1
|
Li J, He W, Wu Q, Qin Y, Luo C, Dai Z, Long Y, Yan P, Huang W, Cao L. Ketogenic diets and β-hydroxybutyrate in the prevention and treatment of diabetic kidney disease: current progress and future perspectives. BMC Nephrol 2025; 26:127. [PMID: 40055596 PMCID: PMC11887203 DOI: 10.1186/s12882-025-04019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/12/2025] [Indexed: 05/13/2025] Open
Abstract
Diabetic kidney disease (DKD) is the main cause of end-stage renal disease. Ketogenic diets (KD) is a high-fat, low-carbohydrate diet. KD produces ketone bodies to supplement energy in the case of insufficient glucose in the body. β-Hydroxybutyrate (BHB) is the main component of ketone bodies. BHB serves as "ancillary fuel" substituting (but also inducing) anti-oxidative, anti-inflammatory, and cardio-protective features by binding to several target proteins, including histone acylation modification, or G protein-coupled receptors (GPCRs). KD have been used to treat epilepsy, obesity, type-2 diabetes mellitus, polycystic ovary syndrome, cancers, and other diseases. According to recent research, KD and the induced BHB delay DKD progression by improving the metabolism of glucose and lipids, regulating autophagy, as well as alleviating inflammation, oxidative stress and fibrosis. However, due to some side-effects, the role and mechanism of action of KD and BHB in the prevention and treatment of DKD are controversial. This review focuses on recent progress in the research of KD and BHB in clinical and preclinical studies of DKD, and provides new perspectives for DKD treatment.
Collapse
Affiliation(s)
- Junle Li
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Wanhong He
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Qianshi Wu
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yuanyuan Qin
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
- Luzhou People's Hospital, Luzhou, China
| | - Changfang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Zhuojun Dai
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Yang Long
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Pijun Yan
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, Sichuan, 646000, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| | - Ling Cao
- Department of Nephrology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China.
- Sichuan Clinical Research Center for Nephropathy, Luzhou, Sichuan, 646000, China.
| |
Collapse
|
2
|
Ciaglia E, Montella F, Lopardo V, Basile C, Esposito RM, Maglio C, Longo R, Maciag A, Puca AA. The Genetic and Epigenetic Arms of Human Ageing and Longevity. BIOLOGY 2025; 14:92. [PMID: 39857322 PMCID: PMC11762130 DOI: 10.3390/biology14010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
This proposed review aims to shed light on the major genetic and epigenetic contributions to the ageing process and longevity of individuals. In this context, we summarize the state of knowledge on the most important longevity and ageing genetic variants, and their interactions with the environment, in achieving a healthy lifespan. We also explore the contribution of lifestyle and the influence of non-heritable environmental factors on ageing (i.e., epigenetics). Accordingly, we discuss the role of inflammageing as one of the major targets to overcome morbidity and mortality in older people for the maintenance of healthy ageing. This more integrated view of longevity will display not only the underlying mechanisms at play but also invites the reader to rethink both our ageing process and our attitudes toward age.
Collapse
Affiliation(s)
- Elena Ciaglia
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Francesco Montella
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Valentina Lopardo
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Cristina Basile
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Roberta Maria Esposito
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Clara Maglio
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Roberta Longo
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
| | - Anna Maciag
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| | - Annibale Alessandro Puca
- Molecular and Clinical Pathophysiology Lab, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Via Salvatore Allende, 84081 Baronissi Salerno, Italy; (F.M.); (V.L.); (C.B.); (R.M.E.); (C.M.); (R.L.)
- Cardiovascular Research Unit, IRCCS MultiMedica, 20138 Milan, Italy;
| |
Collapse
|
3
|
Rapps K, Weller A, Meiri N. Epigenetic regulation is involved in reversal of obesity. Neurosci Biobehav Rev 2024; 167:105906. [PMID: 39343077 DOI: 10.1016/j.neubiorev.2024.105906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Epigenetic processes play a crucial role in mediating the impact of environmental energetic challenges, from overconsumption to starvation. Over-nutrition of energy-dense foods and sedentary lifestyles contribute to the development of obesity, characterized by excessive fat storage and impaired metabolic signaling, stemming from disrupted brain signaling. Conversely, dieting and physical activity facilitate body weight rebalancing and trigger adaptive neural responses. These adaptations involve the upregulation of neurogenesis, synaptic plasticity and optimized brain function and energy homeostasis, balanced hormone signaling, normal metabolism, and reduced inflammation. The transition of the brain from a maladaptive to an adaptive state is partially guided by epigenetic mechanisms. While epigenetic mechanisms underlying obesity-related brain changes have been described, their role in mediating the reversal of maladaptation/obesity through lifestyle interventions remains less explored. This review focuses on elucidating epigenetic mechanisms involved in hypothalamic adaptations induced by lifestyle interventions. Given that lifestyle interventions are widely prescribed and accessible approaches for weight loss and maintenance, it is our challenge to uncover epigenetic mechanisms moderating these hypothalamic-functional beneficial changes.
Collapse
Affiliation(s)
- Kayla Rapps
- Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, Israel; Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel; Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel
| | - Aron Weller
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat-Gan, Israel; Department of Psychology, Bar Ilan University, Ramat-Gan, Israel
| | - Noam Meiri
- Institute of Animal Science, Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel.
| |
Collapse
|
4
|
Yao W, Hu X, Wang X. Crossing epigenetic frontiers: the intersection of novel histone modifications and diseases. Signal Transduct Target Ther 2024; 9:232. [PMID: 39278916 PMCID: PMC11403012 DOI: 10.1038/s41392-024-01918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 09/18/2024] Open
Abstract
Histone post-translational modifications (HPTMs), as one of the core mechanisms of epigenetic regulation, are garnering increasing attention due to their close association with the onset and progression of diseases and their potential as targeted therapeutic agents. Advances in high-throughput molecular tools and the abundance of bioinformatics data have led to the discovery of novel HPTMs which similarly affect gene expression, metabolism, and chromatin structure. Furthermore, a growing body of research has demonstrated that novel histone modifications also play crucial roles in the development and progression of various diseases, including various cancers, cardiovascular diseases, infectious diseases, psychiatric disorders, and reproductive system diseases. This review defines nine novel histone modifications: lactylation, citrullination, crotonylation, succinylation, SUMOylation, propionylation, butyrylation, 2-hydroxyisobutyrylation, and 2-hydroxybutyrylation. It comprehensively introduces the modification processes of these nine novel HPTMs, their roles in transcription, replication, DNA repair and recombination, metabolism, and chromatin structure, as well as their involvement in promoting the occurrence and development of various diseases and their clinical applications as therapeutic targets and potential biomarkers. Moreover, this review provides a detailed overview of novel HPTM inhibitors targeting various targets and their emerging strategies in the treatment of multiple diseases while offering insights into their future development prospects and challenges. Additionally, we briefly introduce novel epigenetic research techniques and their applications in the field of novel HPTM research.
Collapse
Affiliation(s)
- Weiyi Yao
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xinting Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
| |
Collapse
|
5
|
Bilkei-Gorzo A, Schurmann B, Schneider M, Kraemer M, Nidadavolu P, Beins EC, Müller CE, Dvir-Ginzberg M, Zimmer A. Bidirectional Effect of Long-Term Δ 9-Tetrahydrocannabinol Treatment on mTOR Activity and Metabolome. ACS Pharmacol Transl Sci 2024; 7:2637-2649. [PMID: 39296258 PMCID: PMC11406684 DOI: 10.1021/acsptsci.4c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 06/18/2024] [Indexed: 09/21/2024]
Abstract
Brain aging is associated with cognitive decline, reduced synaptic plasticity, and altered metabolism. The activity of mechanistic target of rapamycin (mTOR) has a major impact on aging by regulating cellular metabolism. Although reduced mTOR signaling has a general antiaging effect, it can negatively affect the aging brain by reducing synaptogenesis and thus cognitive functions. Increased mTOR activity facilitates aging and is responsible for the amnestic effect of the cannabinoid receptor 1 agonist Δ9-tetrahydrocannabinol (THC) in higher doses. Long-term low-dose Δ9-THC had an antiaging effect on the brain by restoring cognitive abilities and synapse densities in old mice. Whether changes in mTOR signaling and metabolome are associated with its positive effects on the aging brain is an open question. Here, we show that Δ9-THC treatment has a tissue-dependent and dual effect on mTOR signaling and the metabolome. In the brain, Δ9-THC treatment induced a transient increase in mTOR activity and in the levels of amino acids and metabolites involved in energy production, followed by an increased synthesis of synaptic proteins. Unexpectedly, we found a similar reduction in the mTOR activity in adipose tissue and in the level of amino acids and carbohydrate metabolites in blood plasma as in animals on a low-calorie diet. Thus, long-term Δ9-THC treatment first increases the level of energy and synaptic protein production in the brain, followed by a reduction in mTOR activity and metabolic processes in the periphery. Our study suggests that a dual effect on mTOR activity and the metabolome could be the basis for an effective antiaging and pro-cognitive medication.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Britta Schurmann
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Marion Schneider
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Michael Kraemer
- Institute of Forensic Medicine, Medical Faculty, University of Bonn, Bonn 53111, Germany
| | - Prakash Nidadavolu
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Eva C Beins
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| | - Christa E Müller
- Pharmaceutical Institute, University of Bonn, Bonn 53121, Germany
| | - Mona Dvir-Ginzberg
- Institute of BioMedical and Oral Research, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Bonn 53125, Germany
| |
Collapse
|
6
|
Liu Y, Fan L, Yang H, Wang D, Liu R, Shan T, Xia X. Ketogenic therapy towards precision medicine for brain diseases. Front Nutr 2024; 11:1266690. [PMID: 38450235 PMCID: PMC10915067 DOI: 10.3389/fnut.2024.1266690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Danli Wang
- Zhoushan People’s Hospital, Zhoushan, China
| | - Runhan Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Tikun Shan
- Neurosurgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
7
|
Jang J, Kim SR, Lee JE, Lee S, Son HJ, Choe W, Yoon KS, Kim SS, Yeo EJ, Kang I. Molecular Mechanisms of Neuroprotection by Ketone Bodies and Ketogenic Diet in Cerebral Ischemia and Neurodegenerative Diseases. Int J Mol Sci 2023; 25:124. [PMID: 38203294 PMCID: PMC10779133 DOI: 10.3390/ijms25010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ketone bodies (KBs), such as acetoacetate and β-hydroxybutyrate, serve as crucial alternative energy sources during glucose deficiency. KBs, generated through ketogenesis in the liver, are metabolized into acetyl-CoA in extrahepatic tissues, entering the tricarboxylic acid cycle and electron transport chain for ATP production. Reduced glucose metabolism and mitochondrial dysfunction correlate with increased neuronal death and brain damage during cerebral ischemia and neurodegeneration. Both KBs and the ketogenic diet (KD) demonstrate neuroprotective effects by orchestrating various cellular processes through metabolic and signaling functions. They enhance mitochondrial function, mitigate oxidative stress and apoptosis, and regulate epigenetic and post-translational modifications of histones and non-histone proteins. Additionally, KBs and KD contribute to reducing neuroinflammation and modulating autophagy, neurotransmission systems, and gut microbiome. This review aims to explore the current understanding of the molecular mechanisms underpinning the neuroprotective effects of KBs and KD against brain damage in cerebral ischemia and neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Jiwon Jang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Su Rim Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jo Eun Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seoyeon Lee
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyeong Jig Son
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eui-Ju Yeo
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Insug Kang
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.J.); (S.R.K.); (J.E.L.); (S.L.); (H.J.S.); (W.C.); (K.-S.Y.); (S.S.K.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
8
|
Dunn E, Zhang B, Sahota VK, Augustin H. Potential benefits of medium chain fatty acids in aging and neurodegenerative disease. Front Aging Neurosci 2023; 15:1230467. [PMID: 37680538 PMCID: PMC10481710 DOI: 10.3389/fnagi.2023.1230467] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/09/2023] Open
Abstract
Neurodegenerative diseases are a large class of neurological disorders characterized by progressive dysfunction and death of neurones. Examples include Alzheimer's disease, Parkinson's disease, frontotemporal dementia, and amyotrophic lateral sclerosis. Aging is the primary risk factor for neurodegeneration; individuals over 65 are more likely to suffer from a neurodegenerative disease, with prevalence increasing with age. As the population ages, the social and economic burden caused by these diseases will increase. Therefore, new therapies that address both aging and neurodegeneration are imperative. Ketogenic diets (KDs) are low carbohydrate, high-fat diets developed initially as an alternative treatment for epilepsy. The classic ketogenic diet provides energy via long-chain fatty acids (LCFAs); naturally occurring medium chain fatty acids (MCFAs), on the other hand, are the main components of the medium-chain triglyceride (MCT) ketogenic diet. MCT-based diets are more efficient at generating the ketone bodies that are used as a secondary energy source for neurones and astrocytes. However, ketone levels alone do not closely correlate with improved clinical symptoms. Recent findings suggest an alternative mode of action for the MCFAs, e.g., via improving mitochondrial biogenesis and glutamate receptor inhibition. MCFAs have been linked to the treatment of both aging and neurodegenerative disease via their effects on metabolism. Through action on multiple disease-related pathways, MCFAs are emerging as compounds with notable potential to promote healthy aging and ameliorate neurodegeneration. MCFAs have been shown to stimulate autophagy and restore mitochondrial function, which are found to be disrupted in aging and neurodegeneration. This review aims to provide insight into the metabolic benefits of MCFAs in neurodegenerative disease and healthy aging. We will discuss the use of MCFAs to combat dysregulation of autophagy and mitochondrial function in the context of "normal" aging, Parkinson's disease, amyotrophic lateral sclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
| | | | | | - Hrvoje Augustin
- Department of Biological Sciences, Centre for Biomedical Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
9
|
Endo S, Uto A, Miyashita K, Sato M, Inoue H, Fujii K, Hagiwara A, Ryuzaki M, Oshida T, Kinouchi K, Itoh H. Intermittent Fasting Sustainably Improves Glucose Tolerance in Normal Weight Male Mice Through Histone Hyperacetylation. J Endocr Soc 2023; 7:bvad082. [PMID: 37362383 PMCID: PMC10290492 DOI: 10.1210/jendso/bvad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 06/28/2023] Open
Abstract
To explore the mechanism by which intermittent fasting (IF) exerts prolonged effects after discontinuation, we examined mice that had been subjected to 4 cycles of fasting for 72 hours and ad libitum feeding for 96 hours per week (72hIF), followed by 4 weeks of ad libitum feeding, focusing on expression of genes for lipid metabolism in the skeletal muscle and histone acetylation in the promoter region. The 72hIF regimen resulted in metabolic remodeling, characterized by enhanced lipid utilization and mitochondrial activation in the muscle. This long-term IF (72hIF) caused stronger metabolic effects than alternate day fasting (24hIF) wherein fasting and refeeding are repeated every 24 hours. Upregulation of lipid oxidation genes and an increase in oxygen utilization were sustained even at 4 weeks after discontinuation of 72hIF, associated with histone hyperacetylation of the promoter region of uncoupling protein 3 (Ucp3) and carnitine palmitoyl transferase 1b (Cpt1b) genes. An increase in leucine owing to fasting-induced muscle degradation was suggested to lead to the histone acetylation. These findings support the previously unappreciated notion that sustainable promotion of histone acetylation in lipid oxidation genes of the muscle and adipose tissues during and after IF may contribute to sustained metabolic effects of IF.
Collapse
Affiliation(s)
- Sho Endo
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Asuka Uto
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kazutoshi Miyashita
- Correspondence: Kazutoshi Miyashita, MD, PhD, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masaaki Sato
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroyuki Inoue
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kentaro Fujii
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Aika Hagiwara
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Masaki Ryuzaki
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Takuma Oshida
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Kenichiro Kinouchi
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| | - Hiroshi Itoh
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
10
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023. [DOI: https:/doi.org/10.18632/aging.204668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | | | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
11
|
Rajado AT, Silva N, Esteves F, Brito D, Binnie A, Araújo IM, Nóbrega C, Bragança J, Castelo-Branco P. How can we modulate aging through nutrition and physical exercise? An epigenetic approach. Aging (Albany NY) 2023; 15:3191-3217. [PMID: 37086262 PMCID: PMC10188329 DOI: 10.18632/aging.204668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/11/2023] [Indexed: 04/23/2023]
Abstract
The World Health Organization predicts that by 2050, 2.1 billion people worldwide will be over 60 years old, a drastic increase from only 1 billion in 2019. Considering these numbers, strategies to ensure an extended "healthspan" or healthy longevity are urgently needed. The present study approaches the promotion of healthspan from an epigenetic perspective. Epigenetic phenomena are modifiable in response to an individual's environmental exposures, and therefore link an individual's environment to their gene expression pattern. Epigenetic studies demonstrate that aging is associated with decondensation of the chromatin, leading to an altered heterochromatin structure, which promotes the accumulation of errors. In this review, we describe how aging impacts epigenetics and how nutrition and physical exercise can positively impact the aging process, from an epigenetic point of view. Canonical histones are replaced by histone variants, concomitant with an increase in histone post-translational modifications. A slight increase in DNA methylation at promoters has been observed, which represses transcription of previously active genes, in parallel with global genome hypomethylation. Aging is also associated with deregulation of gene expression - usually provided by non-coding RNAs - leading to both the repression of previously transcribed genes and to the transcription of previously repressed genes. Age-associated epigenetic events are less common in individuals with a healthy lifestyle, including balanced nutrition, caloric restriction and physical exercise. Healthy aging is associated with more tightly condensed chromatin, fewer PTMs and greater regulation by ncRNAs.
Collapse
Affiliation(s)
- Ana Teresa Rajado
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Nádia Silva
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - David Brito
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, Ontario, Canada
| | - Inês M. Araújo
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center, Research Institute (ABC-RI), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Center (ABC), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve Campus Gambelas, Faro 8005-139, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | |
Collapse
|
12
|
Epigenome Modulation Induced by Ketogenic Diets. Nutrients 2022; 14:nu14153245. [PMID: 35956421 PMCID: PMC9370515 DOI: 10.3390/nu14153245] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Ketogenic diets (KD) are dietary strategies low in carbohydrates, normal in protein, and high, normal, or reduced in fat with or without (Very Low-Calories Ketogenic Diet, VLCKD) a reduced caloric intake. KDs have been shown to be useful in the treatment of obesity, metabolic diseases and related disorders, neurological diseases, and various pathological conditions such as cancer, nonalcoholic liver disease, and chronic pain. Several studies have investigated the intracellular metabolic pathways that contribute to the beneficial effects of these diets. Although epigenetic changes are among the most important determinants of an organism’s ability to adapt to environmental changes, data on the epigenetic changes associated with these dietary pathways are still limited. This review provides an overview of the major epigenetic changes associated with KDs.
Collapse
|
13
|
Ketone Bodies and SIRT1, Synergic Epigenetic Regulators for Metabolic Health: A Narrative Review. Nutrients 2022; 14:nu14153145. [PMID: 35956321 PMCID: PMC9370141 DOI: 10.3390/nu14153145] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies (KBs) and Sirtuin-1 (SIRT1) have received increasing attention over the past two decades given their pivotal function in a variety of biological contexts, including transcriptional regulation, cell cycle progression, inflammation, metabolism, neurological and cardiovascular physiology, and cancer. As a consequence, the modulation of KBs and SIRT1 is considered a promising therapeutic option for many diseases. The direct regulation of gene expression can occur in vivo through histone modifications mediated by both SIRT1 and KBs during fasting or low-carbohydrate diets, and dietary metabolites may contribute to epigenetic regulation, leading to greater genomic plasticity. In this review, we provide an updated overview of the epigenetic interactions between KBs and SIRT1, with a particular glance at their central, synergistic roles for metabolic health.
Collapse
|
14
|
Litke R, Vicari J, Huang BT, Gonzalez D, Grimaldi N, Sharma O, Ma G, Shapiro L, Yoon Y, Kellner C, Mobbs C. Diets, genes, and drugs that increase lifespan and delay age-related diseases: Role of nutrient-sensing neurons and Creb-binding protein. Pharmacol Biochem Behav 2022; 219:173428. [PMID: 35868565 DOI: 10.1016/j.pbb.2022.173428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/23/2022] [Accepted: 07/06/2022] [Indexed: 11/27/2022]
Abstract
Discovery of interventions that delay or minimize age-related diseases is arguably the major goal of aging research. Conversely discovery of interventions based on phenotypic screens have often led to further elucidation of pathophysiological mechanisms. Although most hypotheses to explain lifespan focus on cell-autonomous processes, increasing evidence suggests that in multicellular organisms, neurons, particularly nutrient-sensing neurons, play a determinative role in lifespan and age-related diseases. For example, protective effects of dietary restriction and inactivation of insulin-like signaling increase lifespan and delay age-related diseases dependent on Creb-binding protein in GABA neurons, and Nrf2/Skn1 in just 2 nutrient-sensing neurons in C. elegans. Screens for drugs that increase lifespan also indicate that such drugs are predominantly active through neuronal signaling. Our own screens also indicate that neuroactive drugs also delay pathology in an animal model of Alzheimer's Disease, as well as inhibit cytokine production implicated in driving many age-related diseases. The most likely mechanism by which nutrient-sensing neurons influence lifespan and the onset of age-related diseases is by regulating metabolic architecture, particularly the relative rate of glycolysis vs. alternative metabolic pathways such as ketone and lipid metabolism. These results suggest that neuroactive compounds are a most promising class of drugs to delay or minimize age-related diseases.
Collapse
Affiliation(s)
- Rachel Litke
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America.
| | - James Vicari
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Bik Tzu Huang
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Damian Gonzalez
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Nicholas Grimaldi
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Ojee Sharma
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Gang Ma
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Lila Shapiro
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - YoneJung Yoon
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Christopher Kellner
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| | - Charles Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, United States of America
| |
Collapse
|
15
|
Pindozzi F, Socci C, Bissolati M, Marchi M, Devecchi E, Saibene A, Conte C. Role of nutritional ketosis in the improvement of metabolic parameters following bariatric surgery. World J Diabetes 2022; 13:54-64. [PMID: 35070059 PMCID: PMC8771267 DOI: 10.4239/wjd.v13.i1.54] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ketone bodies (KB) might act as potential metabolic modulators besides serving as energy substrates. Bariatric metabolic surgery (BMS) offers a unique opportunity to study nutritional ketosis, as acute postoperative caloric restriction leads to increased lipolysis and circulating free fatty acids.
AIM To characterize the relationship between KB production, weight loss (WL) and metabolic changes following BMS.
METHODS For this retrospective study we enrolled male and female subjects aged 18-65 years who underwent BMS at a single Institution. Data on demographics, anthropometrics, body composition, laboratory values and urinary KB were collected.
RESULTS Thirty-nine patients had data available for analyses [74.4% women, mean age 46.5 ± 9.0 years, median body mass index 41.0 (38.5; 45.4) kg/m2, fat mass 45.2% ± 6.2%, 23.1% had diabetes, 43.6% arterial hypertension and 74.4% liver steatosis]. At 46.0 ± 13.6 d post-surgery, subjects had lost 12.0% ± 3.6% of pre-operative weight. Sixty-nine percent developed ketonuria. Those with nutritional ketosis were significantly younger [42.9 (37.6; 50.7) years vs 51.9 (48.3; 59.9) years, P = 0.018], and had significantly lower fasting glucose [89.5 (82.5; 96.3) mg/dL vs 96.0 (91.0; 105.3) mg/dL, P = 0.025] and triglyceride levels [108.0 (84.5; 152.5) mg/dL vs 152.0 (124.0; 186.0) mg/dL, P = 0.045] vs those with ketosis. At 6 mo, percent WL was greater in those with postoperative ketosis (-27.5% ± 5.1% vs 23.8% ± 4.3%, P = 0.035). Urinary KBs correlated with percent WL at 6 and 12 mo. Other metabolic changes were similar.
CONCLUSION Our data support the hypothesis that subjects with worse metabolic status have reduced ketogenic capacity and, thereby, exhibit a lower WL following BMS.
Collapse
Affiliation(s)
- Fioralba Pindozzi
- Unità di Chirurgia Generale Provinciale, Ospedale del Delta, Lagosanto (FE) 44023, Italy
| | - Carlo Socci
- Transplant and Metabolic/Bariatric Surgery Unit, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Massimiliano Bissolati
- Transplant and Metabolic/Bariatric Surgery Unit, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Monica Marchi
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Elisabetta Devecchi
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Alessandro Saibene
- Department of General Medicine, Diabetes and Endocrinology, IRCCS Ospedale San Raffaele, Milan 20132, Italy
| | - Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| |
Collapse
|
16
|
Ketogenic Diet as a potential treatment for traumatic brain injury in mice. Sci Rep 2021; 11:23559. [PMID: 34876621 PMCID: PMC8651717 DOI: 10.1038/s41598-021-02849-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/18/2021] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) is a brain dysfunction without present treatment. Previous studies have shown that animals fed ketogenic diet (KD) perform better in learning tasks than those fed standard diet (SD) following brain injury. The goal of this study was to examine whether KD is a neuroprotective in TBI mouse model. We utilized a closed head injury model to induce TBI in mice, followed by up to 30 days of KD/SD. Elevated levels of ketone bodies were confirmed in the blood following KD. Cognitive and behavioral performance was assessed post injury and molecular and cellular changes were assessed within the temporal cortex and hippocampus. Y-maze and Novel Object Recognition tasks indicated that mTBI mice maintained on KD displayed better cognitive abilities than mTBI mice maintained on SD. Mice maintained on SD post-injury demonstrated SIRT1 reduction when compared with uninjured and KD groups. In addition, KD management attenuated mTBI-induced astrocyte reactivity in the dentate gyrus and decreased degeneration of neurons in the dentate gyrus and in the cortex. These results support accumulating evidence that KD may be an effective approach to increase the brain’s resistance to damage and suggest a potential new therapeutic strategy for treating TBI.
Collapse
|
17
|
Khajebishak Y, Alivand M, Faghfouri AH, Moludi J, Payahoo L. The effects of vitamins and dietary pattern on epigenetic modification of non-communicable diseases. INT J VITAM NUTR RES 2021. [PMID: 34643416 DOI: 10.1024/0300-9831/a000735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background: Non-communicable diseases (NCDs) have received more attention because of high prevalence and mortality rate. Besides genetic and environmental factors, the epigenetic abnormality is also involved in the pathogenesis of NCDs. Methylation of DNA, chromatin remodeling, modification of histone, and long non-coding RNAs are the main components of epigenetic phenomena. Methodology: In this review paper, the mechanistic role of vitamins and dietary patterns on epigenetic modification was discussed. All papers indexed in scientific databases, including PubMed, Scopus, Embase, Google Scholar, and Elsevier were searched during 2000 - 2021 using, vitamins, diet, epigenetic repression, histones, methylation, acetylation, and NCDs as keywords. Results: The components of healthy dietary patterns like Mediterranean and dietary approaches to stop hypertension diets have a beneficial effect on epigenetic hemostasis. Both quality and quantity of dietary components influence epigenetic phenomena. A diet with calorie deficiency in protein content and methyl-donor agents in a long time, with a high level of fat, disrupts epigenetic hemostasis and finally, causes genome instability. Also, soluble and insoluble vitamins have an obvious role in epigenetic modifications. Most vitamins interact directly with methylation, acetylation, and phosphorylation pathways of histone and DNA. However, numerous indirect functions related to the cell cycle stability and genome integrity have been recognized. Conclusion: Considering the crucial role of a healthy diet in epigenetic homeostasis, adherence to a healthy dietary pattern containing enough levels of vitamin and avoiding the western diet seems to be necessary. Having a healthy diet and consuming the recommended dietary level of vitamins can also contribute to epigenetic stability.
Collapse
Affiliation(s)
- Yaser Khajebishak
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mohammadreza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Jalal Moludi
- School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Laleh Payahoo
- Department of Nutrition and Food Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| |
Collapse
|
18
|
Crujeiras AB, Izquierdo AG, Primo D, Milagro FI, Sajoux I, Jácome A, Fernandez-Quintela A, Portillo MP, Martínez JA, Martinez-Olmos MA, de Luis D, Casanueva FF. Epigenetic landscape in blood leukocytes following ketosis and weight loss induced by a very low calorie ketogenic diet (VLCKD) in patients with obesity. Clin Nutr 2021; 40:3959-3972. [PMID: 34139469 DOI: 10.1016/j.clnu.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The molecular mechanisms underlying the potential health benefits of a ketogenic diet are unknown and could be mediated by epigenetic mechanisms. OBJECTIVE To identify the changes in the obesity-related methylome that are mediated by the induced weight loss or are dependent on ketosis in subjects with obesity underwent a very-low calorie ketogenic diet (VLCKD). METHODS Twenty-one patients with obesity (n = 12 women, 47.9 ± 1.02 yr, 33.0 ± 0.2 kg/m2) after 6 months on a VLCKD and 12 normal weight volunteers (n = 6 women, 50.3 ± 6.2 yrs, 22.7 ± 1.5 kg/m2) were studied. Data from the Infinium MethylationEPIC BeadChip methylomes of blood leukocytes were obtained at time points of ketotic phases (basal, maximum ketosis, and out of ketosis) during VLCKD (n = 10) and at baseline in volunteers (n = 12). Results were further validated by pyrosequencing in representative cohort of patients on a VLCKD (n = 18) and correlated with gene expression. RESULTS After weight reduction by VLCKD, differences were found at 988 CpG sites (786 unique genes). The VLCKD altered methylation levels in patients with obesity had high resemblance with those from normal weight volunteers and was concomitant with a downregulation of DNA methyltransferases (DNMT)1, 3a and 3b. Most of the encoded genes were involved in metabolic processes, protein metabolism, and muscle, organ, and skeletal system development. Novel genes representing the top scoring associated events were identified, including ZNF331, FGFRL1 (VLCKD-induced weight loss) and CBFA2T3, C3orf38, JSRP1, and LRFN4 (VLCKD-induced ketosis). Interestingly, ZNF331 and FGFRL1 were validated in an independent cohort and inversely correlated with gene expression. CONCLUSIONS The beneficial effects of VLCKD therapy on obesity involve a methylome more suggestive of normal weight that could be mainly mediated by the VLCKD-induced ketosis rather than weight loss.
Collapse
Affiliation(s)
- Ana B Crujeiras
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain.
| | - Andrea G Izquierdo
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - David Primo
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Ignacio Sajoux
- Medical Department Pronokal Group, PronokalGroup, Barcelona, Spain
| | - Amalia Jácome
- Department of Mathematics, MODES Group, CITIC, Universidade da Coruña, Faculty of Science, A Coruña, Spain
| | - Alfredo Fernandez-Quintela
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - María P Portillo
- Nutrition and Obesity Group, Department of Nutrition and Food Science, University of the Basque Country (UPV/EHU), Lucio Lascaray Research Institute and Health Research Institute BIOARABA, Vitoria, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, Centre for Nutrition Research, University of Navarra (UNAV) and IdiSNA, Navarra Institute for Health Research, 31009, Pamplona, Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Miguel A Martinez-Olmos
- Epigenomics in Endocrinology and Nutrition Group, Epigenomics Unit, Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS/SERGAS), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| | - Daniel de Luis
- Center of Investigation of Endocrinology and Nutrition, Medicine School and Department of Endocrinology and Investigation, Hospital Clinico Universitario, University of Valladolid, Valladolid, Spain
| | - Felipe F Casanueva
- Molecular and Cellular Endocrinology Group. Instituto de Investigacion Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela (CHUS) and Santiago de Compostela University (USC), Spain; CIBER Fisiopatologia de La Obesidad y Nutricion (CIBERobn), Spain
| |
Collapse
|
19
|
Dowis K, Banga S. The Potential Health Benefits of the Ketogenic Diet: A Narrative Review. Nutrients 2021; 13:nu13051654. [PMID: 34068325 PMCID: PMC8153354 DOI: 10.3390/nu13051654] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Considering the lack of a comprehensive, multi-faceted overview of the ketogenic diet (KD) in relation to health issues, we compiled the evidence related to the use of the ketogenic diet in relation to its impact on the microbiome, the epigenome, diabetes, weight loss, cardiovascular health, and cancer. The KD diet could potentially increase genetic diversity of the microbiome and increase the ratio of Bacteroidetes to Firmicutes. The epigenome might be positively affected by the KD since it creates a signaling molecule known as β-hydroxybutyrate (BHB). KD has helped patients with diabetes reduce their HbA1c and reduce the need for insulin. There is evidence to suggest that a KD can help with weight loss, visceral adiposity, and appetite control. The evidence also suggests that eating a high-fat diet improves lipid profiles by lowering low-density lipoprotein (LDL), increasing high-density lipoprotein (HDL), and lowering triglycerides (TG). Due to the Warburg effect, the KD is used as an adjuvant treatment to starve cancer cells, making them more vulnerable to chemotherapy and radiation. The potential positive impacts of a KD on each of these areas warrant further analysis, improved studies, and well-designed randomized controlled trials to further illuminate the therapeutic possibilities provided by this dietary intervention.
Collapse
|
20
|
Wieland LS, Moffet I, Shade S, Emadi A, Knott C, Gorman EF, D'Adamo C. Risks and benefits of antioxidant dietary supplement use during cancer treatment: protocol for a scoping review. BMJ Open 2021; 11:e047200. [PMID: 33849858 PMCID: PMC8051392 DOI: 10.1136/bmjopen-2020-047200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/15/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Antioxidant dietary supplements are used by many patients with cancer to reduce the side effects of chemotherapy and improve prognosis. While some research indicates oral antioxidant supplementation reduces side effects and improves patient survival, other studies suggest the use of antioxidant dietary supplements may interfere with chemotherapy and reduce its curative effects. There is a need to clarify the evidence base on the impact of dietary antioxidant supplementation during chemotherapy on both side effect and treatment efficacy outcomes. We will use a scoping review approach to identify what systematic review evidence exists regarding beneficial and harmful effects of dietary antioxidant supplements when used during cancer treatment. METHODS AND ANALYSIS We will use Arksey & O'Malley and Joanna Briggs Institute methods for scoping reviews. We will systematically search PubMed, Embase, CINAHL, Scopus, Dissertations & Theses Global and the Cochrane Library from inception to October 2020. Systematic reviews of randomised controlled trials of oral dietary antioxidant supplements used by participants receiving curative chemotherapy, radiotherapy or other biological therapy for cancer will be eligible. Two reviewers will screen citations and full texts for inclusion and chart data on research questions from included reviews. Two reviewers will assess the overall confidence in systematic review results using A Measurement Tool to Assess Systematic Reviews-2 (AMSTAR-2), and summarised evidence will focus on reviews rated at high or moderate overall confidence. Tables will be used to map existing evidence and identify evidence gaps for safety and effectiveness outcomes. ETHICS AND DISSEMINATION This scoping review does not require ethical approval as it is a secondary assessment of available literature. The results will be presented at conferences and submitted for publication in a peer-reviewed journal. We will also disseminate results to community and clinical stakeholders and involve them in developing subsequent research to address critical existing gaps in the evidence as identified by the scoping review.
Collapse
Affiliation(s)
- L Susan Wieland
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ilana Moffet
- University of Michigan College of Literature, Science, and the Arts, Ann Arbor, Michigan, USA
| | - Sydney Shade
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Ashkan Emadi
- School of Medicine, University of Maryland Baltimore, Baltimore, Maryland, USA
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Cheryl Knott
- Department of Behavioral and Community Health, School of Public Health, University of Maryland, College Park, Maryland, USA
- Office of Community Outreach and Engagement, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Emily F Gorman
- Health Sciences and Human Services Library, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Christopher D'Adamo
- Center for Integrative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
22
|
Function and Mechanism of Novel Histone Posttranslational Modifications in Health and Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6635225. [PMID: 33763479 PMCID: PMC7952163 DOI: 10.1155/2021/6635225] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Histone posttranslational modifications (HPTMs) are crucial epigenetic mechanisms regulating various biological events. Different types of HPTMs characterize and shape functional chromatin states alone or in combination, and dedicated effector proteins selectively recognize these modifications for gene expression. The dysregulation of HPTM recognition events takes part in human diseases. With the application of mass spectrometry- (MS-) based proteomics, novel histone lysine acylation has been successively discovered, e.g., propionylation, butyrylation, 2-hydroxyisobutyrylation, β-hydroxybutyrylation, malonylation, succinylation, crotonylation, glutarylation, and lactylation. These nine types of modifications expand the repertoire of HPTMs and regulate chromatin remodeling, gene expression, cell cycle, and cellular metabolism. Recent researches show that HPTMs have a close connection with the pathogenesis of cancer, metabolic diseases, neuropsychiatric disorders, infertility, kidney diseases, and acquired immunodeficiency syndrome (AIDS). This review focuses on the chemical structure, sites, functions of these novel HPTMs, and underlying mechanism in gene expression, providing a glimpse into their complex regulation in health and disease.
Collapse
|
23
|
Ogura Y, Kakehashi C, Yoshihara T, Kurosaka M, Kakigi R, Higashida K, Fujiwara SE, Akema T, Funabashi T. Ketogenic diet feeding improves aerobic metabolism property in extensor digitorum longus muscle of sedentary male rats. PLoS One 2020; 15:e0241382. [PMID: 33125406 PMCID: PMC7598508 DOI: 10.1371/journal.pone.0241382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/13/2020] [Indexed: 12/01/2022] Open
Abstract
Recent studies of the ketogenic diet, an extremely high-fat diet with extremely low carbohydrates, suggest that it changes the energy metabolism properties of skeletal muscle. However, ketogenic diet effects on muscle metabolic characteristics are diverse and sometimes countervailing. Furthermore, ketogenic diet effects on skeletal muscle performance are unknown. After male Wistar rats (8 weeks of age) were assigned randomly to a control group (CON) and a ketogenic diet group (KD), they were fed for 4 weeks respectively with a control diet (10% fat, 10% protein, 80% carbohydrate) and a ketogenic diet (90% fat, 10% protein, 0% carbohydrate). After the 4-week feeding period, the extensor digitorum longus (EDL) muscle was evaluated ex vivo for twitch force, tetanic force, and fatigue. We also analyzed the myosin heavy chain composition, protein expression of metabolic enzymes and regulatory factors, and citrate synthase activity. No significant difference was found between CON and KD in twitch or tetanic forces or muscle fatigue. However, the KD citrate synthase activity and the protein expression of Sema3A, citrate synthase, succinate dehydrogenase, cytochrome c oxidase subunit 4, and 3-hydroxyacyl-CoA dehydrogenase were significantly higher than those of CON. Moreover, a myosin heavy chain shift occurred from type IIb to IIx in KD. These results demonstrated that the 4-week ketogenic diet improves skeletal muscle aerobic capacity without obstructing muscle contractile function in sedentary male rats and suggest involvement of Sema3A in the myosin heavy chain shift of EDL muscle.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Chiaki Kakehashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshinori Yoshihara
- Graduate School of Health and Sports Science, Juntendo University, Inzai, Chiba, Japan
| | - Mitsutoshi Kurosaka
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Ryo Kakigi
- Faculty of Management & Information Science, Josai International University, Togane, Chiba, Japan
| | - Kazuhiko Higashida
- Department of Nutrition, University of Shiga Prefecture, Hikone, Shiga, Japan
| | - Sei-Etsu Fujiwara
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Tatsuo Akema
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| | - Toshiya Funabashi
- Department of Physiology, St. Marianna University of School of Medicine, Miyamae-ku, Kawasaki, Japan
| |
Collapse
|
24
|
|
25
|
Nagarajan P, Parthun MR. The flip side of sirtuins: the emerging roles of protein acetyltransferases in aging. Aging (Albany NY) 2020; 12:4673-4677. [PMID: 32170047 PMCID: PMC7093178 DOI: 10.18632/aging.102949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022]
Abstract
Protein N-ε-lysine acetylation is is an important post-translational modification that plays critical roles in the regulation of many cellular processes. A role for this modification in the process of aging goes back two decades to the discovery that the yeast NAD+-dependent histone deacetylase Sir2 regulates lifespan in yeast. While the Sirtuin family of protein deacetylases has been intensively studied in many model systems and is definitively linked to aging, the enzymes responsible for protein acetylation, protein acetyltransferases (KATs), have not received a similar level of attention. However, a series of recent studies have directly explored the role of specific KATs in aging. These studies have shown that modulation of KAT activity can influence cellular pathways important for aging and directly effect organismal lifespan.
Collapse
Affiliation(s)
- Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
26
|
Yamada LA, Mariano IR, Sabino VLR, Rabassi RS, Bataglini C, Azevedo SCSF, Branquinho NTD, Kurauti MA, Garcia RF, Pedrosa MMD. Modulation of liver glucose output by free or restricted feeding in the adult rat is independent of litter size. Nutr Metab (Lond) 2019; 16:86. [PMID: 31857820 PMCID: PMC6909465 DOI: 10.1186/s12986-019-0413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Caloric restriction since birth changes glucose metabolism by the liver in overnight-fasted rats to a fed-like pattern, in which glucose output is large but gluconeogenesis is negligible. It was investigated whether these changes could be a residual effect of the nutritional condition during lactation and what could be the mechanism of such change. Methods Newborn Wistar rat pups were arranged in litters of 6 or 12 (G6 and G12). After weaning, the male pups were divided in: G6L and G12 L, fed freely until the age of 90 days (freely-fed groups); G6R and G12R, given 50% of the GL ingestion (food-restricted groups) until 90 days of age; G6RL and G12RL, given 50% of the GL ingestion until 60 days of age and fed freely until 90 days of age (refed groups). The experimental protocols were carried out at the age of 90 days after overnight fasting. Pairs of groups were compared through t test; other statistical comparisons were made with one-way ANOVA with Tukey post hoc text. Results Caloric restriction was effective in decreasing body and fat weights, total cholesterol and LDL. These effects were totally or partially reversed after 30 days of refeeding (groups GRL). During liver perfusion, the high glucose output of the GRs was further enhanced by adrenaline (1 μM), but not by lactate infusion. In contrast, in groups G6L, G12 L, G6RL and G12RL glycogenolysis (basal and adrenaline-stimulated glucose output) was low and gluconeogenesis from lactate was significant. A twofold increase in liver content of PKA in group G6R suggests that liver sensitivity to glucagon and adrenaline was higher because of caloric restriction, resulting in enhanced glucose output. Conclusions As glucose output was not affected by litter size, liver glucose metabolism in the adult rat, in contrast to other metabolic processes, is not a programmed effect of the nutritional condition during lactation. In addition, the increased expression of PKA points to a higher sensitivity of the animals under caloric restriction to glycogenolytic hormones, a relevant condition for glucose homeostasis during fasting.
Collapse
|
27
|
Miller VJ, Villamena FA, Volek JS. Nutritional Ketosis and Mitohormesis: Potential Implications for Mitochondrial Function and Human Health. J Nutr Metab 2018; 2018:5157645. [PMID: 29607218 PMCID: PMC5828461 DOI: 10.1155/2018/5157645] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023] Open
Abstract
Impaired mitochondrial function often results in excessive production of reactive oxygen species (ROS) and is involved in the etiology of many chronic diseases, including cardiovascular disease, diabetes, neurodegenerative disorders, and cancer. Moderate levels of mitochondrial ROS, however, can protect against chronic disease by inducing upregulation of mitochondrial capacity and endogenous antioxidant defense. This phenomenon, referred to as mitohormesis, is induced through increased reliance on mitochondrial respiration, which can occur through diet or exercise. Nutritional ketosis is a safe and physiological metabolic state induced through a ketogenic diet low in carbohydrate and moderate in protein. Such a diet increases reliance on mitochondrial respiration and may, therefore, induce mitohormesis. Furthermore, the ketone β-hydroxybutyrate (BHB), which is elevated during nutritional ketosis to levels no greater than those resulting from fasting, acts as a signaling molecule in addition to its traditionally known role as an energy substrate. BHB signaling induces adaptations similar to mitohormesis, thereby expanding the potential benefit of nutritional ketosis beyond carbohydrate restriction. This review describes the evidence supporting enhancement of mitochondrial function and endogenous antioxidant defense in response to nutritional ketosis, as well as the potential mechanisms leading to these adaptations.
Collapse
Affiliation(s)
- Vincent J. Miller
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| | - Frederick A. Villamena
- Department of Biological Chemistry and Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Jeff S. Volek
- Department of Human Sciences, College of Education and Human Ecology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
28
|
Latimer MN, Freij KW, Cleveland BM, Biga PR. Physiological and Molecular Mechanisms of Methionine Restriction. Front Endocrinol (Lausanne) 2018; 9:217. [PMID: 29780356 PMCID: PMC5945823 DOI: 10.3389/fendo.2018.00217] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 04/17/2018] [Indexed: 01/17/2023] Open
Abstract
Methionine restriction (MR) has been studied extensively over the last 25 years for its role in altering metabolic hallmarks of disease. Animals subjected to MR, display changes in metabolic flexibility demonstrated by increases in energy expenditure, glucose tolerance, and lifespan. These changes have been well characterized in a number of model systems and significant progress has been made in understanding how hepatic fibroblast growth factor 21 links MR to several components of its metabolic phenotype. Despite these advances, a complete understanding of mechanisms engaged by dietary MR remains elusive. In this review, we offer a brief history of MR and its known mechanisms associated with stress, metabolism, and lifespan extension. We consider the role of epigenetics in the response of animals to MR and propose a novel epigenetic pathway involving the regulation of microRNAs during MR.
Collapse
Affiliation(s)
- Mary Neslund Latimer
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Khalid Walid Freij
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Beth M. Cleveland
- National Center for Cool and Cold Water Aquaculture, Agricultural Research Service (USDA), Kearneysville, WV, United States
| | - Peggy R. Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Peggy R. Biga,
| |
Collapse
|
29
|
Reddy SD, Clossen BL, Reddy DS. Epigenetic Histone Deacetylation Inhibition Prevents the Development and Persistence of Temporal Lobe Epilepsy. J Pharmacol Exp Ther 2018; 364:97-109. [PMID: 29101217 DOI: 10.1124/jpet.117.244939] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/31/2017] [Indexed: 03/08/2025] Open
Abstract
Epilepsy is a chronic brain disease characterized by repeated unprovoked seizures. Currently, no drug therapy exists for curing epilepsy or disease modification in people at risk. Despite several emerging mechanisms, there have been few studies of epigenetic signaling in epileptogenesis, the process whereby a normal brain becomes progressively epileptic because of precipitating factors. Here, we report a novel role of histone deacetylation as a critical epigenetic mechanism in epileptogenesis. Experiments were conducted using the histone deacetylase (HDAC) inhibitor sodium butyrate in the hippocampus kindling model of temporal lobe epilepsy (TLE), a classic model heavily used to approve drugs for treatment of epilepsy. Daily treatment with butyrate significantly inhibited HDAC activity and retarded the development of limbic epileptogenesis without affecting after-discharge signal. HDAC inhibition markedly impaired the persistence of seizure expression many weeks after epilepsy development. Moreover, subchronic HDAC inhibition for 2 weeks resulted in a striking retardation of epileptogenesis. HDAC inhibition, unexpectedly, also showed erasure of the epileptogenic state in epileptic animals. Finally, butyrate-treated animals exhibited a powerful reduction in mossy fiber sprouting, a morphologic index of epileptogenesis. Together these results underscore that HDAC inhibition prevents the development of TLE, indicating HDAC's critical signaling role in epileptogenesis. These findings, therefore, envisage a unique novel therapy for preventing or curing epilepsy by targeting the epigenetic HDAC pathway.
Collapse
Affiliation(s)
- Sandesh D Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Bryan L Clossen
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| | - Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
30
|
Affiliation(s)
- Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA; Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| |
Collapse
|
31
|
Rabhi N, Hannou SA, Froguel P, Annicotte JS. Cofactors As Metabolic Sensors Driving Cell Adaptation in Physiology and Disease. Front Endocrinol (Lausanne) 2017; 8:304. [PMID: 29163371 PMCID: PMC5675844 DOI: 10.3389/fendo.2017.00304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/19/2017] [Indexed: 12/21/2022] Open
Abstract
Chromatin architectures and epigenetic fingerprint regulation are fundamental for genetically determined biological processes. Chemical modifications of the chromatin template sensitize the genome to intracellular metabolism changes to set up diverse functional adaptive states. Accumulated evidence suggests that the action of epigenetic modifiers is sensitive to changes in dietary components and cellular metabolism intermediates, linking nutrition and energy metabolism to gene expression plasticity. Histone posttranslational modifications create a code that acts as a metabolic sensor, translating changes in metabolism into stable gene expression patterns. These observations support the notion that epigenetic reprograming-linked energy input is connected to the etiology of metabolic diseases and cancer. In the present review, we introduce the role of epigenetic cofactors and their relation with nutrient intake and we question the links between epigenetic regulation and the development of metabolic diseases.
Collapse
Affiliation(s)
- Nabil Rabhi
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Sarah Anissa Hannou
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Philippe Froguel
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Jean-Sébastien Annicotte
- Lille University, UMR 8199—EGID, Lille, France
- CNRS, UMR 8199, Lille, France
- Institut Pasteur de Lille, Lille, France
- *Correspondence: Jean-Sébastien Annicotte,
| |
Collapse
|