1
|
Zhao S, Lu W, Yuan G, Liu Y, Yang C, Lu S, Liu J, Wang Q, Liu P. Associations between seminal plasma metal mixture and semen quality: A metabolome-mediated case-control study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118257. [PMID: 40319704 DOI: 10.1016/j.ecoenv.2025.118257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/16/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Metal exposure constitutes a global public health concern associated with male infertility. This matched case-control study advances mechanistic understanding of how environmental pollutants interact with biological systems to impair human reproduction by investigating multi-metal exposure and seminal plasma metabolic responses. Based on this matched case-control study among 522 males, we assessed the role of untargeted metabolomic profiling of 265 seminal plasma metabolites in the relationship between seminal metals and abnormal semen quality (ASQ). The relationship between metals and ASQ was analyzed using single-exposure models (single-metal and multi-metal logistic regression) and mixed-exposure models including Quantile Gaps-Cumulated (QG-C), weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR). The findings revealed that metal mixture exposure collectively increased ASQ risk, with seminal plasma Cu demonstrating a significant risk-enhancing effect in both single- and mixed-exposure models, while Fe and Se consistently exhibited protective trends. These associations were robustly supported by sensitivity analyses. In addition, orthogonal partial least squares discriminant analysis (OPLS-DA) identified 74 significant differential metabolites out of a total of 265 metabolites. Among these, 22, 21, and 12 differential metabolites were found to mediate the association between iron, selenium, copper, and the risk of ASQ, respectively. Moreover, 16-glucuronide-estriol, Aspartyl-Valine, Dihydrocoumarin, L-(-)-3-Phenyllactic acid, and trans-cinnamate were significant mediators in the association between iron, selenium, copper and ASQ. This study provides the evidence that seminal plasma metals disrupt male fertility through metabolite-specific pathways, with copper driving damage while iron and selenium exert protection. These findings highlight candidate biomarkers warranting validation in environmental reproductive epidemiology, while suggesting biologically plausible pathways for future intervention studies.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Wenrui Lu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China; School of Public Health, Zunyi Medical University, 563000, China
| | - Guanxiang Yuan
- Physical Testing & Chemical Analysis Laboratory, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Yu Liu
- Shenzhen People's Hospital, 1017 Dongmen North Rd, Shenzhen, Guangdong 518020, China
| | - Chen Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Shaoyou Lu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Peiyi Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, Guangdong 518055, China; Shenzhen Maternity & Child Healthcare Hospital, No. 3012 Fuqiang Road, Futian District, Shenzhen 518028, China.
| |
Collapse
|
2
|
Yang X, Wang L, Wang R, Ding N, He Y, Wang F. Homocysteine induces endometrial ferroptosis via MAPK pathway in recurrent pregnancy loss. Placenta 2025; 165:148-161. [PMID: 40279813 DOI: 10.1016/j.placenta.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 04/02/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) with complex etiology and elevated homocysteinemia (HCY) has been recognized one of the risk factors, however the mechanism of HCY participation in RPL are not fully elucidated. METHODS Samples from RPL_HHCY, RPL_NHCY and controls were used to metabolomics and proteomic analysis. Cell counting kit-8 assay, EdU assay kit, wound healing assay and induced decidualization were performed to observe the HCY induced dysfunction of human endometrial stromal cells (hESCs). Intracellular ROS, lipid peroxidation, MDA, GSH and Fe2+ were examined. Western blotting was used to measure protein expression. RESULTS We found differential metabolites were enriched in glutathione metabolism, and differentially protein expression were enriched in the ferroptosis. In vitro, ferrostatin-1 (Fer-1) could improve the decrease of HCY induced cell viability, proliferation, migration and decidualization of hESCs, and reverse ROS, lipid peroxidation, MDA, GSH and Fe2+ levels. Also, Fer-1 enhanced GPX4 and SLC3A2, lightened ACSL4 protein expression. Gene Set Variation Analysis (GSVA) found MAPK is an important pathway for ferroptosis, and inhibition MAPK signaling pathway reversed the phosphor-ERK (p-ERK), p-JNK and p-P38 amplified by HCY. CONCLUSIONS Our findings implicate that HCY disturbs the function of hESCs by activation of the MAPK signaling pathway induced ferroptosis and may contribute to RPL. This provides a theoretical basis for the relationship between high HCY and RPL.
Collapse
Affiliation(s)
- Xin Yang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Lijie Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China; Department of Gynecology, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Ruifang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Nan Ding
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Yajun He
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China
| | - Fang Wang
- Department of Reproductive Medicine, Lanzhou University Second Hospital, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Zhang B, Han Y, Cheng M, Yan L, Gao K, Zhou D, Wang A, Lin P, Jin Y. Metabolomic effects of intrauterine meloxicam perfusion on histotroph in dairy heifers during diestrus. Front Vet Sci 2025; 12:1528530. [PMID: 40171410 PMCID: PMC11959509 DOI: 10.3389/fvets.2025.1528530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In ruminants, conceptus elongation is a crucial developmental process that depends on uterine lumen fluid (ULF) and coincides with a period of high pregnancy loss. Prostaglandins (PGs) play indispensable roles in conceptus elongation and implantation. However, the effects of uterus-derived PGs on the uterine environment remain unclear. To explore the metabolic pathways and metabolites induced by endometrium-derived PGs that may affect conceptus elongation and implantation in dairy cows, we investigated the biochemical composition of ULF following intrauterine perfusion of meloxicam from days 12 to 14 of the estrous cycle. Intrauterine administration of meloxicam significantly downregulated the prostaglandin-related metabolites in the ULF. A total of 385 distinct metabolites, primarily clustered within lipids and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, and benzenoids, were identified. The metabolite network analysis identified 10 core metabolites as follows: S-adenosylhomocysteine, guanosine, inosine, thymidine, cholic acid, xanthine, niacinamide, prostaglandin I2, 5-hydroxyindoleacetic acid, and indoleacetaldehyde. The pathway enrichment analysis revealed three significantly altered metabolic pathways: arachidonic acid metabolism, tryptophan (Trp) metabolism, and linoleic acid metabolism. A total of five metabolites-guanosine, inosine, thymidine, butyryl-l-carnitine, and l-carnitine-were associated with attachment and pregnancy loss and could serve as predictors of fertility. This global metabolic study of ULF enhances our understanding of histotroph alternations induced by uterus-derived PGs during diestrus in dairy cows, with implications for improving dairy cow fertility.
Collapse
Affiliation(s)
- Beibei Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Han
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Ming Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Longgang Yan
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Kangkang Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Dong Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Lin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Wei X, Wei S, Chen M, Tan Y, Yang Z, Feng W, Yang G, Han Z, Luo X. Subcutaneous adipose tissue compensates for the perturbations in circulating one-carbon metabolism in women with gestational diabetes. Acta Diabetol 2025:10.1007/s00592-025-02452-z. [PMID: 39899132 DOI: 10.1007/s00592-025-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/05/2025] [Indexed: 02/04/2025]
Abstract
The prevalence of gestational diabetes mellitus (GDM) is rising and poses important health risks for the mother, developing fetus and offspring, even when maternal glycemic control is well managed. This study aimed to identify the differently expressed metabolites (DEMs) in maternal plasma between GDM pregnancies with good glycemic control and healthy pregnancies, along with the DEMs-related metabolism in adipose tissue. Pregnant women with scheduled caesarean sections were recruited. Venous blood samples were collected on the day prior to delivery for targeted metabolomics analysis focusing on the 200 polar metabolites in central carbon metabolism. Subcutaneous and omental white adipose tissue (sWAT and oWAT) were harvested at delivery. A total of 162 metabolites were quantified, revealing 2 up-regulated (D-glucose 6-phosphate (G6P), succinate) and 8 down-regulated DEMs, which exhibited a fold change of ≥ 1.5 or ≤ 0.67, respectively. Among the down-regulated DEMs, 5 metabolites-pyridoxine, glycine, S-methyl-L-cysteine, methionine, and S-carboxymethyl-L-cysteine-are related to one-carbon metabolism (OCM). In response to perturbation in circulating OCM, boosted methionine cycle, NAD + metabolism, and adipogenesis were observed in sWAT of GDM subjects, with no changes detected in oWAT. None of the 10 DEMs correlates with either blood glucose or insulin, but showed significant correlations with TG, TC, LDL-C and HDL-C. The present study indicates that sWAT compensates for the perturbations in circulating OCM associated with GDM and targeting to the OCM may be an effective strategy to control the long-term metabolic risk of GDM offsprings.
Collapse
Affiliation(s)
- Xiaojing Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta Western Road, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shuangyu Wei
- Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Miao Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yutian Tan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta Western Road, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhao Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Weijie Feng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta Western Road, Xi'an, 710061, Shaanxi, China
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guiying Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhen Han
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiao Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Yanta Western Road, Xi'an, 710061, Shaanxi, China.
- Institute of Neuroscience, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
5
|
Ma G, Yan H, Tye KD, Tang X, Luo H, Li Z, Xiao X. Effect of probiotic administration during pregnancy on the functional diversity of the gut microbiota in healthy pregnant women. Microbiol Spectr 2024; 12:e0041324. [PMID: 38687069 PMCID: PMC11237737 DOI: 10.1128/spectrum.00413-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Our study aims to investigate the impact of probiotic consumption during pregnancy on gut microbiota functional diversity in healthy pregnant women. Thirty-two pregnant women were randomly assigned to two groups. The probiotic group (PG) consisted of pregnant women who consumed triple viable Bifidobacterium longum, Lactobacillus delbrueckii bulgaricus, and Streptococcus thermophilus tablets from the 32nd week of pregnancy until delivery. The functional profiles of the gut microbiota were predicted through high-throughput 16S rRNA sequencing results using PICRUSt software and referencing the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the gut microbiota of the PG, the genera Blautia and Ruminococcus, as well as the species Subdoligranulum, showed significantly higher relative abundances compared to the control group (CG) (P < 0.05). At Level 1 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Organismal Systems in the PG (P < 0.05). In Level 2 of the KEGG signaling pathways, there was a significant reduction in the functional genes of the gut microbiota involved in Infectious Disease in the PG (P < 0.05). In Level 3 of the KEGG signaling pathways, the PG exhibited a significant increase in the functional genes of the gut microbiota involved in ABC transporters, Oxidative phosphorylation, Folate biosynthesis, and Biotin metabolism (P < 0.05). The CG showed a significant increase in the functional genes related to Cysteine and methionine metabolism, Vitamin B6 metabolism, Tuberculosis, and Vibrio cholerae pathogenic cycle (P < 0.05). In conclusion, our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism in healthy pregnant women. IMPORTANCE Probiotics are considered beneficial to human health. There is limited understanding of how probiotic consumption during pregnancy affects the functional diversity of the gut microbiota. The aim of our study is to investigate the impact of probiotic consumption during pregnancy on the functional diversity of the gut microbiota. Our findings suggest that probiotic supplementation during pregnancy has a significant impact on functional metabolism. This could potentially open up new avenues for preventing various pregnancy-related complications. This also provides new insights into the effects of probiotic consumption during pregnancy on the gut microbiota and offers a convenient method for exploring the potential mechanisms underlying the impact of probiotics on the gut microbiota of pregnant women.
Collapse
Affiliation(s)
- Guangyu Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hao Yan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Kian Deng Tye
- Department of Obstetrics and Gynecology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zhe Li
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
van Zundert SKM, van Egmond NCM, van Rossem L, Willemsen SP, Griffioen PH, van Schaik RHN, Mirzaian M, Steegers-Theunissen RPM. First trimester maternal tryptophan metabolism and embryonic and fetal growth: the Rotterdam Periconceptional Cohort (Predict Study). Hum Reprod 2024; 39:912-922. [PMID: 38498837 PMCID: PMC11063566 DOI: 10.1093/humrep/deae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/17/2024] [Indexed: 03/20/2024] Open
Abstract
STUDY QUESTION What is the association between first trimester maternal tryptophan (TRP) metabolites and embryonic and fetal growth? SUMMARY ANSWER Higher 5-hydroxytryptophan (5-HTP) concentrations are associated with reduced embryonic growth and fetal growth and with an increased risk of small-for-gestational age (SGA), while higher kynurenine (KYN) concentrations are associated with a reduced risk of SGA. WHAT IS KNOWN ALREADY The maternal TRP metabolism is involved in many critical processes for embryonic and fetal growth, including immune modulation and regulation of vascular tone. Disturbances in TRP metabolism are associated with adverse maternal and fetal outcomes. STUDY DESIGN, SIZE, DURATION This study was embedded within the Rotterdam Periconceptional Cohort (Predict Study), an ongoing prospective observational cohort conducted at a tertiary hospital from November 2010 onwards. PARTICIPANTS/MATERIALS, SETTING, METHODS A total of 1115 women were included before 11 weeks of gestation between November 2010 and December 2020. Maternal serum samples were collected between 7 and 11 weeks of gestation, and TRP metabolites (TRP, KYN, 5-HTP, 5-hydroxytryptamine, and 5-hydroxyindoleacetic acid) were determined using a validated liquid chromatography (tandem) mass spectrometry method. Serial 3D ultrasound scans were performed at 7, 9, and 11 weeks of gestation to accurately assess features of embryonic growth, including crown-rump length (CRL) and embryonic volume (EV) offline using virtual reality systems. Fetal growth parameters were retrieved from medical records and standardized according to Dutch reference curves. Mixed models were used to assess associations between maternal TRP metabolites and CRL and EV trajectories. Linear and logistic regression models were utilized to investigate associations with estimated fetal weight (EFW) and birthweight, and with SGA, respectively. All analyses were adjusted for potential confounders. MAIN RESULTS AND THE ROLE OF CHANCE Maternal 5-HTP concentrations and the maternal 5-HTP/TRP ratio were inversely associated with embryonic growth (5-HTP, √CRL: β = -0.015, 95% CI = -0.028 to -0.001; 5-HTP 3√EV: β = -0.009, 95% CI = -0.016 to -0.003). An increased maternal 5-HTP/TRP ratio was also associated with lower EFW and birthweight, and with an increased risk of SGA (odds ratio (OR) = 1.006, 95% CI = 1.00-1.013). In contrast, higher maternal KYN concentrations were associated with a reduced risk of SGA in the unadjusted models (OR = 0.548, 95% CI = 0.320-0.921). LIMITATIONS, REASONS FOR CAUTION Residual confounding cannot be ruled out because of the observational design of this study. Moreover, this study was conducted in a single tertiary hospital, which assures high internal validity but may limit external validity. WIDER IMPLICATIONS OF THE FINDINGS The novel finding that maternal 5-HTP concentrations are associated with a smaller embryo and fetus implies that disturbances of the maternal serotonin pathway in the first trimester of pregnancy are potentially involved in the pathophysiology of fetal growth restriction. The association between higher maternal KYN concentrations and a reduced risk of SGA substantiate the evidence that the KYN pathway has an important role in fetal growth. More research is needed to delve deeper into the potential role of the maternal TRP metabolism during the periconception period and pregnancy outcome for mother and offspring. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by the Department of Obstetrics and Gynecology and the Department of Clinical Chemistry of the Erasmus MC, University Medical Center, Rotterdam, the Netherlands. The authors have no competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sofie K M van Zundert
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Nina C M van Egmond
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and Gynecology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
- Department of Biostatistics, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Pieter H Griffioen
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
7
|
Sfakianoudis K, Zikopoulos A, Grigoriadis S, Seretis N, Maziotis E, Anifandis G, Xystra P, Kostoulas C, Giougli U, Pantos K, Simopoulou M, Georgiou I. The Role of One-Carbon Metabolism and Methyl Donors in Medically Assisted Reproduction: A Narrative Review of the Literature. Int J Mol Sci 2024; 25:4977. [PMID: 38732193 PMCID: PMC11084717 DOI: 10.3390/ijms25094977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
One-carbon (1-C) metabolic deficiency impairs homeostasis, driving disease development, including infertility. It is of importance to summarize the current evidence regarding the clinical utility of 1-C metabolism-related biomolecules and methyl donors, namely, folate, betaine, choline, vitamin B12, homocysteine (Hcy), and zinc, as potential biomarkers, dietary supplements, and culture media supplements in the context of medically assisted reproduction (MAR). A narrative review of the literature was conducted in the PubMed/Medline database. Diet, ageing, and the endocrine milieu of individuals affect both 1-C metabolism and fertility status. In vitro fertilization (IVF) techniques, and culture conditions in particular, have a direct impact on 1-C metabolic activity in gametes and embryos. Critical analysis indicated that zinc supplementation in cryopreservation media may be a promising approach to reducing oxidative damage, while female serum homocysteine levels may be employed as a possible biomarker for predicting IVF outcomes. Nonetheless, the level of evidence is low, and future studies are needed to verify these data. One-carbon metabolism-related processes, including redox defense and epigenetic regulation, may be compromised in IVF-derived embryos. The study of 1-C metabolism may lead the way towards improving MAR efficiency and safety and ensuring the lifelong health of MAR infants.
Collapse
Affiliation(s)
- Konstantinos Sfakianoudis
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
- Obstetrics and Gynecology, Royal Cornwall Hospital, Treliske, Truro TR1 3LJ, UK
| | - Sokratis Grigoriadis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Nikolaos Seretis
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Evangelos Maziotis
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - George Anifandis
- Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41222 Larisa, Greece;
| | - Paraskevi Xystra
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Urania Giougli
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| | - Konstantinos Pantos
- Centre for Human Reproduction, Genesis Athens Clinic, 14-16, Papanikoli, 15232 Athens, Greece; (K.S.); (K.P.)
| | - Mara Simopoulou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (S.G.); (E.M.); (P.X.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (A.Z.); (N.S.); (C.K.); (U.G.); (I.G.)
| |
Collapse
|
8
|
Bozack AK, Rifas-Shiman SL, Baccarelli AA, Wright RO, Gold DR, Oken E, Hivert MF, Cardenas A. Associations of prenatal one-carbon metabolism nutrients and metals with epigenetic aging biomarkers at birth and in childhood in a US cohort. Aging (Albany NY) 2024; 16:3107-3136. [PMID: 38412256 PMCID: PMC10929819 DOI: 10.18632/aging.205602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
Epigenetic gestational age acceleration (EGAA) at birth and epigenetic age acceleration (EAA) in childhood may be biomarkers of the intrauterine environment. We investigated the extent to which first-trimester folate, B12, 5 essential, and 7 non-essential metals in maternal circulation are associated with EGAA and EAA in early life. Bohlin EGAA and Horvath pan-tissue and skin and blood EAA were calculated using DNA methylation measured in cord blood (N=351) and mid-childhood blood (N=326; median age = 7.7 years) in the Project Viva pre-birth cohort. A one standard deviation increase in individual essential metals (copper, manganese, and zinc) was associated with 0.94-1.2 weeks lower Horvath EAA at birth, and patterns of exposures identified by exploratory factor analysis suggested that a common source of essential metals was associated with Horvath EAA. We also observed evidence nonlinear associations of zinc with Bohlin EGAA, magnesium and lead with Horvath EAA, and cesium with skin and blood EAA at birth. Overall, associations at birth did not persist in mid-childhood; however, arsenic was associated with greater EAA at birth and in childhood. Prenatal metals, including essential metals and arsenic, are associated with epigenetic aging in early life, which might be associated with future health.
Collapse
Affiliation(s)
- Anne K. Bozack
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sheryl L. Rifas-Shiman
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andrea A. Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York City, NY 10032, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Diane R. Gold
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA 02215, USA
| | - Andres Cardenas
- Department of Epidemiology and Population Health and Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
9
|
Zhang R, Wu X, Lu L, Hu R, Teng Y, Pan L, Zeng X, Jiang W, Li W, Dong L, Zhu W. Assessment of blood one-carbon metabolism indexes during mid-to-late pregnancy in 397 Chinese pregnant women. Front Nutr 2024; 11:1348930. [PMID: 38389796 PMCID: PMC10881806 DOI: 10.3389/fnut.2024.1348930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
OBJECTIVES One-carbon metabolism (OCM) significantly influences fetal growth and neurodevelopment through transferring methyl group to biomolecules, during which folate, methionine, choline and betaine function as methyl donor nutrients, while vitamin B2, B6, B12 function as enzyme cofactors, and homocysteine (Hcy) and S-adenosyl methionine (SAM) are functional metabolites. This study aimed to assess blood OCM index levels and explore their relationships among Chinese pregnant women. METHODS Data were obtained from the baseline of the Mother-Child Nutrition and Health Cohort Study. Pregnant women, voluntarily recruited from September 2020 to June 2022 during antenatal examinations in five Chinese cities at 24-32 gestational weeks, provided fasting venous blood samples. Measurements included RBC and serum folate, serum vitamin B2, B6, B12, choline, betaine, methionine, total Hcy (tHcy), and plasma SAM. Sociodemographic characteristics and pregnancy-related conditions were collected via a self-designed questionnaire. RESULTS Of 397 participants, 82.6% were in mid-pregnancy (24-27 gestational weeks) and 17.4% were in late-pregnancy (28-32 gestational weeks). Serum folate, vitamin B6, and B12 deficiencies were 2.5, 1.3, and 8.3%, respectively. Elevated tHcy (≥10 μmol/L) was observed in 1.8% of pregnant women. Elderly pregnant women (aged 35 and above) exhibited significantly lower serum methionine levels (p < 0.05), while multiparous women had lower RBC folate levels (p < 0.05), and lower serum methionine and vitamin B12 levels (p < 0.10, not statistically significant). Partial correlation analysis revealed positive associations between RBC folate and cofactor vitamin B12 (r = 0.244, p < 0.05) in the folate cycle, as well as significant correlations between two methyl donor paths [serum folate was significantly related to serum choline (r = 0.172) and betaine (r = 0.193)]. As functional biomarkers of OCM, serum tHcy exhibited negative associations with RBC folate (β = -0.330, p < 0.05) and vitamin B6 (β = -0.317, p < 0.05), and plasma SAM displayed a positive association with serum betaine (β = 0.610, p < 0.05), while negatively associated with serum vitamin B6 (β = -0.181, p < 0.05). CONCLUSION The blood OCM exhibited imbalances during mid-to-late pregnancy, characterized by lower levels of folate, vitamin B6, and B12, alongside elevated tHcy levels. Adequate folate and vitamin B6 emerged as significant predictors of lower tHcy levels. Additionally, serum betaine showed a positive correlation with plasma SAM. This suggests the importance of not only ensuring sufficient folate but also optimizing other OCM-related nutrients throughout pregnancy.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Centre, Peking University, Beijing, China
| | - Xiangyi Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Centre, Peking University, Beijing, China
| | - Lu Lu
- Gaomi City People's Hospital, Weifang, China
| | - Rui Hu
- Beijing Huairou Maternity and Child Health Care Hospital, Beijing, China
| | - Yue Teng
- Haidian Maternal and Child Health Hospital of Beijing, Beijing, China
| | - Lina Pan
- Hunan Ausnutria Institute of Food and Nutrition, Changsha, China
| | - Xiaoling Zeng
- Hunan Ausnutria Institute of Food and Nutrition, Changsha, China
| | - Wei Jiang
- Hunan Ausnutria Institute of Food and Nutrition, Changsha, China
| | - Wei Li
- Hunan Ausnutria Institute of Food and Nutrition, Changsha, China
| | - Ling Dong
- Hunan Ausnutria Institute of Food and Nutrition, Changsha, China
| | - Wenli Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Health Science Centre, Peking University, Beijing, China
| |
Collapse
|
10
|
Kanjanaruch C, Bochantin KA, Dávila Ruiz BJ, Syring J, Entzie Y, King L, Borowicz PP, Crouse MS, Caton JS, Dahlen CR, Ward AK, Reynolds LP. One-carbon metabolite supplementation to nutrient-restricted beef heifers affects placental vascularity during early pregnancy. J Anim Sci 2024; 102:skae044. [PMID: 38407272 PMCID: PMC10907004 DOI: 10.1093/jas/skae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/23/2024] [Indexed: 02/27/2024] Open
Abstract
We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.
Collapse
Affiliation(s)
- Chutikun Kanjanaruch
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Kerri A Bochantin
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Bethania J Dávila Ruiz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Jessica Syring
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Yssi Entzie
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Layla King
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Pawel P Borowicz
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Joel S Caton
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Carl R Dahlen
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| | - Alison K Ward
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Lawrence P Reynolds
- Department of Animal Sciences and Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
11
|
Baumgaertner F, Menezes ACB, Diniz WJS, Hurlbert JL, Bochantin-Winders KA, Underdahl SR, Kirsch JD, Dorsam ST, McCarthy KL, Ramirez-Zamudio GD, Sedivec KK, Caton JS, Dahlen CR. Effects of rate of body weight gain during the first trimester of gestation on beef heifer and offspring performance, concentrations of hormones and metabolites, and response to vaccination. J Anim Sci 2024; 102:skae193. [PMID: 39028632 PMCID: PMC11337006 DOI: 10.1093/jas/skae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/17/2024] [Indexed: 07/21/2024] Open
Abstract
Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ± 2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW and assigned to either a basal diet targeting 0.28 kg/d gain (low [LG], n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (moderate gain [MG], n = 50) until day 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated on days -10 and 84; and fetal measurements were taken on days 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to prebreeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on days 62.3 ± 4.13 and 220.3 ± 4.13 postcalving. By design, MG dams were heavier (P < 0.0001) than LG on day 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) in MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.
Collapse
Affiliation(s)
- Friederike Baumgaertner
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Ana Clara B Menezes
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Wellison J S Diniz
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Jennifer L Hurlbert
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kerri A Bochantin-Winders
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sarah R Underdahl
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - James D Kirsch
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Sheri T Dorsam
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kacie L McCarthy
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - German D Ramirez-Zamudio
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
- Department of Animal Science, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, SP, 13635-900, Brazil
| | - Kevin K Sedivec
- Central Grasslands Research and Extension Center, North Dakota State University, Streeter, ND 58483, USA
| | - Joel S Caton
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Department of Animal Sciences, Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
12
|
Islam M, Behura SK. Role of paralogs in the sex-bias transcriptional and metabolic regulation of the brain-placental axis in mice. Placenta 2024; 145:143-150. [PMID: 38134547 DOI: 10.1016/j.placenta.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Duplicated genes or paralogs play important roles in the adaptive function of eukaryotic genomes. Animal studies have shown evidence for the functional role of paralogs in pregnancy, but our knowledge about the role of paralogs in the fetoplacental regulation remains limited. In particular, if fetoplacental metabolic regulation is modulated by differential expression of paralogs remains unexamined. METHODS In this study, gene expression profiles of day-15 placenta and fetal brain were compared to identify families or groups of paralogous genes expressed in the placenta and brain of male versus female fetuses in mice. A Bayesian modeling was applied to infer directional relationship of transcriptional variation of the paralogs relative to the phylogenetic variation of the genes in each family. Gas chromatography-mass spectrometry (GC-MS) was used to perform untargeted metabolomics analysis of day-15 placenta and fetal brain of both sexes. RESULTS We identified paralog groups that were expressed in a sex and/or tissue biased manner between the placenta and fetal brain. Bayesian modeling showed evidence for directional relationship between expression and phylogeny of specific paralogs. These relationships were sex specific. GC-MS analysis identified metabolites that were expressed in a sex-bias manner between the placenta and fetal brain. By performing integrative analysis of the metabolomics and gene expression data, we showed that specific groups of metabolites and paralogous genes were expressed in a coordinated manner between the placenta and fetal brain. DISCUSSION The findings of this study collectively suggest that paralogs play an influential role in the regulation of the brain-placental axis in mice.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, Missouri, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, USA; Interdisciplinary Neuroscience Program, University of Missouri, USA.
| |
Collapse
|
13
|
Soler-Blasco R, Harari F, Riutort-Mayol G, Murcia M, Lozano M, Irizar A, Marina LS, Zubero MB, Fernández-Jimenez N, Braeuer S, Ballester F, Llop S. Influence of genetic polymorphisms on arsenic methylation efficiency during pregnancy: Evidence from a Spanish birth cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165740. [PMID: 37495132 DOI: 10.1016/j.scitotenv.2023.165740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a widespread toxic metalloid. It is well-known that iAs metabolism and its toxicity are mediated by polymorphisms in AS3MT and other genes. However, studies during pregnancy are scarce. We aimed to examine the role of genetic polymorphisms in AS3MT, GSTO2, N6AMT1, MTHFR, MTR, FTCD, CBS, and FOLH1 in iAs methylation efficiency during pregnancy. METHODS The study included 541 pregnant participants from the INMA (Environment and Childhood) Spanish cohort. Using high-performance liquid chromatography coupled to inductively coupled plasma-tandem mass, we measured arsenic (iAs and the metabolites monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA)) in urine samples collected during the first trimester. iAs methylation efficiency was determined based on relative concentrations of the As metabolites in urine (%MMA, %DMA, and %iAs). Thirty-two single nucleotide polymorphisms (SNPs) in nine genes were determined in maternal DNA; AS3MT haplotypes were inferred. We assessed the association between genotypes/haplotypes and maternal As methylation efficiency using multivariate linear regression models. RESULTS The median %MMA and %DMA were 5.3 %, and 89 %, respectively. Ancestral alleles of AS3MT SNPs (rs3740393, rs3740390, rs11191453, and rs11191454) were significantly associated with higher %MMA, %iAs, and lower %DMA. Pregnant participants with zero copies of the GGCTTCAC AS3MT haplotype presented a higher %MMA. Statistically significant associations were also found for the FOLH1 SNP rs202676 (β 0.89 95%CI: 0.24, 1.55 for carriers of the G allele vs. the A allele). CONCLUSIONS Our study shows that ancestral alleles in AS3MT polymorphisms were associated with lower As methylation efficiency in early pregnancy and suggests that FOLH1 also plays a role in As methylation efficiency. These results support the hypothesis that As metabolism is multigenic, being a key element for identifying susceptible populations.
Collapse
Affiliation(s)
- Raquel Soler-Blasco
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Florencia Harari
- Occupational and Environmental Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Gabriel Riutort-Mayol
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Valencia, Spain
| | - Mario Murcia
- Health Policy Planning and Evaluation Service, Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana, Valencia, Spain
| | - Manuel Lozano
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Universitat de València, Valencia, Spain
| | - Amaia Irizar
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Loreto Santa Marina
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain; Biodonostia Health Research Institute, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Miren Begoña Zubero
- Departament of Preventive Medicine and Public Health of the University of the Basque Country, UPV/EHU, Bizkaia, Spain
| | - Nora Fernández-Jimenez
- Department of Genetics, Physical Anthropology and Animal Physiology, Biocruces-Bizkaia Health Research Institute, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Simone Braeuer
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Ferran Ballester
- Department of Nursing, Universitat de València, Valencia, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sabrina Llop
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, Valencia, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
14
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
15
|
Parente E, Colannino G, Bilotta G, Espinola MSB, Proietti S, Oliva MM, Neri I, Aragona C, Unfer V. Effect of Oral High Molecular Weight Hyaluronic Acid (HMWHA), Alpha Lipoic Acid (ALA), Magnesium, Vitamin B6 and Vitamin D Supplementation in Pregnant Women: A Retrospective Observational Pilot Study. Clin Pract 2023; 13:1123-1129. [PMID: 37736936 PMCID: PMC10514820 DOI: 10.3390/clinpract13050100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
Background-Pregnancy represents a nutritional challenge, since macro- and micronutrients intake can affect mother' health and influence negative outcomes. The aim of this retrospective pilot study is to evidence whether the oral supplementation with high molecular weight hyaluronic acid (HMWHA), in association with alpha lipoic acid (ALA), magnesium, vitamin B6 and vitamin D, in pregnant women, could reduce adverse effects, such as PTB, pelvic pain, contraction and hospitalization. Methods-Data were collected from n = 200 women treated daily with oral supplements of 200 mg HMWHA, 100 mg ALA, 450 mg magnesium, 2.6 mg vitamin B6 and 50 mcg vitamin D (treatment group) and from n = 50 women taking with oral supplements of 400 mg magnesium (control group). In both groups, supplementation started from the 7th gestational week until delivery. Results-Oral treatment with HMWHA, in association with ALA, magnesium, vitamin B6 and vitamin D in pregnant women, significantly reduced adverse events, such as PTB (p < 0.01), pelvic pain and contractions (p < 0.0001), miscarriages (p < 0.05) and admission to ER/hospitalization (p < 0.0001) compared with the control group. Conclusions-Despite HMWHA having been poorly used as a food supplement in pregnant women, our results open a reassuring scenario regarding its oral administration during pregnancy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Isabella Neri
- Obstetrics Unit, Mother Infant Department, University Hospital Policlinico of Modena, 41124 Modena, Italy
| | | | - Vittorio Unfer
- UniCamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| |
Collapse
|
16
|
Ogawa S, Ota K, Takahashi T, Yoshida H. Impact of Homocysteine as a Preconceptional Screening Factor for In Vitro Fertilization and Prevention of Miscarriage with Folic Acid Supplementation Following Frozen-Thawed Embryo Transfer: A Hospital-Based Retrospective Cohort Study. Nutrients 2023; 15:3730. [PMID: 37686762 PMCID: PMC10490052 DOI: 10.3390/nu15173730] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/05/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Homocysteine is an amino acid naturally produced in the body and metabolized via the methionine cycle. High homocysteine levels can increase the risk of infertility and pregnancy complications, such as preeclampsia, preterm delivery, miscarriage, and low birth weight. Preconceptional homocysteine levels may be reduced by taking folic acid supplements to reduce the risk of such complications. This cross-sectional, hospital-based study was conducted to examine the role of homocysteine in 1060 infertile women with a history of IVF/intracytoplasmic sperm injection (ICSI) failure. We analyzed whether folic acid intervention altered homocysteine levels and influenced reproductive outcome. We found that a higher homocysteine level was statistically associated with a lower fertilization rate in patients with a history of IVF/ICSI failure. There was an inverse relationship between homocysteine levels and serum 25(OH)VD, and a trend towards lower anti mullerian hormone in the group with higher homocysteine levels. This is the first interventional study to identify that folic acid supplementation improved pregnancy outcomes following freeze embryo transfer (FET) in women with a history of FET failure by monitoring the reduction in homocysteine levels. Therefore, folic acid supplementation and homocysteine level monitoring may constitute a novel intervention for improving IVF/ICSI pregnancy outcomes.
Collapse
Affiliation(s)
- Seiji Ogawa
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Japan; (S.O.); (H.Y.)
| | - Kuniaki Ota
- Fukushima Medical Center for Children and Women, Fukushima Medical University, Fukushima 960-1295, Japan;
- Department of Obstetrics and Gynecology, Tokyo Rosai Hospital, Tokyo 143-0013, Japan
| | - Toshifumi Takahashi
- Fukushima Medical Center for Children and Women, Fukushima Medical University, Fukushima 960-1295, Japan;
| | - Hiroaki Yoshida
- Sendai ART Clinic, 206-13 Nagakecho, Miyagino, Sendai 983-0864, Japan; (S.O.); (H.Y.)
| |
Collapse
|
17
|
Kubo Y, Shoji K, Tajima A, Horiguchi S, Fukuoka H, Nishikawa M, Kagawa Y, Kawabata T. Serum 5-Methyltetrahydrofolate Status Is Associated with One-Carbon Metabolism-Related Metabolite Concentrations and Enzyme Activity Indicators in Young Women. Int J Mol Sci 2023; 24:10993. [PMID: 37446171 DOI: 10.3390/ijms241310993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| |
Collapse
|
18
|
Yi S, Liu X, Huo Y, Li X, Tang Y, Li J. Unrinsed Nemipterus virgatus surimi provides more nutrients than rinsed surimi and helps recover immunosuppressed mice treated with cyclophosphamide. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4458-4469. [PMID: 36823492 DOI: 10.1002/jsfa.12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND The rinsing process in the production of surimi can cause the loss of some important nutrients. To investigate the differences in nutritional properties between rinsed surimi (RS) and unrinsed surimi (US), this study compared the elemental composition, amino acid composition, fatty acid composition, proteomics, and an immunosuppression mouse model of surimi before and after rinsing, and analyzed the nutritional and immunological properties of RS and US. RESULTS The results showed that the protein, fat, and ash contents of RS were decreased compared with those of US; specifically, the contents of essential amino acids, semi-essential amino acids, non-essential amino acids, saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids were decreased. In the non-labeled quantitative proteomics analysis, three high-abundance quantifiable protein contents and 68 low-abundance quantifiable protein contents were found in RS (P-values < 0.05, ratio > 2). Immune function experiments in mice revealed that both RS and US contributed to the recovery of immunity in immunocompromised mice. The effect of US was better than that of RS. CONCLUSION The rinsing process in surimi processing leads to the loss of nutrients in surimi. US promotes the recovery of immunity in immunocompromised mice more effectively than RS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shumin Yi
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xiang Liu
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yan Huo
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Xuepeng Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Jianrong Li
- National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai University, Jinzhou, China
| |
Collapse
|
19
|
Kyllo HM, Wang D, Lorca RA, Julian CG, Moore LG, Wilkening RB, Rozance PJ, Brown LD, Wesolowski SR. Adaptive responses in uteroplacental metabolism and fetoplacental nutrient shuttling and sensing during placental insufficiency. Am J Physiol Endocrinol Metab 2023; 324:E556-E568. [PMID: 37126847 PMCID: PMC10259853 DOI: 10.1152/ajpendo.00046.2023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/03/2023]
Abstract
Glucose, lactate, and amino acids are major fetal nutrients. During placental insufficiency-induced intrauterine growth restriction (PI-IUGR), uteroplacental weight-specific oxygen consumption rates are maintained, yet fetal glucose and amino acid supply is decreased and fetal lactate concentrations are increased. We hypothesized that uteroplacental metabolism adapts to PI-IUGR by altering nutrient allocation to maintain oxidative metabolism. Here, we measured nutrient flux rates, with a focus on nutrients shuttled between the placenta and fetus (lactate-pyruvate, glutamine-glutamate, and glycine-serine) in a sheep model of PI-IUGR. PI-IUGR fetuses weighed 40% less and had decreased oxygen, glucose, and amino acid concentrations and increased lactate and pyruvate versus control (CON) fetuses. Uteroplacental weight-specific rates of oxygen, glucose, lactate, and pyruvate uptake were similar. In PI-IUGR, fetal glucose uptake was decreased and pyruvate output was increased. In PI-IUGR placental tissue, pyruvate dehydrogenase (PDH) phosphorylation was decreased and PDH activity was increased. Uteroplacental glutamine output to the fetus and expression of genes regulating glutamine-glutamate metabolism were lower in PI-IUGR. Fetal glycine uptake was lower in PI-IUGR, with no differences in uteroplacental glycine or serine flux. These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose utilization, and lower fetoplacental amino acid shuttling during PI-IUGR. Mechanistically, AMP-activated protein kinase (AMPK) activation was higher and associated with thiobarbituric acid-reactive substances (TBARS) content, a marker of oxidative stress, and PDH activity in the PI-IUGR placenta, supporting a potential link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism.NEW & NOTEWORTHY These results suggest increased placental utilization of pyruvate from the fetus, without higher maternal glucose uptake, and lower amino acid shuttling in the placental insufficiency-induced intrauterine growth restriction (PI-IUGR) placenta. AMPK activation was associated with oxidative stress and PDH activity, supporting a putative link between oxidative stress, AMPK, and pyruvate utilization. These differences in fetoplacental nutrient sensing and shuttling may represent adaptive strategies enabling the placenta to maintain oxidative metabolism at the expense of fetal growth.
Collapse
Affiliation(s)
- Hannah M Kyllo
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Dong Wang
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Ramón A Lorca
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Colleen G Julian
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Lorna G Moore
- Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Randall B Wilkening
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Paul J Rozance
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Laura D Brown
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Stephanie R Wesolowski
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, United States
| |
Collapse
|
20
|
Chen CJ, Cheng MC, Hsu CN, Tain YL. Sulfur-Containing Amino Acids, Hydrogen Sulfide, and Sulfur Compounds on Kidney Health and Disease. Metabolites 2023; 13:688. [PMID: 37367846 DOI: 10.3390/metabo13060688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Hydrogen sulfide (H2S) plays a decisive role in kidney health and disease. H2S can ben synthesized via enzymatic and non-enzymatic pathways, as well as gut microbial origins. Kidney disease can originate in early life induced by various maternal insults throughout the process, namely renal programming. Sulfur-containing amino acids and sulfate are essential in normal pregnancy and fetal development. Dysregulated H2S signaling behind renal programming is linked to deficient nitric oxide, oxidative stress, the aberrant renin-angiotensin-aldosterone system, and gut microbiota dysbiosis. In animal models of renal programming, treatment with sulfur-containing amino acids, N-acetylcysteine, H2S donors, and organosulfur compounds during gestation and lactation could improve offspring's renal outcomes. In this review, we summarize current knowledge regarding sulfide/sulfate implicated in pregnancy and kidney development, current evidence supporting the interactions between H2S signaling and underlying mechanisms of renal programming, and recent advances in the beneficial actions of sulfide-related interventions on the prevention of kidney disease. Modifying H2S signaling is the novel therapeutic and preventive approach to reduce the global burden of kidney disease; however, more work is required to translate this into clinical practice.
Collapse
Affiliation(s)
- Chih-Jen Chen
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Ming-Chou Cheng
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
21
|
Hasegawa Y, Kim DHJ, Zhang Z, Taha AY, Capitanio JP, Hogrefe CE, Bauman MD, Golub MS, Van de Water J, VandeVoort CA, Walker CK, Slupsky CM. Calorie restriction and pravastatin administration during pregnancy in obese rhesus macaques modulates maternal and infant metabolism and infant brain and behavioral development. Front Nutr 2023; 10:1146804. [PMID: 37255938 PMCID: PMC10225656 DOI: 10.3389/fnut.2023.1146804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Background Maternal obesity has been associated with a higher risk of pregnancy-related complications in mothers and offspring; however, effective interventions have not yet been developed. We tested two interventions, calorie restriction and pravastatin administration, during pregnancy in a rhesus macaque model with the hypothesis that these interventions would normalize metabolic dysregulation in pregnant mothers leading to an improvement in infant metabolic and cognitive/social development. Methods A total of 19 obese mothers were assigned to either one of the two intervention groups (n = 5 for calorie restriction; n = 7 for pravastatin) or an obese control group (n = 7) with no intervention, and maternal gestational samples and postnatal infant samples were compared with lean control mothers (n = 6) using metabolomics methods. Results Gestational calorie restriction normalized one-carbon metabolism dysregulation in obese mothers, but altered energy metabolism in her offspring. Although administration of pravastatin during pregnancy tended to normalize blood cholesterol in the mothers, it potentially impacted the gut microbiome and kidney function of their offspring. In the offspring, both calorie restriction and pravastatin administration during pregnancy tended to normalize the activity of AMPK in the brain at 6 months, and while results of the Visual Paired-Comparison test, which measures infant recognition memory, was not significantly impacted by either of the interventions, gestational pravastatin administration, but not calorie restriction, tended to normalize anxiety assessed by the Human Intruder test. Conclusions Although the two interventions tested in a non-human primate model led to some improvements in metabolism and/or infant brain development, negative impacts were also found in both mothers and infants. Our study emphasizes the importance of assessing gestational interventions for maternal obesity on both maternal and offspring long-term outcomes.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - Danielle H J Kim
- Department of Internal Medicine, Division of Rheumatology, Allergy, and Clinical Immunology, University of California-Davis, Davis, CA, United States
| | - Zhichao Zhang
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - Ameer Y Taha
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
| | - John P Capitanio
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Casey E Hogrefe
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Melissa D Bauman
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Psychiatry and Behavioral Sciences, University of California-Davis, Sacramento, CA, United States
| | - Mari S Golub
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
| | - Judy Van de Water
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Internal Medicine, University of California-Davis, Sacramento, CA, United States
| | - Catherine A VandeVoort
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- Department of Obstetrics and Gynecology, University of California-Davis, Davis, CA, United States
| | - Cheryl K Walker
- California National Primate Research Center, University of California-Davis, Davis, CA, United States
- The UC Davis MIND Institute, University of California-Davis, Sacramento, CA, United States
- Department of Obstetrics and Gynecology, University of California-Davis, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California-Davis, Davis, CA, United States
- Department of Nutrition, University of California-Davis, Davis, CA, United States
| |
Collapse
|
22
|
Jin N, Yu M, Du X, Wu Z, Zhai C, Pan H, Gu J, Xie B. Identification of potential serum biomarkers for congenital heart disease children with pulmonary arterial hypertension by metabonomics. BMC Cardiovasc Disord 2023; 23:167. [PMID: 36991345 PMCID: PMC10061882 DOI: 10.1186/s12872-023-03171-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension is a common complication in patients with congenital heart disease. In the absence of early diagnosis and treatment, pediatric patients with PAH has a poor survival rate. Here, we explore serum biomarkers for distinguishing children with pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) from CHD. METHODS Samples were analyzed by nuclear magnetic resonance spectroscopy-based metabolomics and 22 metabolites were further quantified by ultra-high-performance liquid chromatography-tandem mass spectroscopy. RESULTS Serum levels of betaine, choline, S-Adenosyl methionine (SAM), acetylcholine, xanthosine, guanosine, inosine and guanine were significantly altered between CHD and PAH-CHD. Logistic regression analysis showed that combination of serum SAM, guanine and N-terminal pro-brain natriuretic peptide (NT-proBNP), yielded the predictive accuracy of 157 cases was 92.70% with area under the curve of the receiver operating characteristic curve value of 0.9455. CONCLUSION We demonstrated that a panel of serum SAM, guanine and NT-proBNP is potential serum biomarkers for screening PAH-CHD from CHD.
Collapse
Affiliation(s)
- Nan Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, China
| | - Mengjie Yu
- Key laboratory of medical electronics and digital health of Zhejiang Province, Medical College of Jiaxing University, Jiaxing University, Jiaxing, China
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Xiaoyue Du
- Key laboratory of medical electronics and digital health of Zhejiang Province, Medical College of Jiaxing University, Jiaxing University, Jiaxing, China
| | - Zhiguo Wu
- The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Changlin Zhai
- Department of Cardiovascular Diseases, Institute of Atherosclerosis, the Affiliated hospital of Jiaxing University, Jiaxing, China
| | - Haihua Pan
- Department of Cardiovascular Diseases, Institute of Atherosclerosis, the Affiliated hospital of Jiaxing University, Jiaxing, China
| | - Jinping Gu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, China.
| | - Baogang Xie
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, China.
- Key laboratory of medical electronics and digital health of Zhejiang Province, Medical College of Jiaxing University, Jiaxing University, Jiaxing, China.
| |
Collapse
|
23
|
St-Laurent A, Plante AS, Lemieux S, Robitaille J, MacFarlane AJ, Morisset AS. Higher Than Recommended Folic Acid Intakes is Associated with High Folate Status Throughout Pregnancy in a Prospective French-Canadian Cohort. J Nutr 2023; 153:1347-1358. [PMID: 36848988 DOI: 10.1016/j.tjnut.2023.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Folate and vitamin B12 status during pregnancy are important for maternal and neonatal health. Maternal intake and prepregnancy body mass index (ppBMI) can influence biomarker status. OBJECTIVES This study aimed to, throughout pregnancy; 1) assess folate and B12 status including serum total folate, plasma total vitamin B12, and homocysteine (tHcy); 2) examine how these biomarkers are associated with intakes of folate and B12 and with ppBMI; and 3) determine predictors of serum total folate and plasma total vitamin B12. METHODS In each trimester (T1, T2, and T3), food and supplement intakes of 79 French-Canadian pregnant individuals were assessed by 3 dietary recalls (R24W) and a supplement use questionnaire. Fasting blood samples were collected. Serum total folate and plasma total vitamin B12 and tHcy were assessed by immunoassay (Siemens ADVIA Centaur XP). RESULTS Participants were 32.1 ± 3.7 y and had a mean ppBMI of 25.7 ± 5.8 kg/m2. Serum total folate concentrations were high (>45.3 nmol/L, T1: 75.4 ± 55.1, T2: 69.1 ± 44.8, T3: 72.1 ± 52.1, P = 0.48). Mean plasma total vitamin B12 concentrations were >220 pmol/L (T1: 428 ± 175, T2: 321 ± 116, T3: 336 ± 128, P < 0.0001). Mean tHcy concentrations were <11 μmol/L across trimesters. Most participants (79.6%-86.1%) had a total folic acid intake above the Tolerable Upper Intake Level (UL, >1000 μg/d). Supplement use accounted for 71.9%-76.1% and 35.3%-41.8% of total folic acid and vitamin B12 intakes, respectively. The ppBMI was not correlated with serum total folate (P > 0.1) but was weakly correlated with and predicted lower plasma total vitamin B12 in T3 (r = -0.23, P = 0.04; r2 = 0.08, standardized beta [sβ] = -0.24, P = 0.01). Higher folic acid intakes from supplements predicted higher serum total folate (T1: r2 = 0.05, sβ = 0.15, P = 0.04, T2: r2 = 0.28, sβ = 0.56, P = 0.01, T3: r2 = 0.19, sβ = 0.44, P < 0.0001). CONCLUSIONS Most pregnant individuals had elevated serum total folate concentrations, reflecting total folic acid intakes above the UL driven by supplement use. Vitamin B12 concentrations were generally adequate and differed by ppBMI and pregnancy stage.
Collapse
Affiliation(s)
- Audrey St-Laurent
- School of Nutrition, Laval University, Quebec City, Canada; Endocrinology and Nephrology Unit, CHU of Quebec-Laval University Research Center, Quebec City, Canada; NUTRISS Research Center, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Anne-Sophie Plante
- School of Nutrition, Laval University, Quebec City, Canada; Endocrinology and Nephrology Unit, CHU of Quebec-Laval University Research Center, Quebec City, Canada
| | - Simone Lemieux
- School of Nutrition, Laval University, Quebec City, Canada; NUTRISS Research Center, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Julie Robitaille
- School of Nutrition, Laval University, Quebec City, Canada; Endocrinology and Nephrology Unit, CHU of Quebec-Laval University Research Center, Quebec City, Canada; NUTRISS Research Center, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada
| | - Amanda J MacFarlane
- Nutrition Research Division, Health Canada, Ottawa, Ontario, Canada; Agriculture, Food, and Nutrition Evidence Center, Texas A&M University, Fort Worth, Texas, USA
| | - Anne-Sophie Morisset
- School of Nutrition, Laval University, Quebec City, Canada; Endocrinology and Nephrology Unit, CHU of Quebec-Laval University Research Center, Quebec City, Canada; NUTRISS Research Center, Institute of Nutrition and Functional Foods, Laval University, Quebec City, Canada.
| |
Collapse
|
24
|
Yu Y, Groth SW. Risk factors of lower birth weight, small-for-gestational-age infants, and preterm birth in pregnancies following bariatric surgery: a scoping review. Arch Gynecol Obstet 2023; 307:343-378. [PMID: 35332360 DOI: 10.1007/s00404-022-06480-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Bariatric surgery increases the risk of lower birth weight, small-for-gestational-age (SGA) infants, and preterm birth in a subsequent pregnancy. However, the factors that contribute to these adverse birth outcomes are unclear. This review aimed to collate available information about risk factors of lower birth weight, SGA, and preterm birth following bariatric surgery. METHODS A literature search was conducted using five databases (PubMed, PsycINFO, EMBASE, Web of Science, and Cochrane Library) to obtain relevant studies. RESULTS A total number of 85 studies were included. Studies generally excluded surgery-to-conception interval, pregnancy complications, cigarette use, and maternal age as influencing factors of birth weight, SGA, or preterm birth. In contrast, most studies found that malabsorptive procedures, lower gestational weight gain, lower glucose levels, abdominal pain, and insufficient prenatal care were associated with an elevated risk of adverse birth outcomes. Findings were mixed regarding the effects of surgery-to-conception weight loss, pre-pregnancy body mass index, micronutrient deficiency, and lipid levels on birth outcomes. The examination of maternal microbiome profiles, placental function, alcohol use, and exercise was limited to one study; therefore, no conclusions could be made. CONCLUSION This review identified factors that appear to be associated (e.g., surgery type) or not associated (e.g., surgery-to-conception interval) with birth outcomes following bariatric surgery. The mixed findings and the limited number of studies on several variables (e.g., micronutrients, exercise) highlight the need for further investigation. Additionally, future studies may benefit from exploring interactions among risk factors and expanding to assess additional exposures such as maternal mental health.
Collapse
Affiliation(s)
- Yang Yu
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| | - Susan W Groth
- School of Nursing, University of Rochester, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| |
Collapse
|
25
|
Lerin C, Collado MC, Isganaitis E, Arning E, Wasek B, Demerath EW, Fields DA, Bottiglieri T. Revisiting One-Carbon Metabolites in Human Breast Milk: Focus on S-Adenosylmethionine. Nutrients 2023; 15:282. [PMID: 36678154 PMCID: PMC9863976 DOI: 10.3390/nu15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Breastfeeding is the gold standard for early nutrition. Metabolites from the one-carbon metabolism pool are crucial for infant development. The aim of this study is to compare the breast-milk one-carbon metabolic profile to other biofluids where these metabolites are present, including cord and adult blood plasma as well as cerebrospinal fluid. Breast milk (n = 142), cord blood plasma (n = 23), maternal plasma (n = 28), aging adult plasma (n = 91), cerebrospinal fluid (n = 92), and infant milk formula (n = 11) samples were analyzed by LC-MS/MS to quantify choline, betaine, methionine, S-adenosylmethionine, S-adenosylhomocysteine, total homocysteine, and cystathionine. Differences between groups were visualized by principal component analysis and analyzed by Kruskal-Wallis test. Correlation analysis was performed between one-carbon metabolites in human breast milk. Principal component analysis based on these metabolites separated breast milk samples from other biofluids. The S-adenosylmethionine (SAM) concentration was significantly higher in breast milk compared to the other biofluids and was absent in infant milk formulas. Despite many significant correlations between metabolites in one-carbon metabolism, there were no significant correlations between SAM and methionine or total homocysteine. Together, our data indicate a high concentration of SAM in breast milk, which may suggest a strong demand for this metabolite during infant early growth while its absence in infant milk formulas may indicate the inadequacy of this vital metabolic nutrient.
Collapse
Affiliation(s)
- Carles Lerin
- Endocrinology Department, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, 08950 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), 46980 Valencia, Spain
| | - Elvira Isganaitis
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erland Arning
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Brandi Wasek
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| | - Ellen W. Demerath
- Division of Epidemiology and Community Health, The University of Minnesota School of Public Health, Minneapolis, MN 55455, USA
| | - David A. Fields
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott and White Research Institute, Dallas, TX 75204, USA
| |
Collapse
|
26
|
A Study of the Metabolic Pathways Affected by Gestational Diabetes Mellitus: Comparison with Type 2 Diabetes. Diagnostics (Basel) 2022; 12:diagnostics12112881. [PMID: 36428943 PMCID: PMC9689375 DOI: 10.3390/diagnostics12112881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) remains incompletely understood and increases the risk of developing Diabetes mellitus type 2 (DM2). Metabolomics provides insights etiology and pathogenesis of disease and discovery biomarkers for accurate detection. Nuclear magnetic resonance (NMR) spectroscopy is a key platform defining metabolic signatures in intact serum/plasma. In the present study, we used NMR-based analysis of macromolecules free-serum to accurately characterize the altered metabolic pathways of GDM and assessing their similarities to DM2. Our findings could contribute to the understanding of the pathophysiology of GDM and help in the identification of metabolomic markers of the disease. METHODS Sixty-two women with GDM matched with seventy-seven women without GDM (control group). 1H NMR serum spectra were acquired on an 11.7 T Bruker Avance DRX NMR spectrometer. RESULTS We identified 55 metabolites in both groups, 25 of which were significantly altered in the GDM group. GDM group showed elevated levels of ketone bodies, 2-hydroxybutyrate and of some metabolic intermediates of branched-chain amino acids (BCAAs) and significantly lower levels of metabolites of one-carbon metabolism, energy production, purine metabolism, certain amino acids, 3-methyl-2-oxovalerate, ornithine, 2-aminobutyrate, taurine and trimethylamine N-oxide. CONCLUSION Metabolic pathways affected in GDM were beta-oxidation, ketone bodies metabolism, one-carbon metabolism, arginine and ornithine metabolism likewise in DM2, whereas BCAAs catabolism and aromatic amino acids metabolism were affected, but otherwise than in DM2.
Collapse
|
27
|
Ssewanyana D, Knight JA, Matthews SG, Wong J, Khani NA, Lye J, Murphy KE, Foshay K, Okeke J, Lye SJ, Hung RJ. Maternal prenatal psychological distress and vitamin intake with children's neurocognitive development. Pediatr Res 2022; 92:1450-1457. [PMID: 35288638 DOI: 10.1038/s41390-022-02003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/06/2022] [Accepted: 02/06/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Maternal prenatal psychological distress (PPD) is increasingly linked to sub-optimal child neurodevelopment. Daily intake of prenatal vitamin during pre-conception and early pregnancy may ameliorate the effects of PPD on cognition in the offspring. METHODS PPD was assessed in early (12-16 weeks) and late (28-32 weeks) gestation in the Ontario Birth Study. Prenatal vitamin supplement intake information was collected in early gestation. Child cognition at 4 years was assessed using the NIH Toolbox. Poisson regression was used to investigate associations between PPD and/or prenatal vitamin intake and child cognition. RESULTS Four hundred and eighteen mother-child dyads were assessed. Moderate-severe PPD experienced during early gestation was associated with reduced cognition (adjusted incidence rate ratio (IRRadj) = 3.71, 95% confidence interval (CI): 1.57-8.77, P = 0.003). Daily intake of prenatal vitamins was not associated with cognition (IRRadj = 1.34, 95% CI: 0.73-2.46, P = 0.34). Upon stratification, the experience of mild-severe PPD with daily intake of prenatal vitamins was associated with higher incident rates of suboptimal cognition compared to children of women with daily prenatal vitamin intake without any episode of PPD (IRRadj = 2.88, 95% CI: 1.1-7.4). CONCLUSIONS Moderate-severe PPD in early pregnancy is associated with poor cognition in children and daily intake of prenatal vitamin did not ameliorate this association. IMPACT Our findings expand on existing literature by highlighting that exposure to prenatal psychological distress (PPD), in moderate-to-severe form, in the early stages of pregnancy, can have detrimental effects on the offspring's cognitive development at 4 years. Overall, prenatal vitamin intake did not ameliorate the effects of PPD. Early screening and treatment of prenatal maternal mental illness is crucial.
Collapse
Affiliation(s)
- Derrick Ssewanyana
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Julia A Knight
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Stephen G Matthews
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Jody Wong
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Nadya Adel Khani
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Jennifer Lye
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Kellie E Murphy
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Kim Foshay
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Justin Okeke
- Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Stephen J Lye
- Alliance for Human Development, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, University of Toronto, Toronto, ON, Canada.,Department of Obstetrics and Gynaecology, Sinai Health System, Toronto, ON, Canada
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada. .,Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
28
|
High Folate, Perturbed One-Carbon Metabolism and Gestational Diabetes Mellitus. Nutrients 2022; 14:nu14193930. [PMID: 36235580 PMCID: PMC9573299 DOI: 10.3390/nu14193930] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Folate is a dietary micronutrient essential to one-carbon metabolism. The World Health Organisation recommends folic acid (FA) supplementation pre-conception and in early pregnancy to reduce the risk of fetal neural tube defects (NTDs). Subsequently, many countries (~92) have mandatory FA fortification policies, as well as recommendations for periconceptional FA supplementation. Mandatory fortification initiatives have been largely successful in reducing the incidence of NTDs. However, humans have limited capacity to incorporate FA into the one-carbon metabolic pathway, resulting in the increasingly ubiquitous presence of circulating unmetabolised folic acid (uFA). Excess FA intake has emerged as a risk factor in gestational diabetes mellitus (GDM). Several other one-carbon metabolism components (vitamin B12, homocysteine and choline-derived betaine) are also closely entwined with GDM risk, suggesting a role for one-carbon metabolism in GDM pathogenesis. There is growing evidence from in vitro and animal studies suggesting a role for excess FA in dysregulation of one-carbon metabolism. Specifically, high levels of FA reduce methylenetetrahydrofolate reductase (MTHFR) activity, dysregulate the balance of thymidylate synthase (TS) and methionine synthase (MTR) activity, and elevate homocysteine. High homocysteine is associated with increased oxidative stress and trophoblast apoptosis and reduced human chorionic gonadotrophin (hCG) secretion and pancreatic β-cell function. While the relationship between high FA, perturbed one-carbon metabolism and GDM pathogenesis is not yet fully understood, here we summarise the current state of knowledge. Given rising rates of GDM, now estimated to be 14% globally, and widespread FA food fortification, further research is urgently needed to elucidate the mechanisms which underpin GDM pathogenesis.
Collapse
|
29
|
Metabolomic profiling of intrauterine growth-restricted preterm infants: a matched case-control study. Pediatr Res 2022; 93:1599-1608. [PMID: 36085367 DOI: 10.1038/s41390-022-02292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND The biochemical variations occurring in intrauterine growth restriction (IUGR), when a fetus is unable to achieve its genetically determined potential, are not fully understood. The aim of this study is to compare the urinary metabolomic profile between IUGR and non-IUGR very preterm infants to investigate the biochemical adaptations of neonates affected by early-onset-restricted intrauterine growth. METHODS Neonates born <32 weeks of gestation admitted to neonatal intensive care unit (NICU) were enrolled in this prospective matched case-control study. IUGR was diagnosed by an obstetric ultra-sonographer and all relevant clinical data during NICU stay were captured. For each subject, a urine sample was collected within 48 h of life and underwent untargeted metabolomic analysis using mass spectrometry ultra-performance liquid chromatography. Data were analyzed using multivariate and univariate statistical analyses. RESULTS Among 83 enrolled infants, 15 IUGR neonates were matched with 19 non-IUGR controls. Untargeted metabolomic revealed evident clustering of IUGR neonates versus controls showing derangements of pathways related to tryptophan and histidine metabolism and aminoacyl-tRNA and steroid hormones biosynthesis. CONCLUSIONS Neonates with IUGR showed a distinctive urinary metabolic profile at birth. Although results are preliminary, metabolomics is proving to be a promising tool to explore biochemical pathways involved in this disease. IMPACT Very preterm infants with intrauterine growth restriction (IUGR) have a distinctive urinary metabolic profile at birth. Metabolism of glucocorticoids, sexual hormones biosynthesis, tryptophan-kynurenine, and methionine-cysteine pathways seem to operate differently in this sub-group of neonates. This is the first metabolomic study investigating adaptations exclusively in extremely and very preterm infants affected by early-onset IUGR. New knowledge on metabolic derangements in IUGR may pave the ways to further, more tailored research from a perspective of personalized medicine.
Collapse
|
30
|
Rubini E, Schenkelaars N, Rousian M, Sinclair KD, Wekema L, Faas MM, Steegers-Theunissen RPM, Schoenmakers S. Maternal obesity during pregnancy leads to derangements in one-carbon metabolism and the gut microbiota: implications for fetal development and offspring wellbeing. Am J Obstet Gynecol 2022; 227:392-400. [PMID: 35452650 DOI: 10.1016/j.ajog.2022.04.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 11/01/2022]
Abstract
A healthy diet before and during pregnancy is beneficial in acquiring essential B vitamins involved in 1-carbon metabolism, and in maintaining a healthy gut microbiota. Each play important roles in fetal development, immune-system remodeling, and pregnancy-nutrient acquisition. Evidence shows that there is a reciprocal interaction between the one-carbon metabolism and the gut microbiota given that dietary intake of B vitamins has been shown to influence the composition of the gut microbiota, and certain gut bacteria also synthesize B vitamins. This reciprocal interaction contributes to the individual's overall availability of B vitamins and, therefore, should be maintained in a healthy state during pregnancy. There is an emerging consensus that obese pregnant women often have derangements in 1-carbon metabolism and gut dysbiosis owing to high intake of nutritiously poor foods and a chronic systemic inflammatory state. For example, low folate and vitamin B12 in obese women coincide with the decreased presence of B vitamin-producing bacteria and increased presence of inflammatory-associated bacteria from approximately mid-pregnancy. These alterations are risk factors for adverse pregnancy outcomes, impaired fetal development, and disruption of fetal growth and microbiota formation, which may lead to potential long-term offspring metabolic and neurologic disorders. Therefore, preconceptional and pregnant obese women may benefit from dietary and lifestyle counseling to improve their dietary nutrient intake, and from monitoring their B vitamin levels and gut microbiome by blood tests and microbiota stool samples. In addition, there is evidence that some probiotic bacteria have folate biosynthetic capacity and could be used to treat gut dysbiosis. Thus, their use as an intervention strategy for obese women holds potential and should be further investigated. Currently, there are many knowledge gaps concerning the relationship between one-carbon metabolism and the gut microbiota, and future research should focus on intervention strategies to counteract B vitamin deficiencies and gut dysbiosis in obese pregnant women, commencing with the use of probiotic and prebiotic supplements.
Collapse
Affiliation(s)
- Eleonora Rubini
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Melek Rousian
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kevin D Sinclair
- School of Biosciences, University of Nottingham, Nottingham, United Kingdom
| | - Lieske Wekema
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marijke M Faas
- Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
31
|
Clark J, Bommarito P, Stýblo M, Rubio-Andrade M, García-Vargas GG, Gamble MV, Fry RC. Maternal serum concentrations of one-carbon metabolism factors modify the association between biomarkers of arsenic methylation efficiency and birth weight. Environ Health 2022; 21:68. [PMID: 35836250 PMCID: PMC9281096 DOI: 10.1186/s12940-022-00875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/27/2022] [Indexed: 05/19/2023]
Abstract
BACKGROUND Inorganic arsenic (iAs) is a ubiquitous metalloid and drinking water contaminant. Prenatal exposure is associated with birth outcomes across multiple studies. During metabolism, iAs is sequentially methylated to mono- and di-methylated arsenical species (MMAs and DMAs) to facilitate whole body clearance. Inefficient methylation (e.g., higher urinary % MMAs) is associated with increased risk of certain iAs-associated diseases. One-carbon metabolism factors influence iAs methylation, modifying toxicity in adults, and warrant further study during the prenatal period. The objective of this study was to evaluate folate, vitamin B12, and homocysteine as modifiers of the relationship between biomarkers of iAs methylation efficiency and birth outcomes. METHODS Data from the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort (2011-2012) with maternal urine and cord serum arsenic biomarkers and maternal serum folate, vitamin B12, and homocysteine concentrations were utilized. One-carbon metabolism factors were dichotomized using clinical cutoffs and median splits. Multivariable linear regression models were fit to evaluate associations between each biomarker and birth outcome overall and within levels of one-carbon metabolism factors. Likelihood ratio tests of full and reduced models were used to test the significance of statistical interactions on the additive scale (α = 0.10). RESULTS Among urinary biomarkers, % U-MMAs was most strongly associated with birth weight (β = - 23.09, 95% CI: - 44.54, - 1.64). Larger, more negative mean differences in birth weight were observed among infants born to women who were B12 deficient (β = - 28.69, 95% CI: - 53.97, - 3.42) or experiencing hyperhomocysteinemia (β = - 63.29, 95% CI: - 154.77, 28.19). Generally, mean differences in birth weight were attenuated among infants born to mothers with higher serum concentrations of folate and vitamin B12 (or lower serum concentrations of homocysteine). Effect modification by vitamin B12 and homocysteine was significant on the additive scale for some associations. Results for gestational age were less compelling, with an approximate one-week mean difference associated with C-tAs (β = 0.87, 95% CI: 0, 1.74), but not meaningful otherwise. CONCLUSIONS Tissue distributions of iAs and its metabolites (e.g., % MMAs) may vary according to serum concentrations of folate, vitamin B12 and homocysteine during pregnancy. This represents a potential mechanism through which maternal diet may modify the harms of prenatal exposure to iAs.
Collapse
Affiliation(s)
- Jeliyah Clark
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Paige Bommarito
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Miroslav Stýblo
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Marisela Rubio-Andrade
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo G García-Vargas
- Facultad de Medicina, Universidad Juarez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA.
| |
Collapse
|
32
|
D’Souza SW, Glazier JD. Homocysteine Metabolism in Pregnancy and Developmental Impacts. Front Cell Dev Biol 2022; 10:802285. [PMID: 35846363 PMCID: PMC9280125 DOI: 10.3389/fcell.2022.802285] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Homocysteine is a metabolite generated by methionine cycle metabolism, comprising the demethylated derivative of methionine. Homocysteine can be metabolised by the transsulphuration pathway to cystathionine, which requires vitamin B6, or can undergo remethylation to methionine. Homocysteine remethylation to methionine is catalysed by methionine synthase activity which requires vitamin B12, regenerating methionine to allow synthesis of the universal methyl donor S-adenosylmethionine required for methylation and gene transcription regulation. The methyl-group donated for homocysteine remethylation comes from 5-methyltetrahydrofolate generated by the folate cycle, which allows tetrahydrofolate to be returned to the active folate pool for nucleotide biosynthesis. Therefore the integrated actions of the methionine and folate cycles, required to metabolise homocysteine, also perpetuate methylation and nucleotide synthesis, vitally important to support embryonic growth, proliferation and development. Dysregulated activities of these two interdependent metabolic cycles, arising from maternal suboptimal intake of nutrient co-factors such as folate and vitamin B12 or gene polymorphisms resulting in reduced enzymatic activity, leads to inefficient homocysteine metabolic conversion causing elevated concentrations, known as hyperhomocysteinemia. This condition is associated with multiple adverse pregnancy outcomes including neural tube defects (NTDs). Raised homocysteine is damaging to cellular function, binding to proteins thereby impairing their function, with perturbed homocysteine metabolism impacting negatively on embryonic development. This review discusses the "cross-talk" of maternal-fetal homocysteine interrelationships, describes the placental transport of homocysteine, homocysteine impacts on pregnancy outcomes, homocysteine and methylation effects linking to NTD risk and proposes a putative pathway for embryonic provision of folate and vitamin B12, homocysteine-modulating nutrients that ameliorate NTD risk.
Collapse
Affiliation(s)
- Stephen W. D’Souza
- Maternal and Fetal Health Research Centre, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, St Mary’s Hospital, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jocelyn D. Glazier
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, School of Biological Sciences, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
34
|
Shipley ON, Olin JA, Whiteman JP, Bethea DM, Newsome SD. Bulk and amino acid nitrogen isotopes suggest shifting nitrogen balance of pregnant sharks across gestation. Oecologia 2022; 199:313-328. [PMID: 35718810 DOI: 10.1007/s00442-022-05197-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Nitrogen isotope (δ15N) analysis of bulk tissues and individual amino acids (AA) can be used to assess how consumers maintain nitrogen balance with broad implications for predicting individual fitness. For elasmobranchs, a ureotelic taxa thought to be constantly nitrogen limited, the isotopic effects associated with nitrogen-demanding events such as prolonged gestation remain unknown. Given the linkages between nitrogen isotope variation and consumer nitrogen balance, we used AA δ15N analysis of muscle and liver tissue collected from female bonnethead sharks (Sphyrna tiburo, n = 16) and their embryos (n = 14) to explore how nitrogen balance may vary across gestation. Gestational stage was a strong predictor of bulk tissue and AA δ15N values in pregnant shark tissues, decreasing as individuals neared parturition. This trend was observed in trophic (e.g., Glx, Ala, Val), source (e.g., Lys), and physiological (e.g., Gly) AAs. Several potential mechanisms may explain these results including nitrogen conservation, scavenging, and bacterially mediated breakdown of urea to free ammonia that is used to synthesize AAs. We observed contrasting patterns of isotopic discrimination in embryo tissues, which generally became enriched in 15N throughout development. This was attributed to greater excretion of nitrogenous waste in more developed embryos, and the role of physiologically sensitive AAs (i.e., Gly and Ser) to molecular processes such as nucleotide synthesis. These findings underscore how AA isotopes can quantify shifts in nitrogen balance, providing unequivocal evidence for the role of physiological condition in driving δ15N variation in both bulk tissues and individual AAs.
Collapse
Affiliation(s)
- Oliver N Shipley
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,Beneath the Waves, PO Box 126, Herndon, VA, 20172, USA.
| | - Jill A Olin
- Biological Sciences, Great Lakes Research Center, Michigan Technological University, Houghton, MI, 49931, USA
| | - John P Whiteman
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, 23529, USA
| | - Dana M Bethea
- NOAA Fisheries Southeast Regional Office, Saint Petersburg, FL, 33701, USA
| | - Seth D Newsome
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
35
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
36
|
First Trimester Maternal Homocysteine and Embryonic and Fetal Growth: The Rotterdam Periconception Cohort. Nutrients 2022; 14:nu14061129. [PMID: 35334786 PMCID: PMC8953595 DOI: 10.3390/nu14061129] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Homocysteine is a marker for derangements in one-carbon metabolism. Elevated homocysteine may represent a causal link between poor maternal nutrition and impaired embryonic and fetal development. We sought to investigate associations between reference range maternal homocysteine and embryonic and fetal growth. We enrolled 1060 singleton pregnancies (555 natural and 505 in vitro fertilization/intracytoplasmic sperm injection (IVF/ICSI) pregnancies) from November 2010 to December 2020. Embryonic and fetal body and head growth was assessed throughout pregnancy using three-dimensional ultrasound scans and virtual reality techniques. Homocysteine was negatively associated with first trimester embryonic growth in the included population (crown-rump length B −0.023 mm, 95% CI −0.038,−0.007, p = 0.004, embryonic volume B −0.011 cm3, 95% CI −0.018,−0.004, p = 0.003). After stratification for conception mode, this association remained in IVF/ICSI pregnancies with frozen embryo transfer (crown-rump length B −0.051 mm, 95% CI −0.081,−0.023, p < 0.001, embryonic volume B −0.024 cm3, 95% CI −0.039,−0.009, p = 0.001), but not in IVF/ICSI pregnancies with fresh embryo transfer and natural pregnancies. Homocysteine was not associated with longitudinal measurements of head growth in first trimester, nor with second and third trimester fetal growth. Homocysteine in the highest quartile (7.3−14.9 µmol/L) as opposed to the lowest (2.5−5.2 µmol/L) was associated with reduced birth weight in natural pregnancies only (B −51.98 g, 95% CI −88.13,−15.84, p = 0.005). In conclusion, high maternal homocysteine within the reference range is negatively associated with first trimester embryonic growth and birth weight, and the effects of homocysteine are dependent on conception mode.
Collapse
|
37
|
Maternal and neonatal one-carbon metabolites and the epigenome-wide infant response. J Nutr Biochem 2022; 101:108938. [PMID: 35017001 PMCID: PMC8847320 DOI: 10.1016/j.jnutbio.2022.108938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/10/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022]
Abstract
Maternal prenatal status, as encapsulated by that to which a mother is exposed through diet and environment, is a key determinant of offspring health and disease. Alterations in DNA methylation (DNAm) may be a mechanism through which suboptimal prenatal conditions confer disease risk later in life. One-carbon metabolism (OCM) is critical to both fetal development and in supplying methyl donors needed for DNAm. Plasma concentrations of one-carbon metabolites across maternal first trimester (M1), maternal term (M3), and infant cord blood (CB) at birth were tested for association with DNAm patterns in CB from the Michigan Mother and Infant Pairs (MMIP) pregnancy cohort. The Illumina Infinium MethylationEPIC BeadChip was used to quantitatively evaluate DNAm across the epigenome. Global and single-site DNAm and metabolite models were adjusted for infant sex, estimated cell type proportions, and batch as covariates. Change in mean metabolite concentration across pregnancy (M1 to M3) was significantly different for S-adenosylhomocysteine (SAH), S-adenosylmethionine (SAM), betaine, and choline. Both M1 SAH and CB SAH were significantly associated with the global distribution of DNAm in CB, with indications of a shift toward less methylation. M3 SAH and CB SAH also displayed significant associations with locus-specific DNAm in infant CB (FDR<0.05). Our findings underscore the role of maternal one-carbon metabolites in shifting the global DNAm pattern in CB and emphasizes the need to closely evaluate how dietary status influences cellular methylation potential and ultimately offspring health.
Collapse
|
38
|
Nema J, Joshi N, Sundrani D, Joshi S. Influence of maternal one carbon metabolites on placental programming and long term health. Placenta 2022; 125:20-28. [DOI: 10.1016/j.placenta.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/12/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
|
39
|
OUP accepted manuscript. Nutr Rev 2022; 80:1985-2001. [DOI: 10.1093/nutrit/nuac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Kjaergaard AD, Wu Y, Ming WK, Wang Z, Kjaergaard MN, Ellervik C. Homocysteine and female fertility, pregnancy loss and offspring birthweight: a two-sample Mendelian randomization study. Eur J Clin Nutr 2022; 76:40-47. [PMID: 33772217 DOI: 10.1038/s41430-021-00898-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Observational studies link elevated homocysteine concentrations (Hcy) with female fertility, pregnancy loss, and low offspring birthweight. Maternal rs1801133, a functional variant in MTHFR strongly associated with lifelong elevated Hcy, is associated with recurrent pregnancy loss and offspring birthweight in Asian women. We investigated if genetically elevated Hcy is associated with fertility, pregnancy loss, and offspring birthweight in European women. SUBJECTS/METHODS We performed a two-sample Mendelian randomization (MR) study using publicly available data. We obtained 18 genetic variants (five involved in Hcy metabolism) explaining up to 5.9% of the variance in Hcy from a genome-wide association meta-analysis of 44,147 European individuals (82% women). We investigated fertility (including age at menopause), pregnancy loss, and offspring birthweight in the UK Biobank (N = 194,174), EGG (N = 190,406), and ReproGen (N = 69,360-252,514) consortia using summary statistics. We calculated inverse-variance weighted, and several sensitivity MR regression statistics. RESULTS rs1801133 was associated with a 7.45 months (95% CI: 4.09, 10.80) increase in age at menopause and 29.69 (12.87, 46.51) g decrease in offspring birthweight per SD increase in Hcy in the UK biobank, and confirmed in EGG and ReproGen. MR for Hcy metabolism alone (five variants in MTHFR, MTR, CBS) showed similar results for offspring birthweight across consortia. However, using all 18 variants resulted in no association for any of the outcomes across consortia. CONCLUSION Hcy and suggestively vitamin B variants are most likely the drug targets for folate supplementation in pregnant women on the offspring birthweight, while Hcy variants related to renal function or diabetes are not involved.
Collapse
Affiliation(s)
- Alisa D Kjaergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
| | - Yanxin Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Wai-Kit Ming
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zillian Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | - Christina Ellervik
- Department of Laboratory Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
41
|
Peral-Sanchez I, Hojeij B, Ojeda DA, Steegers-Theunissen RPM, Willaime-Morawek S. Epigenetics in the Uterine Environment: How Maternal Diet and ART May Influence the Epigenome in the Offspring with Long-Term Health Consequences. Genes (Basel) 2021; 13:31. [PMID: 35052371 PMCID: PMC8774448 DOI: 10.3390/genes13010031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The societal burden of non-communicable disease is closely linked with environmental exposures and lifestyle behaviours, including the adherence to a poor maternal diet from the earliest preimplantation period of the life course onwards. Epigenetic variations caused by a compromised maternal nutritional status can affect embryonic development. This review summarises the main epigenetic modifications in mammals, especially DNA methylation, histone modifications, and ncRNA. These epigenetic changes can compromise the health of the offspring later in life. We discuss different types of nutritional stressors in human and animal models, such as maternal undernutrition, seasonal diets, low-protein diet, high-fat diet, and synthetic folic acid supplement use, and how these nutritional exposures epigenetically affect target genes and their outcomes. In addition, we review the concept of thrifty genes during the preimplantation period, and some examples that relate to epigenetic change and diet. Finally, we discuss different examples of maternal diets, their effect on outcomes, and their relationship with assisted reproductive technology (ART), including their implications on epigenetic modifications.
Collapse
Affiliation(s)
- Irene Peral-Sanchez
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Batoul Hojeij
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | - Diego A. Ojeda
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (D.A.O.); (S.W.-M.)
| | - Régine P. M. Steegers-Theunissen
- Department Obstetrics and Gynecology, Erasmus MC, University Medical Center, 3000 CA Rotterdam, The Netherlands; (B.H.); (R.P.M.S.-T.)
| | | |
Collapse
|
42
|
Epigenetic Modifications at the Center of the Barker Hypothesis and Their Transgenerational Implications. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182312728. [PMID: 34886453 PMCID: PMC8656758 DOI: 10.3390/ijerph182312728] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/15/2021] [Accepted: 11/29/2021] [Indexed: 02/08/2023]
Abstract
Embryo/fetal nutrition and the environment in the reproductive tract influence the subsequent risk of developing adult diseases and disorders, as formulated in the Barker hypothesis. Metabolic syndrome, obesity, heart disease, and hypertension in adulthood have all been linked to unwanted epigenetic programing in embryos and fetuses. Multiple studies support the conclusion that environmental challenges, such as a maternal low-protein diet, can change one-carbon amino acid metabolism and, thus, alter histone and DNA epigenetic modifications. Since histones influence gene expression and the program of embryo development, these epigenetic changes likely contribute to the risk of adult disease onset not just in the directly affected offspring, but for multiple generations to come. In this paper, we hypothesize that the effects of parental nutritional status on fetal epigenetic programming are transgenerational and warrant further investigation. Numerous studies supporting this hypothesis are reviewed, and potential research techniques to study these transgenerational epigenetic effects are offered.
Collapse
|
43
|
Nieraad H, Pannwitz N, de Bruin N, Geisslinger G, Till U. Hyperhomocysteinemia: Metabolic Role and Animal Studies with a Focus on Cognitive Performance and Decline-A Review. Biomolecules 2021; 11:1546. [PMID: 34680179 PMCID: PMC8533891 DOI: 10.3390/biom11101546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022] Open
Abstract
Disturbances in the one-carbon metabolism are often indicated by altered levels of the endogenous amino acid homocysteine (HCys), which is additionally discussed to causally contribute to diverse pathologies. In the first part of the present review, we profoundly and critically discuss the metabolic role and pathomechanisms of HCys, as well as its potential impact on different human disorders. The use of adequate animal models can aid in unravelling the complex pathological processes underlying the role of hyperhomocysteinemia (HHCys). Therefore, in the second part, we systematically searched PubMed/Medline for animal studies regarding HHCys and focused on the potential impact on cognitive performance and decline. The majority of reviewed studies reported a significant effect of HHCys on the investigated behavioral outcomes. Despite of persistent controversial discussions about equivocal findings, especially in clinical studies, the present evaluation of preclinical evidence indicates a causal link between HHCys and cognition-related- especially dementia-like disorders, and points out the further urge for large-scale, well-designed clinical studies in order to elucidate the normalization of HCys levels as a potential preventative or therapeutic approach in human pathologies.
Collapse
Affiliation(s)
- Hendrik Nieraad
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Nina Pannwitz
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Natasja de Bruin
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
| | - Gerd Geisslinger
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany; (N.P.); (N.d.B.); (G.G.)
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Uwe Till
- Former Institute of Pathobiochemistry, Friedrich-Schiller-University Jena, Nonnenplan 2, 07743 Jena, Germany;
| |
Collapse
|
44
|
Pandit P, Galande S, Iris F. Maternal malnutrition and anaemia in India: dysregulations leading to the 'thin-fat' phenotype in newborns. J Nutr Sci 2021; 10:e91. [PMID: 34733503 PMCID: PMC8532069 DOI: 10.1017/jns.2021.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
Maternal and child malnutrition and anaemia remain the leading factors for health loss in India. Low birth weight (LBW) offspring of women suffering from chronic malnutrition and anaemia often exhibit insulin resistance and infantile stunting and wasting, together with increased risk of developing cardiometabolic disorders in adulthood. The resulting self-perpetuating and highly multifactorial disease burden cannot be remedied through uniform dietary recommendations alone. To inform approaches likely to alleviate this disease burden, we implemented a systems-analytical approach that had already proven its efficacy in multiple published studies. We utilised previously published qualitative and quantitative analytical results of rural and urban field studies addressing maternal and infantile metabolic and nutritional parameters to precisely define the range of pathological phenotypes encountered and their individual biological characteristics. These characteristics were then integrated, via extensive literature searches, into metabolic and physiological mechanisms to identify the maternal and foetal metabolic dysregulations most likely to underpin the 'thin-fat' phenotype in LBW infants and its associated pathological consequences. Our analyses reveal hitherto poorly understood maternal nutrition-dependent mechanisms most likely to promote and sustain the self-perpetuating high disease burden, especially in the Indian population. This work suggests that it most probably is the metabolic consequence of 'ill-nutrition' - the recent and rapid dietary shifts to high salt, high saturated fats and high sugar but low micronutrient diets - over an adaptation to 'thrifty metabolism' which must be addressed in interventions aiming to significantly alleviate the leading risk factors for health deterioration in India.
Collapse
Key Words
- 5-mTHF, 5-methyltetrahydrofolate
- Anaemia
- BAT, brown adipocyte tissue
- EAA, essential amino acids
- FA, fatty acid
- GSH, glutathione
- Hcy, homocysteine
- LBW, low birth weight
- Low birth weight
- Malnutrition
- PE, phosphatidylethanolamine
- Pathological mechanisms
- Physiological programming
- SAM, S-adenosyl methionine
- TG, triacylglycerol
- WAT, white adipocyte tissue
Collapse
Affiliation(s)
| | - Sanjeev Galande
- Arbuza Regenerate Private Limited, Pune, India
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune411008, India
- Department of Life Sciences, Shiv Nadar University, Delhi-NCR, India
| | - François Iris
- Arbuza Regenerate Private Limited, Pune, India
- BM-Systems Private Limited, Paris, France
| |
Collapse
|
45
|
Jones AK, Rozance PJ, Brown LD, Lorca RA, Julian CG, Moore LG, Limesand SW, Wesolowski SR. Uteroplacental nutrient flux and evidence for metabolic reprogramming during sustained hypoxemia. Physiol Rep 2021; 9:e15033. [PMID: 34558219 PMCID: PMC8461030 DOI: 10.14814/phy2.15033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Gestational hypoxemia is often associated with reduced birth weight, yet how hypoxemia controls uteroplacental nutrient metabolism and supply to the fetus is unclear. This study tested the effects of maternal hypoxemia (HOX) between 0.8 and 0.9 gestation on uteroplacental nutrient metabolism and flux to the fetus in pregnant sheep. Despite hypoxemia, uteroplacental and fetal oxygen utilization and net glucose and lactate uptake rates were similar in HOX (n = 11) compared to CON (n = 7) groups. HOX fetuses had increased lactate and pyruvate concentrations and increased net pyruvate output to the utero-placenta. In the HOX group, uteroplacental flux of alanine to the fetus was decreased, as was glutamate flux from the fetus. HOX fetuses had increased alanine and decreased aspartate, serine, and glutamate concentrations. In HOX placental tissue, we identified hypoxic responses that should increase mitochondrial efficiency (decreased SDHB, increased COX4I2) and increase lactate production from pyruvate (increased LDHA protein and LDH activity, decreased LDHB and MPC2), both resembling metabolic reprogramming, but with evidence for decreased (PFK1, PKM2), rather than increased, glycolysis and AMPK phosphorylation. This supports a fetal-uteroplacental shuttle during sustained hypoxemia whereby uteroplacental tissues produce lactate as fuel for the fetus using pyruvate released from the fetus, rather than pyruvate produced from glucose in the placenta, given the absence of increased uteroplacental glucose uptake and glycolytic gene activation. Together, these results provide new mechanisms for how hypoxemia, independent of AMPK activation, regulates uteroplacental metabolism and nutrient allocation to the fetus, which allow the fetus to defend its oxidative metabolism and growth.
Collapse
Affiliation(s)
- Amanda K. Jones
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Paul J. Rozance
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Laura D. Brown
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Ramón A. Lorca
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Colleen G. Julian
- Department of MedicineUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Lorna G. Moore
- Department of Obstetrics and GynecologyUniversity of Colorado School of MedicineAuroraColoradoUSA
| | - Sean W. Limesand
- School of Animal and Comparative Biomedical SciencesUniversity of ArizonaTucsonArizonaUSA
| | - Stephanie R. Wesolowski
- Perinatal Research Center, Department of PediatricsUniversity of Colorado School of MedicineAuroraColoradoUSA
| |
Collapse
|
46
|
Liu Q, Wei S, Lei J, Luo L, Wang F. Periconceptional folate and gestational diabetes mellitus: a systematic review and meta-analysis of cohort studies. J Matern Fetal Neonatal Med 2021; 35:6884-6893. [PMID: 34034602 DOI: 10.1080/14767058.2021.1929158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To examine the relationship between periconceptional folate exposure and risk of gestational diabetes mellitus (GDM). METHODS Several electronic databases, including PubMed, Embase, China National Knowledge Infrastructure (CNKI), China Biology Medicine (CBM), and Cochrane Library, were searched for all relevant cohort studies by January 2021. Studies on relationship between folate exposure (intake or status) and GDM risk were included. Quality of included studies was assessed using Newcastle-Ottawa Scale. Random effects meta-analysis was performed to estimate overall odds ratio (OR) and 95% confidence intervals (CIs) by Stata software (Stata Corp., College Station, TX). RESULTS Ten cohort studies with 40,244 pregnancies were eligible for quantitative meta-analysis. Significant association was observed between folate exposure and risk of GDM (OR = 1.24, p=.036, 95% CI: 1.01-1.52). Subgroup analysis revealed that periconceptional folate exposure of population in China (OR = 1.35, 95% CI: 1.09-1.67) but not in western countries, folate exposure during pregnancy (OR = 1.49, 95% CI: 1.22-1.81) but not before pregnancy, and internal folate exposure (OR = 1.36, 95% CI: 1.10-1.67), were significantly associated with increased GDM risk. CONCLUSIONS Overall, periconceptional folate exposure is positively associated with GDM risk, especially the exposure during pregnancy and exposure in Chinese populations.
Collapse
Affiliation(s)
- Qingyun Liu
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Shanshan Wei
- Gastrointestinal Endoscopy Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiafan Lei
- Central Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Liangping Luo
- Medical Imaging Center,The First Affiliated Hospital of Jinan University, Guangzhou, China.,Engineering Research Center of Medical Imaging Artificial Intelligence for Precision Diagnosis and Treatment, Guangzhou, China
| | - Feng Wang
- Department of Clinical Laboratory, Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
47
|
Zhunina OA, Yabbarov NG, Grechko AV, Starodubova AV, Ivanova E, Nikiforov NG, Orekhov AN. The Role of Mitochondrial Dysfunction in Vascular Disease, Tumorigenesis, and Diabetes. Front Mol Biosci 2021; 8:671908. [PMID: 34026846 PMCID: PMC8138126 DOI: 10.3389/fmolb.2021.671908] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Mitochondrial dysfunction is known to be associated with a wide range of human pathologies, such as cancer, metabolic, and cardiovascular diseases. One of the possible ways of mitochondrial involvement in the cellular damage is excessive production of reactive oxygen and nitrogen species (ROS and RNS) that cannot be effectively neutralized by existing antioxidant systems. In mitochondria, ROS and RNS can contribute to protein and mitochondrial DNA (mtDNA) damage causing failure of enzymatic chains and mutations that can impair mitochondrial function. These processes further lead to abnormal cell signaling, premature cell senescence, initiation of inflammation, and apoptosis. Recent studies have identified numerous mtDNA mutations associated with different human pathologies. Some of them result in imbalanced oxidative phosphorylation, while others affect mitochondrial protein synthesis. In this review, we discuss the role of mtDNA mutations in cancer, diabetes, cardiovascular diseases, and atherosclerosis. We provide a list of currently described mtDNA mutations associated with each pathology and discuss the possible future perspective of the research.
Collapse
Affiliation(s)
- Olga A. Zhunina
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Nikita G. Yabbarov
- Chemical Biology Department, Russian Research Center for Molecular Diagnostics and Therapy, Moscow, Russia
| | - Andrey V. Grechko
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | | | - Ekaterina Ivanova
- Department of Basic Research, Skolkovo Innovative Center, Institute for Atherosclerosis Research, Moscow, Russia
| | - Nikita G. Nikiforov
- National Medical Research Center of Cardiology, Institute of Experimental Cardiology, Moscow, Russia
- Institute of Gene Biology, Moscow, Russia
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
48
|
Behere RV, Deshmukh AS, Otiv S, Gupte MD, Yajnik CS. Maternal Vitamin B12 Status During Pregnancy and Its Association With Outcomes of Pregnancy and Health of the Offspring: A Systematic Review and Implications for Policy in India. Front Endocrinol (Lausanne) 2021; 12:619176. [PMID: 33912132 PMCID: PMC8074968 DOI: 10.3389/fendo.2021.619176] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Vitamins B12 and folate participate in the one-carbon metabolism cycle and hence regulate fetal growth. Though vitamin B12 deficiency is widely prevalent, the current public health policy in India is to supplement only iron and folic acid for the prevention of anaemia. Prompted by our research findings of the importance of maternal vitamin B12 status for a healthy pregnancy, birth and offspring health outcomes, we evaluated available literature evidence using a systematic review approach, to inform policy. Methods A systematic search was performed for relevant Indian studies in the MEDLINE/PubMed and IndMed databases. We selected studies reporting maternal vitamin B12 status (dietary intake or blood concentrations), and/or metabolic markers of vitamin B12 deficiency (homocysteine, methylmalonic acid) or haematological indices during pregnancy and their associations with outcomes of pregnancy, infancy or in later life. Intervention trials of vitamin B12 during pregnancy were also included. Quality of evidence was assessed on the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. Results Of the 635 articles identified, 46 studies met the inclusion criteria (cohort studies-26, case-control studies-13, RCT's -7). There is a high prevalence of vitamin B12 deficiency in Indian women during pregnancy (40-70%) (3 studies). Observational studies support associations (adjusted for potential sociodemographic confounders, maternal body size, postnatal factors) of lower maternal B12, higher homocysteine or an imbalance between vitamin B12-folate status with a higher risk of NTDs (6 studies), pregnancy complications (recurrent pregnancy losses, gestational diabetes, pre-eclampsia) (9 studies), lower birth weight (10 studies) and adverse longer-term health outcomes in the offspring (cognitive functions, adiposity, insulin resistance) (11 studies). Vitamin B12 supplementation (7 RCT's) in pregnancy showed a beneficial effect on offspring neurocognitive development and an effect on birth weight was inconclusive. There is a high quality evidence to support the role of low maternal vitamin B12 in higher risk for NTD and low birth weight and moderate-quality evidence for higher risk of gestational diabetes and later life adverse health outcomes (cognitive functions, risk for diabetes) in offspring. Conclusion In the Indian population low maternal vitaminB12 status, is associated with adverse maternal and child health outcomes. The level of evidence supports adding vitamin B12 to existing nutritional programs in India for extended benefits on outcomes in pregnancy and offspring health besides control of anaemia. Systematic Review Registration [website], identifier [registration number].
Collapse
Affiliation(s)
| | - Anagha S. Deshmukh
- Department of Clinical Psychology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, India
| | - Suhas Otiv
- Department of Obstetrics and Gynecology, King Edward Memorial (KEM) Hospital, Pune, India
| | - Mohan D. Gupte
- ICMR – National Institute of Epidemiology, Chennai, India
| | | |
Collapse
|
49
|
Halloran KM, Hoskins EC, Stenhouse C, Moses RM, Dunlap KA, Satterfield MC, Seo H, Johnson GA, Wu G, Bazer FW. Pre-implantation exogenous progesterone and pregnancy in sheep. II. Effects on fetal-placental development and nutrient transporters in late pregnancy. J Anim Sci Biotechnol 2021; 12:46. [PMID: 33827696 PMCID: PMC8028684 DOI: 10.1186/s40104-021-00567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Administration of progesterone (P4) to ewes during the first 9 to 12 days of pregnancy accelerates blastocyst development by day 12 of pregnancy, likely due to P4-induced up-regulation of key genes in uterine epithelia responsible for secretion and transport of components of histotroph into the uterine lumen. This study determined if acceleration of blastocyst development induced by exogenous P4 during the pre-implantation period affects fetal-placental development on day 125 of pregnancy. Suffolk ewes (n = 35) were mated to fertile rams and assigned randomly to receive daily intramuscular injections of either corn oil vehicle (CO, n = 18) or 25 mg progesterone in CO (P4, n = 17) for the first 8 days of pregnancy. All ewes were hysterectomized on day 125 of pregnancy and: 1) fetal and placental weights and measurements were recorded; 2) endometrial and placental tissues were analyzed for the expression of candidate mRNAs involved in nutrient transport and arginine metabolism; and 3) maternal plasma, fetal plasma, allantoic fluid, and amniotic fluid were analyzed for amino acids, agmatine, polyamines, glucose, and fructose. RESULTS Treatment of ewes with exogenous P4 did not alter fetal or placental growth, but increased amounts of aspartate and arginine in allantoic fluid and amniotic fluid, respectively. Ewes that received exogenous P4 had greater expression of mRNAs for SLC7A1, SLC7A2, SLC2A1, AGMAT, and ODC1 in endometria, as well as SLC1A4, SLC2A5, SLC2A8 and ODC1 in placentomes. In addition, AZIN2 protein was immunolocalized to uterine luminal and glandular epithelia in P4-treated ewes, whereas AZIN2 localized only to uterine luminal epithelia in CO-treated ewes. CONCLUSIONS This study revealed that exogenous P4 administered in early pregnancy influenced expression of selected genes for nutrient transporters and the expression of a protein involved in polyamine synthesis on day 125 of pregnancy, suggesting a 'programming' effect of P4 on gene expression that affected the composition of nutrients in fetal-placental fluids.
Collapse
Affiliation(s)
- Katherine M Halloran
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Emily C Hoskins
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Claire Stenhouse
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Robyn M Moses
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Heewon Seo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
50
|
Saini N, Virdee M, Helfrich KK, Kwan STC, Smith SM. Global metabolomic profiling reveals hepatic biosignatures that reflect the unique metabolic needs of late-term mother and fetus. Metabolomics 2021; 17:23. [PMID: 33550560 PMCID: PMC8543356 DOI: 10.1007/s11306-021-01773-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Gestational disorders including preeclampsia, growth restriction and diabetes are characterized, in part, by altered metabolic interactions between mother and fetus. Understanding their functional relevance requires metabolic characterization under normotypic conditions. METHODS We performed untargeted metabolomics on livers of pregnant, late-term C57Bl/6J mice (N = 9 dams) and their fetuses (pooling 4 fetuses/litter), using UPLC-MS/MS. RESULTS Multivariate analysis of 730 hepatic metabolites revealed that maternal and fetal metabolite profiles were highly compartmentalized, and were significantly more similar within fetuses (ρaverage = 0.81), or within dams (ρaverage = 0.79), than within each maternal-fetal dyad (ρaverage = - 0.76), suggesting that fetal hepatic metabolism is under distinct and equally tight metabolic control compared with its respective dam. The metabolite profiles were consistent with known differences in maternal-fetal metabolism. The reduced fetal glucose reflected its limited capacity for gluconeogenesis and dependence upon maternal plasma glucose pools. The fetal decreases in essential amino acids and elevations in their alpha-keto acid carnitine conjugates reflects their importance as secondary fuel sources to meet fetal energy demands. Whereas, contrasting elevations in fetal serine, glycine, aspartate, and glutamate reflects their contributions to endogenous nucleotide synthesis and fetal growth. Finally, the elevated maternal hepatic lipids and glycerol were consistent with a catabolic state that spares glucose to meet competing maternal-fetal energy demands. CONCLUSIONS The metabolite profile of the late-term mouse dam and fetus is consistent with prior, non-rodent analyses utilizing plasma and urine. These data position mouse as a suitable model for mechanistic investigation into how maternal-fetal metabolism adapts (or not) to gestational stressors.
Collapse
Affiliation(s)
- Nipun Saini
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Manjot Virdee
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Kaylee K Helfrich
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA
| | - Sze Ting Cecilia Kwan
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Susan M Smith
- UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Kannapolis, NC, 28081, USA.
| |
Collapse
|