University, PO Box 41522, Egypt
| | - Sahar M. Greish
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
- Basic Medical Science Department, Faculty of Dentistry, Badr University in Cairo, Egypt
| | - Dalia A. Eltamany
- Nutrition and Food Science, Home Economic Department, Faculty of Education, Suez Canal University, Ismailia, Egypt
| | - Mohammed T. A. Soliman
- College of Applied Medical Sciences, Department of Medical Laboratory Sciences, University of Bisha, Saudi Arabia
| |
Collapse
|
42
|
Mahmoodzadeh S, Dworatzek E. The Role of 17β-Estradiol and Estrogen Receptors in Regulation of Ca 2+ Channels and Mitochondrial Function in Cardiomyocytes. Front Endocrinol (Lausanne) 2019; 10:310. [PMID: 31156557 PMCID: PMC6529529 DOI: 10.3389/fendo.2019.00310] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Numerous epidemiological, clinical, and animal studies showed that cardiac function and manifestation of cardiovascular diseases (CVDs) are different between males and females. The underlying reasons for these sex differences are definitely multifactorial, but major evidence points to a causal role of the sex steroid hormone 17β-estradiol (E2) and its receptors (ER) in the physiology and pathophysiology of the heart. Interestingly, it has been shown that cardiac calcium (Ca2+) ion channels and mitochondrial function are regulated in a sex-specific manner. Accurate mitochondrial function and Ca2+ signaling are of utmost importance for adequate heart function and crucial to maintaining the cardiovascular health. Due to the highly sensitive nature of these processes in the heart, this review article highlights the current knowledge regarding sex dimorphisms in the heart implicating the importance of E2 and ERs in the regulation of cardiac mitochondrial function and Ca2+ ion channels, thus the contractility. In particular, we provide an overview of in-vitro and in-vivo studies using either E2 deficiency; ER deficiency or selective ER activation, which suggest that E2 and ERs are strongly involved in these processes. In this context, this review also discusses the divergent E2-responses resulting from the activation of different ER subtypes in these processes. Detailed understanding of the E2 and ER-mediated molecular and cellular mechanisms in the heart under physiological and pathological conditions may help to design more specifically targeted drugs for the management of CVDs in men and women.
Collapse
Affiliation(s)
- Shokoufeh Mahmoodzadeh
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- *Correspondence: Shokoufeh Mahmoodzadeh
| | - Elke Dworatzek
- Department of Molecular Muscle Physiology, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Institute of Gender in Medicine, Charité Universitaetsmedizin, Berlin, Germany
| |
Collapse
|
43
|
Puglisi R, Mattia G, Carè A, Marano G, Malorni W, Matarrese P. Non-genomic Effects of Estrogen on Cell Homeostasis and Remodeling With Special Focus on Cardiac Ischemia/Reperfusion Injury. Front Endocrinol (Lausanne) 2019; 10:733. [PMID: 31708877 PMCID: PMC6823206 DOI: 10.3389/fendo.2019.00733] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
This review takes into consideration the main mechanisms involved in cellular remodeling following an ischemic injury, with special focus on the possible role played by non-genomic estrogen effects. Sex differences have also been considered. In fact, cardiac ischemic events induce damage to different cellular components of the heart, such as cardiomyocytes, vascular cells, endothelial cells, and cardiac fibroblasts. The ability of the cardiovascular system to counteract an ischemic insult is orchestrated by these cell types and is carried out thanks to a number of complex molecular pathways, including genomic (slow) or non-genomic (fast) effects of estrogen. These pathways are probably responsible for differences observed between the two sexes. Literature suggests that male and female hearts, and, more in general, cardiovascular system cells, show significant differences in many parameters under both physiological and pathological conditions. In particular, many experimental studies dealing with sex differences in the cardiovascular system suggest a higher ability of females to respond to environmental insults in comparison with males. For instance, as cells from females are more effective in counteracting the ischemia/reperfusion injury if compared with males, a role for estrogen in this sex disparity has been hypothesized. However, the possible involvement of estrogen-dependent non-genomic effects on the cardiovascular system is still under debate. Further experimental studies, including sex-specific studies, are needed in order to shed further light on this matter.
Collapse
Affiliation(s)
- Rossella Puglisi
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Gianfranco Mattia
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Carè
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giuseppe Marano
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- School of Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
- *Correspondence: Paola Matarrese
| |
Collapse
|
44
|
Ventura-Clapier R, Piquereau J, Veksler V, Garnier A. Estrogens, Estrogen Receptors Effects on Cardiac and Skeletal Muscle Mitochondria. Front Endocrinol (Lausanne) 2019; 10:557. [PMID: 31474941 PMCID: PMC6702264 DOI: 10.3389/fendo.2019.00557] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/29/2019] [Indexed: 12/27/2022] Open
Abstract
Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.
Collapse
|
45
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
46
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Abstract
Estrogens coordinate and integrate cellular metabolism and mitochondrial activities by direct and indirect mechanisms mediated by differential expression and localization of estrogen receptors (ER) in a cell-specific manner. Estrogens regulate transcription and cell signaling pathways that converge to stimulate mitochondrial function- including mitochondrial bioenergetics, mitochondrial fusion and fission, calcium homeostasis, and antioxidant defense against free radicals. Estrogens regulate nuclear gene transcription by binding and activating the classical genomic estrogen receptors α and β (ERα and ERβ) and by activating plasma membrane-associated mERα, mERβ, and G-protein coupled ER (GPER, GPER1). Localization of ERα and ERβ within mitochondria and in the mitochondrial membrane provides additional mechanisms of regulation. Here we review the mechanisms of rapid and longer-term effects of estrogens and selective ER modulators (SERMs, e.g., tamoxifen (TAM)) on mitochondrial biogenesis, morphology, and function including regulation of Nuclear Respiratory Factor-1 (NRF-1, NRF1) transcription. NRF-1 is a nuclear transcription factor that promotes transcription of mitochondrial transcription factor TFAM (mtDNA maintenance factorFA) which then regulates mtDNA-encoded genes. The nuclear effects of estrogens on gene expression directly controlling mitochondrial biogenesis, oxygen consumption, mtDNA transcription, and apoptosis are reviewed.
Collapse
|
48
|
Trexler CL, Odell AT, Jeong MY, Dowell RD, Leinwand LA. Transcriptome and Functional Profile of Cardiac Myocytes Is Influenced by Biological Sex. ACTA ACUST UNITED AC 2018; 10:CIRCGENETICS.117.001770. [PMID: 29030402 PMCID: PMC5679409 DOI: 10.1161/circgenetics.117.001770] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Although cardiovascular disease is the primary killer of women in the United States, women and female animals have traditionally been omitted from research studies. In reports that do include both sexes, significant sexual dimorphisms have been demonstrated in development, presentation, and outcome of cardiovascular disease. However, there is little understanding of the mechanisms underlying these observations. A more thorough understanding of sex-specific cardiovascular differences both at baseline and in disease is required to effectively consider and treat all patients with cardiovascular disease. METHODS AND RESULTS We analyzed contractility in the whole rat heart, adult rat ventricular myocytes (ARVMs), and myofibrils from both sexes of rats and observed functional sex differences at all levels. Hearts and ARVMs from female rats displayed greater fractional shortening than males, and female ARVMs and myofibrils took longer to relax. To define factors underlying these functional differences, we performed an RNA sequencing experiment on ARVMs from male and female rats and identified ≈600 genes were expressed in a sexually dimorphic manner. Further analysis revealed sex-specific enrichment of signaling pathways and key regulators. At the protein level, female ARVMs exhibited higher protein kinase A activity, consistent with pathway enrichment identified through RNA sequencing. In addition, activating the protein kinase A pathway diminished the contractile sexual dimorphisms previously observed. CONCLUSIONS These data support the notion that sex-specific gene expression differences at baseline influence cardiac function, particularly through the protein kinase A pathway, and could potentially be responsible for differences in cardiovascular disease presentation and outcomes.
Collapse
Affiliation(s)
- Christa L Trexler
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Aaron T Odell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Mark Y Jeong
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Robin D Dowell
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.)
| | - Leslie A Leinwand
- From the Department of Molecular, Cellular, and Developmental Biology, BioFrontiers Institute, University of Colorado at Boulder (C.L.T., A.T.O., R.D.D., L.A.L.); and Division of Cardiology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora (M.Y.J.).
| |
Collapse
|
49
|
Machuki J, Zhang H, Harding S, Sun H. Molecular pathways of oestrogen receptors and β-adrenergic receptors in cardiac cells: Recognition of their similarities, interactions and therapeutic value. Acta Physiol (Oxf) 2018; 222. [PMID: 28994249 PMCID: PMC5813217 DOI: 10.1111/apha.12978] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/07/2017] [Accepted: 10/02/2017] [Indexed: 12/18/2022]
Abstract
Oestrogen receptors (ERs) and β-adrenergic receptors (βARs) play important roles in the cardiovascular system. Moreover, these receptors are expressed in cardiac myocytes and vascular tissues. Numerous experimental observations support the hypothesis that similarities and interactions exist between the signalling pathways of ERs (ERα, ERβ and GPR30) and βARs (β1 AR, β2 AR and β3 AR). The recently discovered oestrogen receptor GPR30 shares structural features with the βARs, and this forms the basis for the interactions and functional overlap. GPR30 possesses protein kinase A (PKA) phosphorylation sites and PDZ binding motifs and interacts with A-kinase anchoring protein 5 (AKAP5), all of which enable its interaction with the βAR pathways. The interactions between ERs and βARs occur downstream of the G-protein-coupled receptor, through the Gαs and Gαi proteins. This review presents an up-to-date description of ERs and βARs and demonstrates functional synergism and interactions among these receptors in cardiac cells. We explore their signalling cascades and the mechanisms that orchestrate their interactions and propose new perspectives on the signalling patterns for the GPR30 based on its structural resemblance to the βARs. In addition, we explore the relevance of these interactions to cell physiology, drugs (especially β-blockers and calcium channel blockers) and cardioprotection. Furthermore, a receptor-independent mechanism for oestrogen and its influence on the expression of βARs and calcium-handling proteins are discussed. Finally, we highlight promising therapeutic avenues that can be derived from the shared pathways, especially the phosphatidylinositol-3-OH kinase (PI3K/Akt) pathway.
Collapse
Affiliation(s)
- J.O. Machuki
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - H.Y. Zhang
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| | - S.E. Harding
- National Heart and Lung Institute; Imperial College; London UK
| | - H. Sun
- Department of Physiology; Xuzhou Medical University; Xuzhou China
| |
Collapse
|
50
|
Bukowska A, Spiller L, Wolke C, Lendeckel U, Weinert S, Hoffmann J, Bornfleth P, Kutschka I, Gardemann A, Isermann B, Goette A. Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men. Exp Biol Med (Maywood) 2017; 242:1412-1423. [PMID: 28661206 DOI: 10.1177/1535370217718808] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Data from animal experiments and clinical investigations suggest that components of the renin-angiotensin system are markedly affected by sex hormones. However, whether estrogen affects human atrial myocardium has not been investigated yet. In this study, we determined the effects of estrogen on key components of atrial renin-angiotensin system: angiotensin-converting enzyme, responsible for generation of angiotensin II and angiotensin-converting enzyme 2, counteracting majority of AngII effects, and different renin-angiotensin system receptors, AT1R, AT2R, and MAS. First, the expression levels of estrogen receptors mRNA were determined in right atrial appendages obtained from patients undergoing heart surgery. The amounts of estrogen receptor α and estrogen receptor β mRNA were similar between women ( n = 14) and men ( n = 10). Atrial tissue slices (350 µm) were prepared from male donors which were exposed to estrogen (1-100 nM; n = 21) or stimulated at 4 Hz for 24 h in the presence or absence of 100 nM estrogen ( n = 16), respectively. The administration of estrogen did not change mRNA levels of estrogen receptors, but activated MAP kinases, Erk1/2. Furthermore, estrogen increased the amounts of angiotensin-converting enzyme 2-mRNA (1.89 ± 0.23; P < 0.05) but reduced that of angiotensin-converting enzyme-mRNA (0.78 ± 0.07, P < 0.05). In addition, the transcript levels of AT2R and MAS were upregulated by estrogen. Pacing of tissue slices significantly increased the angiotensin-converting enzyme/angiotensin-converting enzyme 2 ratio at both the mRNA and protein level. During pacing, administration of estrogen substantially lowered the angiotensin-converting enzyme/angiotensin-converting enzyme 2 ratio at the transcript (0.92 ± 0.21 vs. 2.12 ± 0.27 at 4 Hz) and protein level (0.94 ± 0.20 vs. 2.14 ± 0.3 at 4 Hz). Moreover, estrogen elicited anti-inflammatory and anti-oxidative effects on renin-angiotensin system-associated downstream effectors such as pro-oxidative LOX-1 and pro-inflammatory ICAM-1. An antagonist of estrogen receptor α reversed these anti-inflammatory and anti-oxidative effects of estrogen significantly. Overall, our results demonstrated that estrogen modifies the local renin-angiotensin system homeostasis and achieves protective effects in atrial myocardium from elderly men. Impact statement The present study demonstrates that estrogen affects the human atrial myocardium and mediates protective actions through estrogen receptors-(ER) dependent signaling. Estrogen substantially modulates the local RAS via downregulation of ACE and simultaneous upregulation of ACE2, AT2R and MAS expression levels. This is indicative of a shift of the classical RAS/ACE axis to the alternative, protective RAS/ACE2 axis. In support of this view, estrogen attenuated the expression of RAS-associated downstream effectors, LOX-1, and ICAM-1. A specific antagonist of ERα reversed the anti-inflammatory and anti-oxidative effects of estrogen in paced and non-paced atrial tissue slices. In summary, our data demonstrate the existence of protective effects of estrogen in atrial tissue from elderly men which are at least in part, mediated by the regulation of local RAS homeostasis.
Collapse
Affiliation(s)
- A Bukowska
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - L Spiller
- 2 Medical Department I, Division of Rheumatology, Charitá University Medicine Berlin, Berlin 12203, Germany
| | - C Wolke
- 3 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald 17479, Germany
| | - U Lendeckel
- 3 Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Greifswald 17479, Germany
| | - S Weinert
- 4 Department of Cardiology, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - J Hoffmann
- 5 Department of Clinical Chemistry, Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - P Bornfleth
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - I Kutschka
- 6 Department of Cardiothoracic Surgery, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - A Gardemann
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - B Isermann
- 5 Department of Clinical Chemistry, Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - A Goette
- 1 Institute of Clinical Chemistry and Pathobiochemistry, Department of Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany.,7 St. Vincenz-Hospital, Paderborn 33098, Germany
| |
Collapse
|