1
|
Rogers HM, Gad A, Cork GK, Menjivar NG, Schoolcraft WB, Tesfaye D, Yuan Y. Age-related integrative transcriptomic profiling of human granulosa cells reveals mRNA-microRNA regulatory network associated with key ovulation dynamics†. Biol Reprod 2025; 112:916-931. [PMID: 39982426 DOI: 10.1093/biolre/ioaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/29/2024] [Accepted: 02/19/2025] [Indexed: 02/22/2025] Open
Abstract
Advanced maternal age (AMA) patients experience decreased success from assisted reproductive technologies (ART), attributed to the quantity and quality of oocytes, which is significantly influenced by the intrafollicular granulosa cells (GCs). In this study, we compared the mRNA and microRNA (miRNA) transcriptomes between young (< 32 years old) and AMA (> 38 years old) patients' GCs to identify potential ovarian aging-related molecular signatures. We identified 293 and 21 differentially expressed genes (DEGs) and miRNAs (DE miRNAs), respectively, between young and aged GCs. Highly expressed mitochondrial-encoded genes, MT-ND3, MT-ND6, and MT-CYB, were downregulated in aged GCs, indicating potential mitochondrial insufficiency. Additionally, pathway analysis indicates DEGs are involved in inflammation, cytokine signaling, extracellular matrix (ECM) remodeling, and angiogenesis. Key DEGs related to these processes include CXCL8, IL1B, NLRP3, SIGIRR, ANGPT2, ADAM8, and ADAMTS14. Additionally, target gene prediction and pathway analysis of DE miRNAs indicates their potential post-transcriptional regulation of genes associated with cell signaling, mitochondrial function, oxidative stress, apoptosis, and senescence pathways in addition to cytokine signaling, angiogenesis, and ECM remodeling. To investigate regulatory mechanisms further, we looked at the DEGs' convergence with the DE miRNAs predicted target genes and we identified miR-483-3p, miR-1268a, miR-4497, miR-7704, miR-135a-5p, miR-1261, and miR-4791 as potential crucial regulators of genes involved in pathways associated with inflammation, ECM, and angiogenesis. This data suggests that aged GCs have an impaired ability to elicit the same pro-inflammatory response combined with dysregulation of angiogenesis and ECM remodeling compared to young GCs, and miRNA may play a role in regulating key ovulatory processes. While this study identifies potential regulatory relationships between DE miRNAs and DEGs, experimental validation is necessary to confirm the relationships and biological relevance.
Collapse
Affiliation(s)
- Heather M Rogers
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ahmed Gad
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Gentry K Cork
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Nico G Menjivar
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Dawit Tesfaye
- Animal Reproduction and Biotechnology Laboratory (ARBL), Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| |
Collapse
|
2
|
Choi Y, Brännström M, Akin JW, Teate A, Christenson LK, Curry TE, Jo M. Oncostatin-M: a novel leukocyte-derived factor facilitating the ovulatory process in the human ovary. Hum Reprod 2025:deaf076. [PMID: 40327872 DOI: 10.1093/humrep/deaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/04/2025] [Indexed: 05/08/2025] Open
Abstract
STUDY QUESTION Does leukocyte-derived Oncostatin-M (OSM) regulate the ovulatory process in human dominant follicles? SUMMARY ANSWER Leukocyte-derived OSM activates key signaling pathways in human preovulatory granulosa cells and modulates steroidogenesis, prostaglandin synthesis, and tissue remodeling in human ovulatory follicles. WHAT IS KNOWN ALREADY Leukocytes are essential regulators of ovulation. Our recent single-cell RNA sequencing (scRNA-seq) has identified diverse leukocyte subpopulations in follicular aspirates obtained from IVF patients and revealed the expression of OSM in leukocytes and its receptors (OSMR, LIFR, IL6ST) in follicular cells. However, the function of leukocyte-derived OSM in human ovulatory follicle remains unclear. STUDY DESIGN, SIZE, DURATION This study analyzed dominant follicles from naturally cycling women (n = 19) across the periovulatory period and follicular aspirates from IVF patients (n = 12). Primary human granulosa/lutein cells (hGLCs) treated with hCG and/or recombinant human OSM (rhOSM) were used to assess its functional effects. PARTICIPANTS/MATERIALS, SETTING, METHODS Our recent scRNA-seq dataset was used to identify cell types expressing OSM and its receptors in human follicular aspirates. The expression of OSM and its receptors was assessed in dominant follicles by quantitative PCR (qPCR) and immunohistochemistry. hGLCs were treated with hCG and/or rhOSM, and functional analyses included qPCR, western blotting, RNA sequencing, and hormone assays for progesterone (P4), estradiol (E2), and prostaglandin E2 (PGE2) production. MAIN RESULTS AND THE ROLE OF CHANCE Bioinformatics analysis of scRNA-seq revealed that OSM is exclusively expressed in leukocytes, whereas its receptors are predominantly expressed in granulosa cells. Immunohistochemistry and qPCR analyses exhibited increased OSM expression in leukocytes and receptor expression in granulosa cells, respectively, after ovulatory hCG administration (P < 0.05). Western blotting demonstrated that rhOSM treatment activated STAT3, ERK1/2, AKT, and p38MAPK pathways in hGLCs. RNA sequencing and following qPCR revealed rhOSM-induced significant transcriptional changes in genes involved in steroidogenesis, prostaglandin synthesis/transport, inflammation, and tissue remodeling (FDR < 0.05). Functionally, rhOSM increased P4 and PGE2 secretion (P < 0.05) while decreasing E2 production (P < 0.05), suggesting a role in ovulation and luteinization. LARGE SCALE DATA RNA sequencing datasets are available in the Gene Expression Omnibus under accession number GSE277343. LIMITATIONS, REASONS FOR CAUTION This study was conducted using in vitro hGLC cultures, which may not fully recapitulate in vivo ovulatory dynamics. Additionally, the findings are specific to human samples and require validation in other mammalian species. WIDER IMPLICATIONS OF THE FINDINGS These results suggest that leukocyte-derived OSM is a key cytokine regulating ovulatory events, providing novel insights into the immunoendocrine crosstalk within the human follicle. This study enhances our understanding of cytokine-mediated follicular maturation and may have implications for improving ovulation-related fertility treatments. STUDY FUNDING/COMPETING INTERESTS This study was supported by grants P01HD71875 (to M.J. and T.E.C.), R01HD096077 (to M.J.), R03HD095098 (to Y.C.), and R01HD115554 (to Y.C.). The authors declare no competing interests.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | | | - Ashley Teate
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lane K Christenson
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
3
|
Dos S Silva P, Butenko Y, Kra G, Malitsky S, Itkin M, Levin Y, Moallem U, Zachut M. Omega-3 fatty acid supplementation from late pregnancy to early lactation attenuates the endocannabinoid system and immune proteome in preovulatory follicles and endometrium of Holstein dairy cows. J Dairy Sci 2025; 108:4299-4317. [PMID: 39824496 DOI: 10.3168/jds.2024-25409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/18/2024] [Indexed: 01/20/2025]
Abstract
Activation of the endocannabinoid system (ECS) elicits negative effects on the reproductive system in mammals. Supplementation with n-3 fatty acid (FA) lowers ECS activation and has anti-inflammatory effects. Thus, we hypothesized that supplementing cows with n-3 FA will downregulate components of the ECS and immune system in preovulatory follicles and in the endometrium. Twenty-four multiparous Holstein dairy cows were supplemented from d 256 of pregnancy to d 70 postpartum as follows: (1) control (CTL; n = 12), prepartum with 250 g/d per cow calcium salts of FA and postpartum at 1.6% of the diet (DM basis); or (2) extruded flaxseed (FLX; n = 12) supplement rich in α-linolenic acid (C18:3n-3), prepartum with 700 g/d per cow and postpartum at 6.4% of diet (DM basis). Ovaries were monitored at 30 DIM, and following estrous cycle synchronization we aspirated the follicular fluids (FF) of follicles ≥7 mm, separated the granulosa cells (GRC), and performed endometrium biopsies at 58 ± 5 DIM. The FF were analyzed for concentrations of estradiol (E2) and progesterone (P4), and E2-active follicles were declared when E2/P4 was >1. The FA and endocannabinoid (eCB) profiles were determined in plasma and in the reproductive tissues. Proteomic analyses and mRNA abundances were determined in GRC and endometrium. Supplementation of n-3 FA increased the proportion of total n-3 FA and decreased the ratio of n-6 to n-3 ratio in plasma, FF and GRC compared with CTL. In plasma and FF, n-3 FA supplementation decreased the proportion of the n-6 FA eCB precursor arachidonic acid (ARA; C20:4n-6), and increased the abundance of the n-3 FA-derived eCB eicosapentaenoyl ethanolamide compared with CTL. In the endometrium, n-3 FA supplementation reduced the abundance of the n-6 FA-derived eCB 2-arachidonoylglycerol (2-AG) compared with CTL. Proteomic analysis of GRC showed that n-3 FA supplementation increased the abundance of FA-binding-protein-5, which is involved in intracellular transport of eCB, as well as the abundances of the cytokine receptor like factor-2 and glutathione-S-transferase-LANCL1, whereas it reduced the abundances of several complement proteins: complement factors I, D, H, complement components C7 chain and C8 β chain, and complement component 1 Q subcomponent-binding protein, mitochondrial (C1QBP). In addition, the abundance of superoxide dismutase (SOD3) was lower in FLX GRC than in CTL. In the endometrium, n-3 FA supplementation decreased the abundance of a few immune-related proteins. In the GRC, n-3 FA supplementation reduced the relative mRNA abundances of cannabinoid receptors 1 and 2 compared with CTL. Across treatments, a positive correlation was found between the relative abundance in FF of the eCB anandamide with C7, C1QBP, and SOD3 in GRC, whereas FF 2-AG had a negative correlation with them. Overall, in line with our premise, dietary n-3 FA supplementation attenuated the levels of some eCB and reduced the expression of several proteins and genes related to the ECS and immune system in the preovulatory follicle and in the endometrium, which may be part of the etiology of the positive effects of n-3 FA on the reproductive system in dairy cows.
Collapse
Affiliation(s)
- P Dos S Silva
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - Y Butenko
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel
| | - G Kra
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel; Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7610001 Rehovot, Israel
| | - S Malitsky
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - M Itkin
- Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Y Levin
- The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - U Moallem
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel
| | - M Zachut
- Department of Ruminant Science, Institute of Animal Sciences, Agricultural Research Organization, Volcani Institute, 7505101 Rishon LeZion, Israel.
| |
Collapse
|
4
|
Bøtkjær JA, Poulsen LLC, Noer PR, Grøndahl ML, Englund ALM, Franks S, Hardy K, Oxvig C, Andersen CY. Dynamics of IGF Signaling During the Ovulatory Peak in Women Undergoing Ovarian Stimulation. J Clin Endocrinol Metab 2024; 110:e160-e167. [PMID: 38436415 DOI: 10.1210/clinem/dgae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
CONTEXT Insulin-like growth factor (IGF) signaling is known to affect human ovarian follicular function during growth and development. However, the role of the IGF system is unknown during the ovulatory peak, which is characterized by profound changes in granulosa cell (GCs) mitosis and function. OBJECTIVE How is the IGF system expressed and regulated during the midcycle surge in women? METHODS Follicular fluid (FF) and GCs were collected during the ovulatory peak from 2 specific time points. One sample was obtained before oocyte pickup (OPU): before ovulation trigger (OT) (T = 0 hours) or at 12, 17, or 32 hours after OT, and 1 sample was obtained at OPU 36 hours after OT. Fifty women undergoing ovarian stimulation at a university hospital were included. Gene expression profiles were assessed by microarray analysis of GCs. IGF-related proteins in the FF were assessed by immunoassay or by determination of activity with a proteinase assay. RESULTS Gene expression of proteins promoting IGF activity (ie, IGF2, PAPP-A, and IRS1) together with proliferation markers were downregulated on a transcriptional level in GCs after OT, whereas proteins inhibiting the IGF signal (ie, IGFBPs, IGF2, and STC1) were upregulated. STC1 gene expression and protein levels were greatly upregulated after OT with a parallel steep downregulation of PAPP-A proteolytic activity. CONCLUSION These data suggest that downregulation of IGF signaling mediated by increased STC1 expression is instrumental for the sudden cessation in GC proliferation and onset of differentiation during the ovulatory peak.
Collapse
Affiliation(s)
- Jane Alrø Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, 2100 Copenhagen, Denmark
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Liv la Cour Poulsen
- Fertility Clinic, Zealand University Hospital, 4600 Køge, Denmark
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | - Pernille Rimmer Noer
- Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
| | - Marie Louise Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
| | | | - Stephen Franks
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Kate Hardy
- Institute of Reproductive and Developmental Biology, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, University of Aarhus, 8000 Aarhus, Denmark
| | - Claus Yding Andersen
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, 2730 Herlev, Denmark
- Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
5
|
Zhou L, Zhao S, Luo J, Rao M, Yang S, Wang H, Tang L. Altered Immune Cell Profiles in the Follicular Fluid of Patients with Poor Ovarian Response According to the POSEIDON Criteria. J Inflamm Res 2024; 17:10663-10679. [PMID: 39677298 PMCID: PMC11638477 DOI: 10.2147/jir.s473068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Objective This study aims to investigate alterations in immune cell counts within preovulatory follicles of patients with poor ovarian response (POR) during assisted reproductive technology (ART), classified according to the POSEIDON criteria. Methods This single-centre cross-sectional study included 543 women undergoing IVF/ICSI treatment, selected based on specific inclusion and exclusion criteria: 292 with normal ovarian response and 251 with poor response. Follicular fluid (FF) was collected on the day of oocyte retrieval and analysed by flow cytometry to determine the proportions of macrophages (Mφs), M1 and M2 Mφs, T cells (CD4 and CD8 T cells), dendritic cells (DCs), including type 1 conventional dendritic cells (cDC1) and type 2 conventional dendritic cells (cDC2), and neutrophils. Multivariable logistic regression assessed the relationship between immune cell counts and POR, Pearson correlation determined associations with the number of retrieved oocytes, and receiver operating characteristic (ROC) curves evaluated the predictive power of immune cell counts for POR. Results Immune cells accounted for 52.57% (±23.90%) of the total cell population in the follicular microenvironment, which was approximately equal to that of granulosa cells, with Mφs being the most abundant, followed sequentially by T cells, DCs, and neutrophils. In patients with POR, overall Mφs infiltration in the follicular microenvironment decreased, whereas M1 and M2 polarization increased. T cell infiltration increased, with a decrease in the CD4/CD8 ratio. Both cDC1 and cDC2 were significantly elevated. Moreover, multivariable logistic regression revealed that the total macrophage count, CD4 T cell count, and cDC2 count were independent predictors of POR. Notably, cDC2 showed the largest area under the ROC curve, suggesting its strong potential as a biomarker for predicting POR. Conclusion The proportion of immune cells in preovulatory follicles were significantly altered in patients with POR. These findings suggest that immune cell dynamics in the follicular microenvironment may play a crucial role in determining ovarian response and prognosis, indicating that targeted immunomodulatory strategies could be considered in future therapeutic approaches.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuhua Zhao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Jiahuan Luo
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Meng Rao
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Shuangjuan Yang
- The Core Technology Facility of Kunming Institute of Zoology (KIZ), Chinese Academy of Sciences (CAS), Kunming, People’s Republic of China
| | - Huawei Wang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| | - Li Tang
- Department of Reproduction and Genetics, The First Affiliated Hospital of Kunming Medical University, Kunming, People’s Republic of China
| |
Collapse
|
6
|
Tang X, Ji J, Zhu L, Sun F, Wang L, Xu W. Identification of necroptosis-related gene expression and the immune response in polycystic ovary syndrome. J Assist Reprod Genet 2024; 41:3517-3537. [PMID: 39397125 PMCID: PMC11707095 DOI: 10.1007/s10815-024-03286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common reproductive and endocrine disorder; however, the understanding of the pathogenesis of PCOS remains unclear. Necroptosis is a newly discovered mechanism of cell death, and it is closely related to reproductive endocrine-related diseases. This study aimed to investigate the hub necroptosis-related genes in PCOS patients and its correlation with immune cell infiltration by bioinformatics methods. METHOD The gene expression chip result matrix and the annotation matrix files of the GSE34526, GSE8157, and GSE5090 datasets were downloaded from the GEO database. We analyzed the expression and correlation of the necroptosis-related genes in all samples, constructed a diagnostic model based on all necroptosis-related genes and genes with significant differences, performed unsupervised clustering of samples and gene enrichment analysis, and evaluated the correlations between the hub gene and immune cell infiltration levels by the R packages GSVA and CIBERSORT. Finally, PPI networks were constructed using the Cytoscape software GeneMANIA plug-in, and the miRNA, transcription factors, RBP, and drugs were predicted. CONCLUSION Necroptosis-related genes have important relationships in the development of PCOS and are potentially associated with immune infiltration in PCOS patients.
Collapse
Affiliation(s)
- Xiuqin Tang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Jinghua Ji
- Department of Infection Management, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lili Zhu
- Department of Gynecology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Fei Sun
- Department of General, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Lihong Wang
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| | - Wenting Xu
- Department of Reproduction, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China.
| |
Collapse
|
7
|
Zheng M, Poulsen LC, Wang NF, Mamsen LS, Johannsen ML, Styrishave B, Grøndahl ML, Løssl K, Englund ALM, Skouby SO, Andersen CY. Progesterone and 17-hydroxy-progesterone concentrations in follicular fluid and serum reflect their production in granulosa and theca cells. Reprod Biomed Online 2024; 49:103853. [PMID: 38865783 DOI: 10.1016/j.rbmo.2024.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 06/14/2024]
Abstract
RESEARCH QUESTION How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.
Collapse
Affiliation(s)
- M Zheng
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark.
| | - L C Poulsen
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - N F Wang
- The Fertility Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark
| | - M L Johannsen
- Laboratory of Reproductive Biology, Copenhagen University Hospital, Copenhagen, Denmark; Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - B Styrishave
- Toxicology and Drug Metabolism Group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - M L Grøndahl
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - K Løssl
- The Fertility Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - A L M Englund
- The Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - S O Skouby
- The Fertility Clinic, Herlev Hospital, Herlev, Denmark
| | - C Y Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark; The Fertility Clinic, Herlev Hospital, Herlev, Denmark.
| |
Collapse
|
8
|
Adamowski M, Sharma Y, Molcan T, Wołodko K, Kelsey G, Galvão AM. Leptin signalling regulates transcriptional differences in granulosa cells from genetically obese mice but not the activation of NLRP3 inflammasome. Sci Rep 2024; 14:8070. [PMID: 38580672 PMCID: PMC10997671 DOI: 10.1038/s41598-024-58181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 03/26/2024] [Indexed: 04/07/2024] Open
Abstract
Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.
Collapse
Affiliation(s)
- Marek Adamowski
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Yashaswi Sharma
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Tomasz Molcan
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Karolina Wołodko
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK
| | - António M Galvão
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, Olsztyn, Poland.
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, CB2 3EG, UK.
- Department of Comparative Biomedical Sciences, Royal Veterinary College, 4 Royal College Street, London, NW1 0TU, UK.
| |
Collapse
|
9
|
Johannsen ML, Poulsen LC, Mamsen LS, Grøndahl ML, Englund ALM, Lauritsen NL, Carstensen EC, Styrishave B, Yding Andersen C. The intrafollicular concentrations of biologically active cortisol in women rise abruptly shortly before ovulation and follicular rupture. Hum Reprod 2024; 39:578-585. [PMID: 38268234 DOI: 10.1093/humrep/deae003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
STUDY QUESTION What is the temporal activity and the concentration in follicular fluid (FF) of the anti-inflammatory steroid cortisol during the ovulatory process in humans? SUMMARY ANSWER Intrafollicular concentrations of cortisol become massively upregulated close to ovulation concomitant with an exceptionally high biological activity securing a timely and efficient termination of inflammatory processes. WHAT IS KNOWN ALREADY Ovulation has been described as a local, controlled inflammatory process resulting in the degeneration of the follicle wall which facilitate oocyte extrusion. Ovulation also affects the glucocorticoid metabolism of granulosa cells (GCs) and although de novo synthesis of cortisol only occurs in the adrenal cortex, the mid-cycle surge has been shown to induce a change from high expression of HSD11B2, inactivating cortisol to cortisone, to high expression of HSD11B1 which reversibly catalyses cortisol production from cortisone. Furthermore, high concentrations of progesterone and 17OH-progesterone within follicles may cause dislodging of cortisol from cortisol binding protein (CBP) thereby activating the biological activity of cortisol. STUDY DESIGN, SIZE, DURATION This prospective cohort study included 50 women undergoing fertility treatment according to a standard antagonist protocol at a university hospital-affiliated fertility clinic in Denmark. PARTICIPANTS/MATERIALS, SETTING, METHODS Women donated FF and GCs from one follicle for research purpose aspirated at one of four time points during the process of final maturation of follicles: T = 0 h, T = 12 h, T = 17 h, T = 32 h. A second sample was collected at oocyte pick up at T = 36 h. The concentration of cortisol and cortisone together with a range of sex steroids was measured by LC-MS/MS in FF collected at the five time points mentioned above. Whole genome microarray data, validated by q-PCR analysis, was used to evaluate gene expression of CYP11B1, CYP21A2, HSD11B1, HSD11B2, and NR3C1 in GCs at the same time points. MAIN RESULTS AND THE ROLE OF CHANCE The concentration of cortisol was significantly increased from a few nM at 0 h to around 100-140 nM (P ≤ 0.0001) at 32-36 h, whilst cortisone was almost constant from 0 to 17 h at a concentration of between 90 and 100 nM being significantly reduced to 25-40 nM (P ≤ 0.0001) at 32-36 h. This was paralleled by a 690-fold upregulation of HSD11B1 from 0 to 12 h increasing to a more than 20.000-fold change at 36 h. HSD11B2 was quickly downregulated 15- to 20-fold after ovulation induction. Concentrations of progesterone and 17OH-progesterone increased during the ovulatory process to high levels which in essence displaces cortisol from its binding protein CBP due to similar binding affinities. Furthermore, a significant decrease in 11-deoxycortisol expression was seen, but CYP11B1 expression was below detection limit in GCs. LIMITATIONS, REASONS FOR CAUTION The study included women undergoing ovarian stimulation and results may differ from the natural cycle. More observations at each specific time point may have strengthened the conclusions. Furthermore, we have not been able to measure the actual active biological concentration of cortisol. WIDER IMPLICATIONS OF THE FINDINGS For the first time, this study collectively evaluated the temporal pattern of cortisol and cortisone concentrations during human ovulation, rendering a physiological framework for understanding potential dysregulations in the inflammatory reaction of ovulation. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the University Hospital of Copenhagen, Rigshospitalet, and Novo Nordisk Foundation grant number NNF21OC00700556. Interreg V ÔKS through ReproUnion (www.reprounion.eu); Region Zealand Research Foundation. The funders had no role in study design, collection of data, analyses, writing of the article, or the decision to submit it for publication. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M L Johannsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen Ø, Denmark
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - L C Poulsen
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Køge, Denmark
| | - N L Lauritsen
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - E C Carstensen
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - B Styrishave
- Toxicolgy and Drug Metabolism group, Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen Ø, Denmark
| | - C Yding Andersen
- Faculty of Health and Medical Science, Institute for Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
10
|
Ma JY, Xia TJ, Li S, Yin S, Luo SM, Li G. Germline cell de novo mutations and potential effects of inflammation on germline cell genome stability. Semin Cell Dev Biol 2024; 154:316-327. [PMID: 36376195 DOI: 10.1016/j.semcdb.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/05/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Uncontrolled pathogenic genome mutations in germline cells might impair adult fertility, lead to birth defects or even affect the adaptability of a species. Understanding the sources of DNA damage, as well as the features of damage response in germline cells are the overarching tasks to reduce the mutations in germline cells. With the accumulation of human genome data and genetic reports, genome variants formed in germline cells are being extensively explored. However, the sources of DNA damage, the damage repair mechanisms, and the effects of DNA damage or mutations on the development of germline cells are still unclear. Besides exogenous triggers of DNA damage such as irradiation and genotoxic chemicals, endogenous exposure to inflammation may also contribute to the genome instability of germline cells. In this review, we summarized the features of de novo mutations and the specific DNA damage responses in germline cells and explored the possible roles of inflammation on the genome stability of germline cells.
Collapse
Affiliation(s)
- Jun-Yu Ma
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Tian-Jin Xia
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China; College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shen Yin
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| | - Shi-Ming Luo
- Fertility Preservation Lab, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
11
|
Wang X, Rowan-Carroll A, Meier MJ, Williams A, Yauk CL, Hales BF, Robaire B. Toxicological Mechanisms and Potencies of Organophosphate Esters in KGN Human Ovarian Granulosa Cells as Revealed by High-throughput Transcriptomics. Toxicol Sci 2023; 197:kfad114. [PMID: 37941476 PMCID: PMC10823774 DOI: 10.1093/toxsci/kfad114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Despite the growing number of studies reporting potential risks associated with exposure to organophosphate esters (OPEs), their molecular mechanisms of action remain poorly defined. We used the high-throughput TempO-Seq™ platform to investigate the effects of frequently detected OPEs on the expression of ∼3000 environmentally responsive genes in KGN human ovarian granulosa cells. Cells were exposed for 48 h to one of five OPEs (0.1 to 50 μM): tris(methylphenyl) phosphate (TMPP), isopropylated triphenyl phosphate (IPPP), tert-butylphenyl diphenyl phosphate (BPDP), triphenyl phosphate (TPHP), or tris(2-butoxyethyl) phosphate (TBOEP). The sequencing data indicate that four OPEs induced transcriptional changes, whereas TBOEP had no effect within the concentration range tested. Multiple pathway databases were used to predict alterations in biological processes based on differentially expressed genes. At lower concentrations, inhibition of the cholesterol biosynthetic pathway was the predominant effect of OPEs; this was likely a consequence of intracellular cholesterol accumulation. At higher concentrations, BPDP and TPHP had distinct effects, primarily affecting pathways involved in cell cycle progression and other stress responses. Benchmark concentration (BMC) modelling revealed that BPDP had the lowest transcriptomic point of departure. However, in vitro to in vivo extrapolation modeling indicated that TMPP was bioactive at lower concentrations than the other OPEs. We conclude that these new approach methodologies provide information on the mechanism(s) underlying the effects of data-poor compounds and assist in the derivation of protective points of departure for use in chemical read-across and decision-making.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Andrea Rowan-Carroll
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario K2K 0K9, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 9A7, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 1Y6, Canada
- Department of Obstetrics and Gynecology, McGill University, Montréal, Québec H3G 1Y6, Canada
| |
Collapse
|
12
|
Wang P, Paquet ÉR, Robert C. Comprehensive transcriptomic analysis of long non-coding RNAs in bovine ovarian follicles and early embryos. PLoS One 2023; 18:e0291761. [PMID: 37725621 PMCID: PMC10508637 DOI: 10.1371/journal.pone.0291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have been the subject of numerous studies over the past decade. First thought to come from aberrant transcriptional events, lncRNAs are now considered a crucial component of the genome with roles in multiple cellular functions. However, the functional annotation and characterization of bovine lncRNAs during early development remain limited. In this comprehensive analysis, we review lncRNAs expression in bovine ovarian follicles and early embryos, based on a unique database comprising 468 microarray hybridizations from a single platform designed to target 7,724 lncRNA transcripts, of which 5,272 are intergenic (lincRNA), 958 are intronic, and 1,524 are antisense (lncNAT). Compared to translated mRNA, lncRNAs have been shown to be more tissue-specific and expressed in low copy numbers. This analysis revealed that protein-coding genes and lncRNAs are both expressed more in oocytes. Differences between the oocyte and the 2-cell embryo are also more apparent in terms of lncRNAs than mRNAs. Co-expression network analysis using WGCNA generated 25 modules with differing proportions of lncRNAs. The modules exhibiting a higher proportion of lncRNAs were found to be associated with fewer annotated mRNAs and housekeeping functions. Functional annotation of co-expressed mRNAs allowed attribution of lncRNAs to a wide array of key cellular events such as meiosis, translation initiation, immune response, and mitochondrial related functions. We thus provide evidence that lncRNAs play diverse physiological roles that are tissue-specific and associated with key cellular functions alongside mRNAs in bovine ovarian follicles and early embryos. This contributes to add lncRNAs as active molecules in the complex regulatory networks driving folliculogenesis, oogenesis and early embryogenesis all of which are necessary for reproductive success.
Collapse
Affiliation(s)
- Pengmin Wang
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Éric R. Paquet
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| | - Claude Robert
- Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
13
|
Choi Y, Jeon H, Brännström M, Akin JW, Curry TE, Jo M. A single-cell gene expression atlas of human follicular aspirates: Identification of leukocyte subpopulations and their paracrine factors. FASEB J 2023; 37:e22843. [PMID: 36934419 DOI: 10.1096/fj.202201746rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/20/2023]
Abstract
Leukocytes are in situ regulators critical for ovarian function. However, little is known about leukocyte subpopulations and their interaction with follicular cells in ovulatory follicles, especially in humans. Single-cell RNA sequencing (scRNA-seq) was performed using follicular aspirates obtained from four IVF patients and identified 13 cell groups: one granulosa cell group, one thecal cell group, 10 subsets of leukocytes, and one group of RBC/platelet. RNA velocity analyses on five granulosa cell populations predicted developmental dynamics denoting two projections of differentiation states. The cell type-specific transcriptomic profiling analyses revealed the presence of a diverse array of leukocyte-derived factors that can directly impact granulosa cell function by activating their receptors (e.g., cytokines and secretory ligands) and are involved in tissue remodeling (e.g., MMPs, ADAMs, ADAMTSs, and TIMPs) and angiogenesis (e.g., VEGFs, PGF, FGF, IGF, and THBS1) in ovulatory follicles. Consistent with the findings from the scRNA-seq data, the leukocyte-specific expression of CD68, IL1B, and MMP9 was verified in follicle tissues collected before and at defined hours after hCG administration from regularly cycling women. Collectively, this study demonstrates that this data can be used as an invaluable resource for identifying important leukocyte-derived factors that promote follicular cell function, thereby facilitating ovulation and luteinization in women.
Collapse
Affiliation(s)
- Yohan Choi
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Hayce Jeon
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Mats Brännström
- Department of Obstetrics and Gynecology, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - James W Akin
- Bluegrass Fertility Center, Lexington, Kentucky, USA
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Misung Jo
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| |
Collapse
|
14
|
Kim S, Oh D, Choi H, Kim M, Cai L, Jawad A, Haomiao Z, Lee J, Kim E, Hyun SH. The effect of C–C motif chemokine ligand 2 supplementation on in vitro maturation of porcine cumulus-oocyte complexes and subsequent developmental competence after parthenogenetic activation. Front Vet Sci 2023; 10:1136705. [PMID: 36992978 PMCID: PMC10040565 DOI: 10.3389/fvets.2023.1136705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Porcine embryos are used for a variety of applications. However, the maturation rate in vitro remains low, and novel in vitro maturation (IVM) techniques that facilitate the collection of mature oocytes are necessary. C-C motif chemokine ligand 2 (CCL2) is a key periovulatory chemokine present in cumulus-oocyte complexes (COCs). We aimed to examine the effects of CCL2 supplementation during IVM on oocyte maturation and embryonic development. The CCL2 concentration was significantly higher in porcine follicular fluid (pFF) derived from follicles >8 mm in size than in pFF derived from smaller follicles. There was a significant increase in CCL2 mRNA levels in all follicular cells after IVM compared with that before IVM. We analyzed the localization of CCL2 and its receptor, the CCL2 receptor, in follicular cells. During IVM, different concentrations of CCL2 were added to COCs cultured in a maturation medium. After IVM, the group treated with 100 ng/mL CCL2 showed significantly higher metaphase II rates than the control group. All CCL2-treatment groups showed a significant increase in intracellular glutathione levels and a significant decrease in reactive oxygen species levels, compared to the control. In CCs treated with 100 ng/mL CCL2, the mRNA levels of BAX, CASP3, and NPR2 were significantly decreased. Furthermore, the mRNA levels of SOD1, SOD2, and CD44 were significantly increased. In oocytes treated with 10 ng/mL CCL2, mRNA levels of BAX and CASP3 were significantly decreased, whereas, NRF2 and NPM2 were significantly increased. ERK1 exhibited significantly increased mRNA expression in both CCs and oocytes treated with 10 ng/mL CCL2. The protein expression ratio of phosphorylated ERK1/2 to total ERK1/2 was significantly increased in CCs treated with 10 ng/mL CCL2. After parthenogenetic activation, cleavage rates were significantly improved in the 100 ng/mL CCL2 treatment group, and blastocyst formation rates were significantly enhanced in the 10 ng/mL CCL2 treatment group. Overall, our results suggest that IVM medium along with CCL2 improves porcine oocyte maturation and the development of parthenogenetically-activated embryos.
Collapse
Affiliation(s)
- Sohee Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Dongjin Oh
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hyerin Choi
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Mirae Kim
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Lian Cai
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
| | - Ali Jawad
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Zheng Haomiao
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Joohyeong Lee
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Eunhye Kim
- Laboratory of Molecular Diagnostics and Cell Biology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
- *Correspondence: Eunhye Kim
| | - Sang-Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, Veterinary Medical Center and College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Institute of Stem Cell and Regenerative Medicine, Chungbuk National University, Cheongju, Republic of Korea
- Graduate School of Veterinary Biosecurity and Protection, Chungbuk National University, Cheongju, Republic of Korea
- Sang-Hwan Hyun
| |
Collapse
|
15
|
Dang X, Fang L, Zhang Q, Liu B, Cheng JC, Sun YP. AREG upregulates secreted protein acidic and rich in cysteine expression in human granulosa cells. Mol Cell Endocrinol 2023; 561:111826. [PMID: 36462647 DOI: 10.1016/j.mce.2022.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
The secreted protein acidic and rich in cysteine (SPARC) is a secreted glycoprotein and the expression of ovarian SPARC peaks during ovulation and luteinization. Besides, SPARC expression was induced by human chorionic gonadotropin (hCG) in rat granulosa cells. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) ligand expressed in human granulosa cells and follicular fluid. AREG mediates the physiological functions of luteinizing hormone (LH)/hCG in the ovary. However, to date, the biological function of SPARC in the human ovary remains undetermined, and whether AREG regulates SPARC expression in human granulosa cells is unknown. In this study, we show that AREG upregulated SPARC expression via EGFR in a human granulosa-like tumor cell line, KGN. Treatment of AREG activated ERK1/2, JNK, p38 MAPK, and PI3K/AKT signaling pathways and all of them were required for the AREG-induced SPARC expression. Using RNA-sequencing, we identified that steroidogenic acute regulatory protein (StAR) was a downstream target gene of SPARC. In addition, we demonstrated that SPARC mRNA levels were positively correlated with the levels of StAR mRNA in the primary culture of human granulosa cells. Moreover, SPARC protein levels were positively correlated with progesterone levels in follicular fluid of in vitro fertilization patients. This study provides the regulatory role of AREG on the expression of SPARC and reveals the novel function of SPARC in progesterone production in granulosa cells.
Collapse
Affiliation(s)
- Xuan Dang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Qian Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Boqun Liu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
16
|
Pei J, Xiong L, Guo S, Wang X, Bao P, Wu X, Yan P, Guo X. A single-cell transcriptomic atlas characterizes cell types and their molecular features in yak ovarian cortex. FASEB J 2023; 37:e22718. [PMID: 36527406 DOI: 10.1096/fj.202201176rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/21/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
The ovary as one of the most dynamic organs produces steroids to orchestrate female secondary sexual characteristics, harbors ovarian reserve for oocytes, releases mature oocytes for fertilization, and maintains pregnancy. Yak (Bos grunniens) is the only bovid animal that can adapt to the harsh climatic conditions on the Qinghai-Tibetan Plateau (altitudes of over 3000 m above sea level). However, the cellular atlas is composed of oocytes and other somatic cells, and their individual molecular characteristics remain to be elucidated in the yak ovary. Here, single-cell RNA sequencing (scRNA-seq) was performed to delineate the molecular signature of various cell types in the yak ovarian cortex. A cellular atlas of yak ovarian cortex was constructed successfully on the basis of the differentially expressed genes (DEGs) from the distinct cell types and their functional enrichment analysis, comprising endothelial cells, nature kill cells, stromal cells, smooth muscle cells, oocytes, macrophages, epithelial cells, and granulosa cells. Meanwhile, the signature genes were determined based on their expression specificity in each cell type. A cell-to-cell communication network was built in light of the differentially overexpressed ligand and receptor genes from each cell type. Further, the oocytes were subdivided into four subtypes based on their individual DEGs and the functional enrichment of the DEGs. FST and TOP2A were identified as maker genes for oocytes by immunostaining in the yak ovarian cortex. The cellular atlas reveals the biological characteristics of the ovarian cortex at the cellular molecular level and provides insights into female reproductive biology via cellular communications in the yak.
Collapse
Affiliation(s)
- Jie Pei
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou, China
| |
Collapse
|
17
|
A review on inflammation and angiogenesis as key mechanisms involved in the pathogenesis of bovine cystic ovarian disease. Theriogenology 2022; 186:70-85. [DOI: 10.1016/j.theriogenology.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022]
|
18
|
Nikanfar S, Hamdi K, Haiaty S, Samadi N, Shahnazi V, Fattahi A, Nouri M. Oncostatin M and its receptor in women with polycystic ovary syndrome and association with assisted reproductive technology outcomes. Reprod Biol 2022; 22:100633. [PMID: 35278823 DOI: 10.1016/j.repbio.2022.100633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 12/17/2022]
Abstract
The role of adipokines in ovarian-related disorders such as polycystic ovary syndrome (PCOS) has been reported. However, the involvement of Oncostatin M (OSM), a recently identified adipokine, in ovarian function is unknown. Therefore, we investigated the association of the OSM signaling pathway with ovarian functions and PCOS pathogenesis. This case-control study enrolled 30 PCOS and 30 healthy women who underwent the intracytoplasmic sperm injection procedure. OSM and OSM receptor (OSMR) levels were evaluated in the follicular fluid (FF). Moreover, the expression of insulin receptor substrates (IRS1 and IRS2), OSM, OSMR, suppressor of cytokine signaling 3 (SOCS3), and androgen receptor (AR) genes were analyzed in the isolated cumulus cells (CCs). For the in-vitro experiment, the effect of recombinant OSM on the expression of related genes in isolated CCs was analyzed. Follicular concentrations of OSM and OSMR were significantly lower in PCOS (123.91±48.58 pg/ml and 0.93±0.35 ng/ml, respectively) compared to control women (283.53 ± 96.62 pg/ml and 1.45 ± 0.18 ng/ml, respectively; p < 0.001) and were positively correlated with the oocyte maturation (r = 0.611 and r = 0.611, respectively) and fertilization (r = 0.592 and r = 0.627, respectively) rates in the PCOS group. Furthermore, the SOCS3 expression was upregulated about eight times in PCOS patients compared to the controls (p < 0.05). The treatment of cells with recombinant OSM significantly increased SOCS3, OSMR, IRS-1, and -2 expression and decreased AR expression. The decreased levels of OSM and its receptor in PCOS patients, possibly mediated by SOCS3, could negatively affect oocyte maturation and fertilization rates.
Collapse
Affiliation(s)
- Saba Nikanfar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Kobra Hamdi
- Department of Obstetrics and Gynecology, Tabriz University of Medical Science, Tabriz, Iran; Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sanya Haiaty
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naser Samadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Vahideh Shahnazi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Amir Fattahi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Differential proteomic analysis demonstrates follicle fluid participate immune reaction and protein translation in yak. BMC Vet Res 2022; 18:34. [PMID: 35031034 PMCID: PMC8758897 DOI: 10.1186/s12917-021-03097-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background Ovarian follicle fluid (FF) as a microenvironment surrounding oocyte plays critical roles in physio-biochemical processes of follicle development and oocyte maturation. It is hypothesized that proteins in yak FF participate in the physio-biochemical pathways. The primary aims of this study were to find differentially expressed proteins (DEPs) between mature and immature FF, and to elucidating functions of the mature and immature FF in yak. Results The mature and immature FF samples were obtained from three healthy yaks that were nonpregnant, aged from four to five years, and free from any anatomical reproductive disorders. The FF samples were subjected to mass spectrometry with the isobaric tags for relative and absolute quantification (iTRAQ). The FF samples went through correlation analysis, principle component analysis, and expression pattern analysis based on quantification of the identified proteins. Four hundred sixty-three DEPs between mature and immature FF were identified. The DEPs between the mature and immature FF samples underwent gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and protein-protein interaction (PPI) analysis. The DEPs highly expressed in the mature FF mainly took parts in the complement and coagulation cascades, defense response, acute-phase response, response to other organism pathways to avoid invasion of exogenous microorganisms. The complement activation pathway contains eight DEPs, namely C2, C5, C6, C7, C9, C4BPA, CFH, and MBL2. The three DEPs, CATHL4, CHGA, and PGLYRP1, take parts in defense response pathway to prevent invasion of exogenetic microorganism. The coagulation cascades pathway involves many coagulation factors, such as F7, F13A1, FGA, FGB, FGG, KLKB1, KNG1, MASP1, SERPINA1, and SERPIND1. While the DEPs highly expressed in the immature FF participated in protein translation, peptide biosynthetic process, DNA conformation change, and DNA geometric change pathways to facilitate follicle development. The translation pathway contains many ribosomal proteins, such as RPL3, RPL5, RPS3, RPS6, and other translation factors, such as EIF3J, EIF4G2, ETF1, MOV10, and NARS. The DNA conformation change and DNA geometric change involve nine DEPs, DDX1, G3BP1, HMGB1, HMGB2, HMGB3, MCM3, MCM5, MCM6, and RUVBL2. Furthermore, the expressed levels of the main DEPs, C2 and SERPIND1, were confirmed by western blot. Conclusions The differential proteomics revealed the up-regulated DEPs in mature FF take parts in immunoreaction to prevent invasion of microorganisms and the up-regulated DEPs in immature FF participate in protein synthesis, which may improve our knowledge of the follicular microenvironment and its biological roles for reproductive processes in yak. The DEPs, C2 and SERPIND1, can be considered as protein markers for mature yak follicle. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-03097-0.
Collapse
|
20
|
Aires LPN, Gasser B, Silva P, Del Aguila Da Silva P, Silveira MV, Carneiro RK, IwaoYamada D, Padilha-Nakaghi LC, Uscategui RAR, Spada S, Russo M, Feliciano MAR. High-definition ultrasonography in the evaluation of the reproductive tract of bitches during the follicular phase of the estrous cycle. Anim Reprod Sci 2021; 234:106870. [PMID: 34673364 DOI: 10.1016/j.anireprosci.2021.106870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 01/19/2023]
Abstract
The aim was to sonographically evaluate the reproductive tract of bitches during the follicular phase of the estrous cycle using High Density (HD) ultrasonic techniques. Females (n = 8) were evaluated at five different times throughout the follicular phase, as determined by vaginal cytology and blood progesterone concentrations. Ultrasonic exams were performed using the ACUSON S2000/SIEMENS device utilizing a multifrequency HD transducer (5.5-18 MHz). Videos of the ovaries were obtained and recordings were evaluated using a DICOM viewer software for counting and measuring the ovarian structures, which were assigned to groups based on diameter in mm: G1: ≤ 1; G2: from 1.01 to 3.5; G3 from 3.51 to 5.5; G4: from 5.51 to 10. There was a greater uterine thickness with the progression of the follicular phase (P < 0.05). Six distinct regions were identified in the uterine wall. The ovarian dimensions increased (P < 0.05) as stage of the follicular phase advanced. There was fluid detected around the ovaries after ovulation. There was a characteristic fat tissue hyperechogenicity around the ovaries at all timepoints. There was a difference in the number of ovarian structures of each dimension group at each time there were assessments (P < 0.05). There was a difference in diameter of the largest ovarian structure and in average value of wall thickness at all timepoints when there were evaluations (P < 0.05). The HD ultrasonography technique provides for excellent image resolution, allowing for a more precise characterization of the bitch's reproductive structures and changes occurring during the follicular phase of the estrous cycle.
Collapse
Affiliation(s)
- Luiz Paulo Nogueira Aires
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, São Paulo, Brazil.
| | - Beatriz Gasser
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Priscila Silva
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Priscila Del Aguila Da Silva
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Marcus Vinícius Silveira
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Rafael Kretzer Carneiro
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil
| | - Diego IwaoYamada
- Hospital Carlos Fernando Rossato, College Dr. Francisco Maeda - FAFRAM, Ituverava, São Paulo, Brazil
| | - Luciana Cristina Padilha-Nakaghi
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, São Paulo, Brazil
| | - Ricardo Andrés Ramirez Uscategui
- Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil; Institute of Agrarian Sciences, Federal University of the Jequitinhonha and Mucuri Valleys (UFVJM), Unaí, Minas Gerais, Brazil
| | - Stefano Spada
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Napoli, Italy
| | - Marco Russo
- Department of Veterinary Medicine and Animal Productions, University of Naples "Federico II", Napoli, Italy
| | - Marcus Antônio Rossi Feliciano
- Department of Pathology, Reproduction and One Health, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, 14884-900 Jaboticabal, São Paulo, Brazil; Department of Veterinary Clinic and Surgery, School of Agricultural and Veterinarian Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal, São Paulo, Brazil; Diagnostic Imaging Sector, Department of Large Animals Clinic, Federal University of Santa Maria (UFSM), Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
21
|
Niu Q, Shi J, Gao Q, Fu J. WNT5A Enhances LH-Mediated Expression of HAS2 in Granulosa Cells. Reprod Sci 2021; 29:1618-1629. [PMID: 34542891 DOI: 10.1007/s43032-021-00736-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
In adult ovary, WNT5A is involved in follicular responses to gonadotropins and necessary for ovarian follicle development. However, the mechanism by which gonadotropins regulate WNT5A and the role of WNT5A in modulating follicular responses to gonadotropins are unclear. In mice, we discovered that the expression of Wnt5a was increased in granulosa cells of mouse ovaries during ovulation, and regulated by gonadotropin-activated intra-ovarian cytokine interleukin 6 (IL6). Using human granulosa-like KGN cells, we confirmed that forskolin plus phorbol myristate acetate (PMA) which mimic the luteinizing hormone (LH) action induced the expression of WNT5A and cumulus expansion gene HAS2. However, this effect was suppressed by a NF-κB pathway inhibitor. Inhibition of NF-κB pathway also blocked the activation of WNT5A signaling components ROR2 and JNK. Moreover, exogenous WNT5A enhanced the expression of HAS2 in KGN cells through JNK and AKT signaling pathways. Knockdown of WNT5A expression by siRNA disrupted LH-mediated expression of HAS2. Our findings indicate that WNT5A could be a fine tuner for LH-induced HAS2 expression in ovarian granulosa cells.
Collapse
Affiliation(s)
- Qun Niu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Jingjing Shi
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China
- Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
| | - Qing Gao
- Department of Histology and Embryology, School of Basic Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jiang Fu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, Shandong, China.
- Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
22
|
Chermuła B, Hutchings G, Kranc W, Józkowiak M, Jopek K, Stelmach B, Mozdziak P, Pawelczyk L, Piotrowska-Kempisty H, Spaczyński RZ, Kempisty B. Expression Profile of New Gene Markers and Signaling Pathways Involved in Immunological Processes in Human Cumulus-Oophorus Cells. Genes (Basel) 2021; 12:1369. [PMID: 34573352 PMCID: PMC8472231 DOI: 10.3390/genes12091369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 12/05/2022] Open
Abstract
The function of the immune system extends from defense against external pathogens to the recognition and elimination of mutated or dying cells, aiding elimination of malignant potential and/or maintaining homeostasis. The many cell types of the immune system secrete a broad range of factors to enable cellular signaling that is vital to physiological processes. Additionally, in the ovary, follicular selection and maturation, as well as ovulation, are directly regulated by the nearby immune cells. Additionally, ovulation and rupture of the follicle have been observed to resemble a local inflammatory response. Cells of the cumulus-oocyte complex (COC) show evolving gene expression profiles throughout the oocytes' lifespan, including genes associated with immunological processes. Analysis of these genes allows the identification of useful molecular markers, as well as highlighting gene functions and interactions in these cells. Cumulus cells were obtained from hormonally stimulated patients undergoing an in vitro fertilization procedure and studied under long-term culture conditions. The microarray technique made it possible to compare the level of CCs' gene expression on the 1st, 7th, 15th and 30th day of cultivation. Additionally, RNA microarray analysis was performed to map gene expression in these cells, associated with immunological processes and associated cytokine signaling. Subsequently, the use of DAVID software allowed us to identify the "defense response to other organism", "defense response", "defense response to virus", "cytokine secretion", "cytokine production" and "cytokine-mediated signaling pathway" GO BP terms, as well as allowing further analysis of the most differentially expressed genes associated with these processes. Of the 122 genes involved, 121 were upregulated and only one was downregulated. The seven most upregulated genes related to the abovementioned terms were ANXA3, IFIT1, HLA-DPA1, MX1, KRT8, HLA-DRA and KRT18. Therefore, genes involved in immunological defense processes are upregulated in CC cultures and could serve as useful molecular markers of growth and development in the COC, as well as the proliferation of granulosa and cumulus cells.
Collapse
Affiliation(s)
- Błażej Chermuła
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Greg Hutchings
- The School of Medicine, Medical Sciences and Nutrition, Aberdeen University, Aberdeen AB25 2ZD, UK;
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
| | - Bogusława Stelmach
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Paul Mozdziak
- Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Leszek Pawelczyk
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 30 Dojazd St., 60-631 Poznan, Poland; (M.J.); (H.P.-K.)
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland
| | - Robert Z. Spaczyński
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 33 Polna St., 60-535 Poznan, Poland; (B.C.); (B.S.); (L.P.); (R.Z.S.)
| | - Bartosz Kempisty
- Department of Anatomy, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego St., 60-781 Poznan, Poland;
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 1 Lwowska St., 87-100 Torun, Poland
| |
Collapse
|
23
|
Poulsen LC, Englund ALM, Andersen AS, Bøtkjær JA, Mamsen LS, Damdimopoulou P, Østrup O, Grøndahl ML, Yding Andersen C. Follicular hormone dynamics during the midcycle surge of gonadotropins in women undergoing fertility treatment. Mol Hum Reprod 2021; 26:256-268. [PMID: 32023345 DOI: 10.1093/molehr/gaaa013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/21/2020] [Indexed: 12/16/2022] Open
Abstract
Changes in concentrations of intra-follicular hormones during ovulation are important for final oocyte maturation and endometrial priming to ensure reproductive success. As no human studies have investigated these changes in detail, our objective was to describe the dynamics of major follicular fluid (FF) hormones and transcription of steroidogenic enzymes and steroid receptors in human granulosa cells (GCs) during ovulation. We conducted a prospective cohort study at a public fertility clinic in 2016-2018. Fifty women undergoing ovarian stimulation for fertility treatment were included. From each woman, FF and GCs were collected by transvaginal ultrasound-guided follicle puncture of one follicle at two specific time points during ovulation, and the study covered a total of five time points: before ovulation induction (OI), 12, 17, 32 and 36 h after OI. Follicular fluid concentrations of oestradiol, progesterone, androstenedione, testosterone, 17-hydroxyprogesterone, anti-Mullerian hormone, inhibin A and inhibin B were measured using ELISA assays, and a statistical mixed model was used to analyse differences in hormone levels between time points. Gene expression of 33 steroidogenic enzymes and six hormone receptors in GCs across ovulation were assessed by microarray analysis, and selected genes were validated by quantitative reverse transcription PCR. We found that concentrations of oestradiol, testosterone, progesterone, AMH, inhibin A and inhibin B (P < 0.001) and gene expression of 12 steroidogenic enzymes and five receptors (false discovery rate < 0.0001) changed significantly during ovulation. Furthermore, we found parallel changes in plasma hormones. The substantial changes in follicular hormone production during ovulation highlight their importance for reproductive success.
Collapse
Affiliation(s)
- L C Poulsen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - A S Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - J A Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - L S Mamsen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - P Damdimopoulou
- Swedish Toxicology Sciences Research Centre (Swetox), Karolinska Institute, Unit of Toxicology Sciences, 15136 Södertälje, Sweden.,Department of Clinical Science, Intervention and Technology, Karolinska Institute, SE-141 83 Stockholm, Sweden
| | - O Østrup
- Center for Genomic Medicine, Microarray Core Facility, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
24
|
Poulsen LC, Bøtkjær JA, Østrup O, Petersen KB, Andersen CY, Grøndahl ML, Englund ALM. Two waves of transcriptomic changes in periovulatory human granulosa cells. Hum Reprod 2021; 35:1230-1245. [PMID: 32378719 DOI: 10.1093/humrep/deaa043] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION How does the human granulosa cell (GC) transcriptome change during ovulation? SUMMARY ANSWER Two transcriptional peaks were observed at 12 h and at 36 h after induction of ovulation, both dominated by genes and pathways known from the inflammatory system. WHAT IS KNOWN ALREADY The crosstalk between GCs and the oocyte, which is essential for ovulation and oocyte maturation, can be assessed through transcriptomic profiling of GCs. Detailed transcriptional changes during ovulation have not previously been assessed in humans. STUDY DESIGN, SIZE, DURATION This prospective cohort study comprised 50 women undergoing fertility treatment in a standard antagonist protocol at a university hospital-affiliated fertility clinic in 2016-2018. PARTICIPANTS/MATERIALS, SETTING, METHODS From each woman, one sample of GCs was collected by transvaginal ultrasound-guided follicle aspiration either before or 12 h, 17 h or 32 h after ovulation induction (OI). A second sample was collected at oocyte retrieval, 36 h after OI. Total RNA was isolated from GCs and analyzed by microarray. Gene expression differences between the five time points were assessed by ANOVA with a random factor accounting for the pairing of samples, and seven clusters of protein-coding genes representing distinct expression profiles were identified. These were used as input for subsequent bioinformatic analyses to identify enriched pathways and suggest upstream regulators. Subsets of genes were assessed to explore specific ovulatory functions. MAIN RESULTS AND THE ROLE OF CHANCE We identified 13 345 differentially expressed transcripts across the five time points (false discovery rate, <0.01) of which 58% were protein-coding genes. Two clusters of mainly downregulated genes represented cell cycle pathways and DNA repair. Upregulated genes showed one peak at 12 h that resembled the initiation of an inflammatory response, and one peak at 36 h that resembled the effector functions of inflammation such as vasodilation, angiogenesis, coagulation, chemotaxis and tissue remodelling. Genes involved in cell-matrix interactions as a part of cytoskeletal rearrangement and cell motility were also upregulated at 36 h. Predicted activated upstream regulators of ovulation included FSH, LH, transforming growth factor B1, tumour necrosis factor, nuclear factor kappa-light-chain-enhancer of activated B cells, coagulation factor 2, fibroblast growth factor 2, interleukin 1 and cortisol, among others. The results confirmed early regulation of several previously described factors in a cascade inducing meiotic resumption and suggested new factors involved in cumulus expansion and follicle rupture through co-regulation with previously described factors. LARGE SCALE DATA The microarray data were deposited to the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/gds/, accession number: GSE133868). LIMITATIONS, REASONS FOR CAUTION The study included women undergoing ovarian stimulation and the findings may therefore differ from a natural cycle. However, the results confirm significant regulation of many well-established ovulatory genes from a series of previous studies such as amphiregulin, epiregulin, tumour necrosis factor alfa induced protein 6, tissue inhibitor of metallopeptidases 1 and plasminogen activator inhibitor 1, which support the relevance of the results. WIDER IMPLICATIONS OF THE FINDINGS The study increases our understanding of human ovarian function during ovulation, and the publicly available dataset is a valuable resource for future investigations. Suggested upstream regulators and highly differentially expressed genes may be potential pharmaceutical targets in fertility treatment and gynaecology. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by EU Interreg ÔKS V through ReproUnion (www.reprounion.eu) and by a grant from the Region Zealand Research Foundation. None of the authors have any conflicts of interest to declare.
Collapse
Affiliation(s)
- L C Poulsen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - J A Bøtkjær
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - O Østrup
- Center for Genomic Medicine, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - K B Petersen
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| | - C Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | - M L Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - A L M Englund
- Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark
| |
Collapse
|
25
|
Serum amyloid A in polycystic ovary syndrome. Clin Chim Acta 2021; 518:151-155. [PMID: 33811926 DOI: 10.1016/j.cca.2021.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/21/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022]
Abstract
Polycystic ovary syndrome (PCOS), i.e., anovulation, hyperandrogenemia and polycystic ovary, is an endocrine-metabolic disease affecting reproductive aged women. Women with PCOS are likely to develop obesity, dyslipidemia, type 2 diabetes mellitus (T2DM) and cardiovascular diseases at a younger age. Despite high frequency and severe disease burden, the pathophysiological mechanisms of PCOS remain poorly defined and correspondingly have no therapeutic options. Emerging evidence has demonstrated that PCOS is accompanied with low-grade chronic inflammation and biomarkers thereof. Interestingly, serum amyloid A (SAA) has recently been identified as a potential marker of infection and inflammation and a number of studies have reported an association with PCOS. In this review, we explore the relationship between SAA and hyperandrogenemia, inflammation, obesity and insulin resistance, and provide convincing evidence for SAA as a potential inflammatory biomarker in PCOS.
Collapse
|
26
|
Wang X, Hales BF, Robaire B. Effects of flame retardants on ovarian function. Reprod Toxicol 2021; 102:10-23. [PMID: 33819575 DOI: 10.1016/j.reprotox.2021.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Flame retardants have been added to a variety of consumer products and are now found ubiquitously throughout the environment. Epidemiological, in vivo, and in vitro studies have shown that polybrominated diphenyl ether (PBDE) flame retardants may have a negative impact on human health; this has resulted in their phase-out and replacement by alternative flame retardants, such as hexabromocyclododecane (HBCDD), tetrabromobisphenol A (TBBPA), and organophosphate esters (OPEs). Evidence suggests that some of these chemicals induce ovarian dysfunction and thus may be detrimental to female fertility; however, the effects of many of these flame retardants on the ovary remain unclear. In this review, we present an overview of the effects of brominated and organophosphate ester flame retardants on ovarian function and discuss the possible mechanisms which may mediate these effects.
Collapse
Affiliation(s)
- Xiaotong Wang
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Barbara F Hales
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Bernard Robaire
- Departments of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada; Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
27
|
Pandey M, Singh S, Yadav M, Singh D, Onteru SK. Transcriptome analysis of buffalo granulosa cells in three dimensional culture systems. Mol Reprod Dev 2021; 88:287-301. [PMID: 33734523 DOI: 10.1002/mrd.23465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/01/2021] [Indexed: 01/15/2023]
Abstract
Hanging drop (HD) three-dimensional (3D) culture model for buffalo granulosa cells (GC) was reported to mimic the preovulatory stage of ovarian follicles in our previous study. To further verify its reliability, the present study attempted a comparative transcriptome profile of buffalo GC freshly isolated from ovarian follicles (<8 mm diameter) (FC) and their cultures in normal culture dish (ND or 2D), polyHEMA coated dish (PH) and HD culture systems (3D). Out of 223 significantly (-log2 fold change: >3; p < .0005; false discovery rate [FDR]: <0.1) differentially expressed genes (SDEGs) among different culture systems, 137 were found unannotated, and 94, 29, and 66 were exclusively expressed in FC, PH, and HD, respectively. However, on eliminating the fixed points of p values and FDR from the entire raw data, only 11 genes related to long noncoding RNA, 12 genes related to luteinization, and 3 genes related to follicular maturation were exclusively expressed in FC, PH, and HD culture systems, respectively. The quantitative real time-PCR validation and the next generation sequencing data had more than 90% correlation. Bioinformatics analyses of the exclusively expressed SDEG revealed that the freshly aspirated GCs were a true representative of GCs from small follicles (<8 mm diameter), the GC spheroids under PH maintained mitochondrial function, and those cultured in HD system for 6 days simulated the inflammatory milieu required for ovulation. Therefore, the comparative transcriptome profile also reinforced that HD culture system is better in vitro culture method than the other methods analyzed in this study for buffalo GC.
Collapse
Affiliation(s)
- Mamta Pandey
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Sudhakar Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Monica Yadav
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Dheer Singh
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| | - Suneel Kumar Onteru
- Molecular Endocrinology, Functional Genomics and Systems Biology Lab, Animal Biochemistry Division, ICAR - National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
28
|
Lefèvre PLC, Nardelli TC, Son WY, Sadler AR, Rawn DFK, Goodyer C, Robaire B, Hales BF. Polybrominated Diphenyl Ethers in Human Follicular Fluid Dysregulate Mural and Cumulus Granulosa Cell Gene Expression. Endocrinology 2021; 162:6128707. [PMID: 33543239 PMCID: PMC7853176 DOI: 10.1210/endocr/bqab003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Indexed: 01/13/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs), a major class of flame retardants incorporated into numerous consumer products, leach out into dust resulting in widespread exposure. There is evidence from in vitro and in vivo animal studies that PBDEs affect ovarian granulosa cell function and follicular development, yet human studies of their association with female infertility are inconclusive. Here, we tested the hypothesis that exposure to the PBDEs in follicular fluid is associated with dysregulation of gene expression in the mural and cumulus granulosa cells collected from women undergoing in vitro fertilization by intracytoplasmic sperm injection. The median concentration of the ∑ 10PBDEs detected in the follicular fluid samples (n = 37) was 15.04 pg/g wet weight. RNA microarray analyses revealed that many genes were differentially expressed in mural and cumulus granulosa cells. Highest vs lowest quartile exposure to the Σ 10PBDEs or to 2 predominant PBDE congeners, BDE-47 or BDE-153, was associated with significant effects on gene expression in both cell types. Mural granulosa cells were generally more sensitive to PBDE exposure compared to cumulus cells. Overall, gene expression changes associated with BDE-47 exposure were similar to those for ∑ 10PBDEs but distinct from those associated with BDE-153 exposure. Interestingly, exposure to BDE-47 and ∑ 10PBDEs activated the expression of genes in pathways that are important in innate immunity and inflammation. To the best of our knowledge, this is the first demonstration that exposure to these environmental chemicals is associated with the dysregulation of pathways that play an essential role in ovulation.
Collapse
Affiliation(s)
- Pavine L C Lefèvre
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Thomas C Nardelli
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Weon-Young Son
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Amy R Sadler
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Dorothea F K Rawn
- Food Research Division, Bureau of Chemical Safety, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Cindy Goodyer
- Research Institute of the McGill University Health Centre (RI-MUHC), Royal Victoria Hospital, Montreal, Quebec, Canada
- Department of Pediatrics, McGill University Health Centre, Montreal, Quebec, Canada
| | - Bernard Robaire
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Department of Obstetrics and Gynecology, McGill University, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Barbara F Hales
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
- Correspondence: Barbara F. Hales, PhD, Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada.
| |
Collapse
|
29
|
Effect of luteinizing hormone concentration on transcriptome and subcellular organelle phenotype of ovarian granulosa cells. J Assist Reprod Genet 2021; 38:809-824. [PMID: 33447950 DOI: 10.1007/s10815-021-02066-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022] Open
Abstract
RESEARCH QUESTION Granulosa cells (GCs) surrounding oocytes are crucial for follicular growth, oocyte development, ovulation, and luteinization under the dynamic co-stimulation of follicle stimulating hormone (FSH) and luteinizing hormone (LH). This study aimed to investigate the effect of LH levels on GCs in preovulatory follicles under gonadotropin releasing hormone antagonist-based ovarian stimulation. In vitro experiments were also conducted to study the direct effect of LH on GCs. METHODS Twelve infertile women were divided into low (L), medium (M), and high (H) LH groups according to their serum LH levels during ovarian stimulation. RNA-sequencing (RNA-seq) was conducted to examine the transcriptome profiles of GCs obtained from the above patients during the oocyte retrieval. The activity of mitochondrial dehydrogenase was measured under the stimulation of recombinant LH (rLH) concentration gradient combined with recombinant FSH. The ultrastructures of subcellular organelles were observed. RESULTS Bioinformatic analyses showed that compared with the M group, molecule and pathway changes in the L group and in the H group were similar. In cultured GCs, both insufficient and excessive rLH impaired the activity of mitochondrial dehydrogenase. With the medium rLH concentration, numerous cell connections and abundant mitochondria and liposomes were observed. Compared with the medium concentration, GCs showed smaller and rounder mitochondria, more autophagosomes, and massive organelles damages with excessive rLH, and swollen, circular, or forked mitochondria were observed with inadequate rLH. CONCLUSIONS RNA-seq provided a novel spectrum of transcriptome characteristics of GCs potentially affected by serum LH levels during ovarian stimulation. In vitro, rLH could directly affect GCs at the subcellular level.
Collapse
|
30
|
Fortin CS, Hamilton S, Laforest M, Léveillé MC, Sirard MA. Patients who failed to conceive following an in vitro fertilization cycle can be clustered into different failure causes using gene expression hierarchical analysis†. Biol Reprod 2020; 103:599-607. [PMID: 32483601 DOI: 10.1093/biolre/ioaa089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/21/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023] Open
Abstract
The patient's response to an IVF stimulation protocol is highly variable and thus difficult to predict. When a cycle fails, there are often no apparent or obvious reasons to explain the failure. Having clues on what went wrong during stimulation could serve as a basis to improve and personalize the next protocol. This exploratory study aimed to investigate if it is possible to distinguish different failure causes or different follicular responses in a population of nonpregnant IVF patients. Using qRT-PCR, we analyzed a panel of genes indicative of different failure causes in patients who did not achieve pregnancy following an IVF cycle. For each patient, a pool of follicular cells from all aspirated follicles was used as a sample which gives a global picture of the patient's ovary and not a specific picture of each follicle. We performed hierarchical clustering analysis to split the patients according to the gene expression pattern. Hierarchical analysis showed that the population of nonpregnant IVF patients could be divided into three clusters. Gene expression was significantly different, and each cluster displayed a particular gene expression pattern. Follicular cells from patients in clusters 1, 2 and 3 displayed respectively a pattern of gene expression related to large incompetent follicles with a higher apoptosis (over matured), to follicles not ready to ovulate (under mature) and to an excess of inflammation with no visible symptoms. This study reinforces the idea that women often have different response to the same protocol and would benefit from more personalized treatments.
Collapse
Affiliation(s)
- Chloé S Fortin
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC, Canada
| | | | | | | | - Marc-André Sirard
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle (CRDSI), Université Laval, Québec, QC, Canada
| |
Collapse
|
31
|
Zhang Z, Wang F, Zhang Y. Expression and Contribution of NLRP3 Inflammasome During the Follicular Development Induced by PMSG. Front Cell Dev Biol 2019; 7:256. [PMID: 31750302 PMCID: PMC6842944 DOI: 10.3389/fcell.2019.00256] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/16/2019] [Indexed: 12/12/2022] Open
Abstract
Follicular development and following ovulation induced by luteinizing hormone (LH) surge are critical for ovarian functions, but the molecular mechanism regulating ovarian ovulation attracts more attention and remains mainly unknown. Recent researches on the nucleotide leukin rich polypeptide 3 (NLRP3) inflammasome shred light on it. Given pregnant mare serum gonadotropin (PMSG) can not only trigger the follicular development, but also induce the following ovulation, the present study therefore examined that expression and localization of NLRP3 inflammasome through immunohistochemistry and Western blotting during the follicular development induced by PMSG. The results showed expressions of NLRP3 and the adaptor protein apoptosis-associated speck-like protein (ASC) significantly increased in the outside of intrafollicular fluid, further analysis found that caspase-1 was activated and IL-1β production was also upregulated after 52 h-treatment of PMSG. Furthermore, a significant increase of ovulation-related genes, hypoxia inducible factor (HIF)-1α and endothelin (ET)-1, was found after 52 h-treatment of PMSG. To our knowledge, it is the first time to clearly indicated the activation of NLRP3 inflammasome may contribute to the ovulation of PMSG-treated ovaries, which will help to further clarify the ovulatory mechanism in mammals.
Collapse
Affiliation(s)
- Zhenghong Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Fan Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Yan Zhang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
32
|
Abdulrahman N, Fair T. Contribution of the immune system to follicle differentiation, ovulation and early corpus luteum formation. Anim Reprod 2019; 16:440-448. [PMID: 32435287 PMCID: PMC7234072 DOI: 10.21451/1984-3143-ar2019-0087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022] Open
Abstract
Much of what we know about the involvement of the immune system in periovulatory follicle differentiation, ovulation and subsequent formation of the corpus luteum in cattle is drawn from the findings of studies in several mammalian livestock species. By integrating published histological data from cattle, sheep and pigs and referring back to the more comprehensive knowledge bank that exists for mouse and humans we can sketch out the key cells of the immune system and the cytokines and growth factors that they produce that are involved in follicle differentiation and luteinization, ovulation and early follicle development. These contributions are reviewed and the key findings, discussed.
Collapse
Affiliation(s)
- Noof Abdulrahman
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Trudee Fair
- School of Agriculture & Food Sciences, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
33
|
Poulsen LLC, Pla I, Sanchez A, Grøndahl ML, Marko-Varga G, Yding Andersen C, Englund ALM, Malm J. Progressive changes in human follicular fluid composition over the course of ovulation: quantitative proteomic analyses. Mol Cell Endocrinol 2019; 495:110522. [PMID: 31356852 DOI: 10.1016/j.mce.2019.110522] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/17/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022]
Abstract
Follicular fluid (FF) acts as a vehicle for paracrine signalling between somatic cells of the follicle and the oocyte. To investigate changes in the protein composition of FF during ovulation, we conducted a prospective cohort study including 25 women undergoing fertility treatment. Follicular fluid was aspirated either before or 12, 17, 32 or 36 h after induction of ovulation (five patients per time point). Liquid chromatography-mass spectrometry was used to identify and quantify FF proteins. In total, 400 proteins were identified and the levels of 40 proteins changed significantly across ovulation, evaluated by analysis of covariance (adjusted p < 0.05) and on-off expression patterns. The majority peaked after 12-17 h, e.g., AREG (p < 0.0001), TNFAIP6 (p < 0.0001), and LDHB (p = 0.0316), while some increased to peak after 36 h e.g., ACPP (p < 0.0001), TIMP1 (p < 0.0001) and SERPINE1 (p = 0.0002). Collectively, this study highlights proteins and pathways of importance for ovulation and oocyte competence in humans.
Collapse
Affiliation(s)
- Liv la Cour Poulsen
- Zealand Fertility Clinic, Zealand University Hospital, Lykkebækvej 14, 4600 Køge, Denmark.
| | - Indira Pla
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Aniel Sanchez
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| | - Marie Louise Grøndahl
- Fertility Clinic, University Hospital of Copenhagen, Herlev and Gentofte Hospital, Herlev Ringvej 75, 2730 Herlev, Denmark
| | - György Marko-Varga
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden; Department of Surgery, Tokyo Medical University, 6-7-1 Nishishinjiku Shinjiku-ku, Japan
| | - Claus Yding Andersen
- Laboratory of Reproductive Biology, University Hospital of Copenhagen, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen Ø, Denmark
| | | | - Johan Malm
- Clinical Protein Science & Imaging, Biomedical Centre, Department of Biomedical Engineering, Lund University, BMC D13, 221 84 Lund, Sweden; Section for Clinical Chemistry, Department of Translational Medicine, Lund University, Skåne University Hospital Malmö, 205 02 Malmö, Sweden
| |
Collapse
|
34
|
Fan X, Bialecka M, Moustakas I, Lam E, Torrens-Juaneda V, Borggreven NV, Trouw L, Louwe LA, Pilgram GSK, Mei H, van der Westerlaken L, Chuva de Sousa Lopes SM. Single-cell reconstruction of follicular remodeling in the human adult ovary. Nat Commun 2019; 10:3164. [PMID: 31320652 PMCID: PMC6639403 DOI: 10.1038/s41467-019-11036-9] [Citation(s) in RCA: 158] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
The ovary is perhaps the most dynamic organ in the human body, only rivaled by the uterus. The molecular mechanisms that regulate follicular growth and regression, ensuring ovarian tissue homeostasis, remain elusive. We have performed single-cell RNA-sequencing using human adult ovaries to provide a map of the molecular signature of growing and regressing follicular populations. We have identified different types of granulosa and theca cells and detected local production of components of the complement system by (atretic) theca cells and stromal cells. We also have detected a mixture of adaptive and innate immune cells, as well as several types of endothelial and smooth muscle cells to aid the remodeling process. Our results highlight the relevance of mapping whole adult organs at the single-cell level and reflect ongoing efforts to map the human body. The association between complement system and follicular remodeling may provide key insights in reproductive biology and (in)fertility.
Collapse
Affiliation(s)
- X Fan
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - M Bialecka
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - I Moustakas
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands.,Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - E Lam
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - V Torrens-Juaneda
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - N V Borggreven
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - L Trouw
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - L A Louwe
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - G S K Pilgram
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - H Mei
- Sequencing Analysis Support Core, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands
| | - L van der Westerlaken
- Department of Gynaecology, Division of Reproductive Medicine, Leiden University Medical Center, 2333 ZA, Leiden, Netherlands
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC, Leiden, Netherlands. .,Department for Reproductive Medicine, Ghent University Hospital, 9000, Ghent, Belgium.
| |
Collapse
|
35
|
Abedel-Majed MA, Romereim SM, Davis JS, Cupp AS. Perturbations in Lineage Specification of Granulosa and Theca Cells May Alter Corpus Luteum Formation and Function. Front Endocrinol (Lausanne) 2019; 10:832. [PMID: 31849844 PMCID: PMC6895843 DOI: 10.3389/fendo.2019.00832] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Anovulation is a major cause of infertility, and it is the major leading reproductive disorder in mammalian females. Without ovulation, an oocyte is not released from the ovarian follicle to be fertilized and a corpus luteum is not formed. The corpus luteum formed from the luteinized somatic follicular cells following ovulation, vasculature cells, and immune cells is critical for progesterone production and maintenance of pregnancy. Follicular theca cells differentiate into small luteal cells (SLCs) that produce progesterone in response to luteinizing hormone (LH), and granulosa cells luteinize to become large luteal cells (LLCs) that have a high rate of basal production of progesterone. The formation and function of the corpus luteum rely on the appropriate proliferation and differentiation of both granulosa and theca cells. If any aspect of granulosa or theca cell luteinization is perturbed, then the resulting luteal cell populations (SLC, LLC, vascular, and immune cells) may be reduced and compromise progesterone production. Thus, many factors that affect the differentiation/lineage of the somatic cells and their gene expression profiles can alter the ability of a corpus luteum to produce the progesterone critical for pregnancy. Our laboratory has identified genes that are enriched in somatic follicular cells and luteal cells through gene expression microarray. This work was the first to compare the gene expression profiles of the four somatic cell types involved in the follicle-to-luteal transition and to support previous immunofluorescence data indicating theca cells differentiate into SLCs while granulosa cells become LLCs. Using these data and incorporating knowledge about the ways in which luteinization can go awry, we can extrapolate the impact that alterations in the theca and granulosa cell gene expression profiles and lineages could have on the formation and function of the corpus luteum. While interactions with other cell types such as vascular and immune cells are critical for appropriate corpus luteum function, we are restricting this review to focus on granulosa, theca, and luteal cells and how perturbations such as androgen excess and inflammation may affect their function and fertility.
Collapse
Affiliation(s)
| | - Sarah M. Romereim
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - John S. Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, United States
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, United States
| | - Andrea S. Cupp
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Andrea S. Cupp
| |
Collapse
|