Trevellin E, Granzotto M, Host C, Grisan F, De Stefani D, Grinzato A, Lefkimmiatis K, Pagano C, Rizzuto R, Vettor R. A Novel Loss of Function Melanocortin-4-Receptor Mutation (MC4R-F313Sfs*29) in Morbid Obesity.
J Clin Endocrinol Metab 2021;
106:736-749. [PMID:
33247923 DOI:
10.1210/clinem/dgaa885]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT
Melanocortin receptor-4 (MC4R) gene mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity.
OBJECTIVE
To explore whether and how a novel heterozygous MC4R variant (MC4R-F313Sfs*29), identified in a young boy (body mass index [BMI] 38.8 kg/m2) during a mutation analysis conducted in a cohort of patients with obesity, plays a determinant pathophysiological role in the obesity development.
DESIGN SETTING AND PATIENTS
The genetic screening was carried out in a total of 209 unrelated patients with obesity (BMI ≥ 35 kg/m2). Structural and functional characterization of the F313Sfs*29-mutated MC4R was performed using computational approaches and in vitro, using HEK293 cells transfected with genetically encoded biosensors for cAMP and Ca2+.
RESULTS
The F313Sfs*29 was the only variant identified. In vitro experiments showed that HEK293 cells transfected with the mutated form of MC4R did not increase intracellular cAMP or Ca2+ levels after stimulation with a specific agonist in comparison with HEK293 cells transfected with the wild type form of MC4R (∆R/R0 = -90% ± 8%; P < 0.001). In silico modeling showed that the F313Sfs*29 mutation causes a major reorganization in the cytosolic domain of MC4R, thus reducing the affinity of the putative GalphaS binding site.
CONCLUSIONS
The newly discovered F313Sfs*29 variant of MC4R may be involved in the impairment of α-MSH-induced cAMP and Ca2+ signaling, blunting intracellular G protein-mediated signal transduction. This alteration might have led to the dysregulation of satiety signaling, resulting in hyperphagia and early onset of obesity.
Collapse