1
|
Lapoujade C, Blanco M, Givelet M, Gille AS, Allemand I, Lenez L, Thiounn N, Roux S, Wolf JP, Patrat C, Riou L, Barraud-Lange V, Fouchet P. Characterisation and hierarchy of the spermatogonial stem cell compartment in human spermatogenesis by spectral cytometry using a 16-colors panel. Cell Mol Life Sci 2024; 82:15. [PMID: 39725808 DOI: 10.1007/s00018-024-05496-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/02/2024] [Accepted: 10/28/2024] [Indexed: 12/28/2024]
Abstract
About one in six couples experience fertility problems, and male infertility accounts for about half of these cases. Spermatogenesis originates from a small pool of spermatogonial stem cells (SSCs), which are of interest for the treatment of infertility but remain poorly characterised in humans. Using multiparametric spectral flow cytometric analysis with a 16-colours (16-C) panel of cell markers, we identify novel markers of SSCs and provide insights into unravelling and resolving the heterogeneity of the human spermatogonial cells. This 16-C panel of markers allowed the identification of a primitive SSCs state with the β2M-CD51/61-ITGA6+SSEA4+TSPAN33+THY1+CD9medEPCAMmedCD155+CD148+CD47highCD7high phenotype, with a profile close to the most primitive SSCs states 0 and SSC1-B previously defined by sc-RNAseq approach. The hierarchy of events in the spermatogonial stem cell and progenitor compartment of human spermatogenesis can be delineated. This highlights the importance of a multi-parametric and spectral cytometry approach. The in-depth characterisation of testicular cells should help to overcome the lack of stem cell knowledge, that hinders the understanding of the regenerative potential of SSCs, and is a critical parameter for the successful development of new SSCs-based cell therapies.
Collapse
Affiliation(s)
- C Lapoujade
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
| | - M Blanco
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
| | - M Givelet
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
- Université Paris Cité, Paris, France
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - A S Gille
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
- Université Paris Cité, Paris, France
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - I Allemand
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
| | - L Lenez
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
| | - N Thiounn
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - S Roux
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - J P Wolf
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
- Université Paris Cité, Paris, France
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - C Patrat
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
- Université Paris Cité, Paris, France
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - L Riou
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France
| | - V Barraud-Lange
- Team From Gametes To Birth. Departments Genetic and Cellular Plasticity. Metabolism and Endocrinology. Cochin Institute. INSERM U1016, Paris, France
- Université Paris Cité, Paris, France
- AP-HP. Center-University Paris Cité. Cochin Hospital, Paris, France
| | - P Fouchet
- Université Paris-Saclay, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France.
- Université Paris Cité, CEA, UMR Stabilité Génétique Cellules Souches Et Radiations, iRCM/IBFJ, Laboratoire Des Cellules Souches Germinales, 92265, Fontenay-Aux-Roses, France.
| |
Collapse
|
2
|
Shen C, Deng M, Wang X, Li X, Chen X, Gao Z, Li C, Liu Y. Zuogui Wan modulates macrophage polarization and promotes osteogenic differentiation through regulation of CD51-positive bone marrow mesenchymal stem cells. Sci Rep 2024; 14:26130. [PMID: 39478130 PMCID: PMC11525575 DOI: 10.1038/s41598-024-77590-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Background Zuogui Wan (ZGW) is a traditional herbal formula used to treat chronic kidney and bone diseases. Previous research has shown that ZGW slows down the aging process of bone marrow mesenchymal stem cells (BMSCs) and improves bone metabolism. However, its role in treating postmenopausal osteoporosis (PMOP) has not yet been fully investigated. Therefore, we investigated the therapeutic effects of ZGW and its potential mechanisms in an ovariectomy (OVX)-induced osteoporosis rat model. Results We observed significant improvements in bone loss and the osteoporotic phenotype in OVX rats treated with ZGW. These findings were confirmed with micro-computed tomography (micro-CT) and histomorphological analysis. We also discovered that ZGW reversed the macrophage imbalance, which in turn inhibited osteoclast differentiation and bone resorption. Furthermore, RNA-Seq results revealed the active expression of CD51 in BMSCs before and after ZGW therapy, which is associated with macrophage polarization and osteoblastic differentiation. The results also showed that ZGW decreased CD51 + BMSCs levels, which is closely related to the inhibition of osteoblast differentiation and promotion of osteoclast resorption. Conclusions Our study demonstrated that ZGW may improve postmenopausal osteoporosis by restoring macrophage polarization and down-regulating CD51 + BMSCs. In addition, ZGW promoted osteoblast formation and inhibited osteoclast resorption.
Collapse
Affiliation(s)
- Chongyang Shen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Mingxing Deng
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaobao Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiaoyu Li
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Xiongbin Chen
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Zhi Gao
- Sichuan Orthopedic Hospital, Chengdu, People's Republic of China
| | - Chuncai Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| | - Yincong Liu
- Basic Medicine School, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Xia K, Wang F, Tan Z, Zhang S, Lai X, Ou W, Yang C, Chen H, Peng H, Luo P, Hu A, Tu X, Wang T, Ke Q, Deng C, Xiang AP. Precise Correction of Lhcgr Mutation in Stem Leydig Cells by Prime Editing Rescues Hereditary Primary Hypogonadism in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300993. [PMID: 37697644 PMCID: PMC10582410 DOI: 10.1002/advs.202300993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Hereditary primary hypogonadism (HPH), caused by gene mutation related to testosterone synthesis in Leydig cells, usually impairs male sexual development and spermatogenesis. Genetically corrected stem Leydig cells (SLCs) transplantation may provide a new approach for treating HPH. Here, a novel nonsense-point-mutation mouse model (LhcgrW495X ) is first generated based on a gene mutation relative to HPH patients. To verify the efficacy and feasibility of SLCs transplantation in treating HPH, wild-type SLCs are transplanted into LhcgrW495X mice, in which SLCs obviously rescue HPH phenotypes. Through comparing several editing strategies, optimized PE2 protein (PEmax) system is identified as an efficient and precise approach to correct the pathogenic point mutation in Lhcgr. Furthermore, delivering intein-split PEmax system via lentivirus successfully corrects the mutation in SLCs from LhcgrW495X mice ex vivo. Gene-corrected SLCs from LhcgrW495X mice exert ability to differentiate into functional Leydig cells in vitro. Notably, the transplantation of gene-corrected SLCs effectively regenerates Leydig cells, recovers testosterone production, restarts sexual development, rescues spermatogenesis, and produces fertile offspring in LhcgrW495X mice. Altogether, these results suggest that PE-based gene editing in SLCs ex vivo is a promising strategy for HPH therapy and is potentially leveraged to address more hereditary diseases in reproductive system.
Collapse
Affiliation(s)
- Kai Xia
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Fulin Wang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Zhipeng Tan
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Suyuan Zhang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xingqiang Lai
- Cardiovascular DepartmentThe Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhenGuangdong518033China
| | - Wangsheng Ou
- State Key Laboratory of Ophthalmology Zhong Shan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouGuangdong510000China
| | - Cuifeng Yang
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hong Chen
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Hao Peng
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Peng Luo
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Anqi Hu
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xiang'an Tu
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Tao Wang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Chunhua Deng
- Department of Urology and AndrologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue EngineeringKey Laboratory for Stem Cells and Tissue EngineeringMinistry of Education National‐Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine Zhongshan School of MedicineSun Yat‐sen UniversityGuangzhouGuangdong510080China
| |
Collapse
|
4
|
Shao J, Wang J, Wen X, Xie J, Huang F, Guan X, Hao X, Duan P, Chen C, Chen H. Effects of aging and macrophages on mice stem Leydig cell proliferation and differentiation in vitro. Front Endocrinol (Lausanne) 2023; 14:1139281. [PMID: 37051204 PMCID: PMC10083278 DOI: 10.3389/fendo.2023.1139281] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Testosterone plays a critical role in maintaining reproductive functions and well-beings of the males. Adult testicular Leydig cells (LCs) produce testosterone and are generated from stem Leydig cells (SLCs) during puberty through adulthood. In addition, macrophages are critical in the SLC regulatory niche for normal testicular function. Age-related reduction in serum testosterone contributes to a number of metabolic and quality-of-life changes in males, as well as age-related changes in immunological functions. How aging and testicular macrophages may affect SLC function is still unclear. METHODS SLCs and macrophages were purified from adult and aged mice via FACS using CD51 as a marker protein. The sorted cells were first characterized and then co-cultured in vitro to examine how aging and macrophages may affect SLC proliferation and differentiation. To elucidate specific aging effects on both cell types, co-culture of sorted SLCs and macrophages were also carried out across two ages. RESULTS CD51+ (weakly positive) and CD51++ (strongly positive) cells expressed typical SLC and macrophage markers, respectively. However, with aging, both cell types increased expression of multiple cytokine genes, such as IL-1b, IL-6 and IL-8. Moreover, old CD51+ SLCs reduced their proliferation and differentiation, with a more significant reduction in differentiation (2X) than proliferation (30%). Age matched CD51++ macrophages inhibited CD51+ SLC development, with a more significant reduction in old cells (60%) than young (40%). Crossed-age co-culture experiments indicated that the age of CD51+ SLCs plays a more significant role in determining age-related inhibitory effects. In LC lineage formation, CD51+ SLC had both reduced LC lineage markers and increased myoid cell lineage markers, suggesting an age-related lineage shift for SLCs. CONCLUSION The results suggest that aging affected both SLC function and their regulatory niche cell, macrophages.
Collapse
Affiliation(s)
- Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinrui Hao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ping Duan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Haolin Chen, ; Congde Chen, ; Ping Duan,
| |
Collapse
|
5
|
Li ZH, Lu JD, Li SJ, Chen HL, Su ZJ. Generation of Leydig-like cells: approaches, characterization, and challenges. Asian J Androl 2022; 24:335-344. [PMID: 35017389 PMCID: PMC9295467 DOI: 10.4103/aja202193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
Testosterone production by Leydig cells (LCs) plays a crucial role in male reproduction. The functional degeneration of LCs can cause testosterone deficiency, ultimately resulting in primary male hypogonadism. Transplantation of exogenous LCs with the ability to produce testosterone in response to the regulation of the hypothalamus-pituitary-gonad axis could be a promising alternative option to treat male primary hypogonadism. Recent studies have shown that it is possible to generate Leydig-like cells from stem cells by various approaches. In addition, somatic cells, such as embryonic or adult fibroblasts, have also been successfully reprogrammed into Leydig-like cells. In this review, we summarized the recent advances in the generation of Leydig-like cells, with an emphasis on comparing the effectiveness and safety of different protocols used and the cells generated. By further analyzing the characteristics of Leydig-like cells generated from fibroblasts based on small signaling molecules and regulatory factors, we found that although the cells may produce testosterone, they are significantly different from real LCs. For future in vivo applications, it is important that the steroidogenic cells generated be evaluated not only for their steroidogenic functions but also for their overall cell metabolic state by proteomics or transcriptomic tools.
Collapse
Affiliation(s)
- Zhao-Hui Li
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Jun-Dong Lu
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
| | - Shi-Jun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou 325035, China
| | - Hao-Lin Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhi-Jian Su
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou 510632, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Ji M, Chen D, Zhao X, Huang F, Guan X, Wen X, Wang J, Shao J, Xie J, Shan D, Cao S, Chen C, Chen H. Isolation of leydig cells from adult rat testes by magnetic-activated cell sorting protocol based on prolactin receptor expression. Andrology 2022; 10:1197-1207. [PMID: 35735181 DOI: 10.1111/andr.13211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/13/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The primary function of testicular Leydig cells (LCs) is to produce testosterone (T). In vitro culture of the cells represents a very important approach to study androgen production and its regulations. Various methods have been developed for the enrichment of the cells from the testes. However, getting cells in large numbers with high purity and viability is still challenging. Here we describe a new way to isolate LCs from rat testes in large quantity with high purity and viability. METHODS Enzymatic digested testicular cells from adult rats were labelled with prolactin receptor (PRLR) antibody. The positive cells were isolated by Magnetic-Activated Cell Sorting (MACS) protocol. Purified LCs were tested in vitro for their steroidogenic (T production) and no-steroidogenic (25-OH-vitamin D production and Insl3 and Cyp2r1expressions) functions in the presence of LH for up to 24 hours. RESULTS Reanalysis of scRNA-seq data indicates that Prlr expression is highly specific in LCs of adult rat testis. MACS procedure based on PRLR expression was able to isolate LCs with very high yield (about 106 cells/testis), high purity (about 95%) and viability (>93%). Purified LCs retained high steroidogenic and no-steroidogenic functions in responding to maximal LH stimulations, with more than 10-fold increases in T production in 3 hours and 42% and 103% increases in Insl3 and Cyp2r1 expressions in 24 hours. DISCUSSION AND CONCLUSION We have established an excellent way to purify high quality LCs from adult rat testis that can serve as an useful tool to study the physiology, pharmacology and toxicology of the cells in vitro. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Fu Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Dan Shan
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Shuyan Cao
- The Basic Medical Research Center of the Second School of Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Congde Chen
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.,Department of Pharmacology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
7
|
Xue Z, Zhuang J, Bai H, Wang L, Lu H, Wang S, Zeng W, Zhang T. VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. Genes Genomics 2022; 44:583-592. [PMID: 35254654 DOI: 10.1007/s13258-022-01232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND The vitamin D receptor (VDR) mediates the pleiotropic biological actions that include osteoporosis, immune responses and androgen synthesis wherein the VDR transcriptionally regulates expression of the genes involved in this complex process. 3β-Hydroxysteroid dehydrogenase-1 (HSD3B1) is an absolutely necessary enzyme for androgen synthesis. OBJECTIVE The purpose of the present study was to explore the molecular mechanism of VDR mediated HSD3B1 regulation of lipid metabolism and testosterone synthesis. METHODS The levels of VDR, HSD3B1 and lipid metabolism associated protein were determined by quantitative real-time polymerase chain reaction (RT-qPCR) or western blot. The levels of testosterone concentrations in cell culture media serum by enzyme-linked immunosorbent assay (ELISA). Targeted relationship between VDR and Hsd3b1 was evaluated by dual-luciferase reporter assay. RESULTS Based on the data analysis of mouse testicular proteome, we found that the expression of HSD3B1 was significantly reduced after VDR deletion. Here, we identified that Hsd3b1 was widely expressed in different tissues of mice by RT-qPCR, and was highly expressed in testis, and mainly located in testicular Leydig cells. Dual-luciferase assay confirmed that VDR could bind candidate vitamin D responsive elements (VDREs) in upstream region of Hsd3b1, and enhance gene expression. Furthermore, over-expression VDR and HSD3B1 significantly increased testosterone synthesis in mice Leydig cells. Meanwhile, Lpl expression was significantly down-regulated and Angptl4 expression was significantly up-regulated in the present of HSD3B1 overexpression. Both LPL and ANGPTL4 play important roles in regulating lipid metabolism. CONCLUSIONS The present study unveiled VDR mediated HSD3B1 to regulate lipid metabolism and promoted testosterone synthesis in mouse Leydig cells. These findings will greatly help us to understand the roles of VDR and HSD3B1 in testosterone synthesis and lipid metabolism.
Collapse
Affiliation(s)
- Zhen Xue
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Jianan Zhuang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hao Bai
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001, China.
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong, 723001, China.
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong, 723001, China.
| |
Collapse
|
8
|
Antalíková J, Sečová P, Michalková K, Horovská Ľ, Páleníková V, Jankovičová J. Expression of αV integrin and its potential partners in bull reproductive tissues, germ cells and spermatozoa. Int J Biol Macromol 2022; 209:542-551. [PMID: 35413326 DOI: 10.1016/j.ijbiomac.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Integrins are transmembrane receptors expressed in all nucleated mammalian cells, critically involved in cell-matrix adhesion and cell-cell interactions that modulate many signalling cascades. It is assumed that integrins also provide essential functions of the reproductive system. In this study, we describe the detailed localization and distribution of αV integrin in the plasma membrane of bull sperm head and tail. Integrin αV was observed in the area of forming acrosome in developing sperm since the stage of round spermatids and persists in the acrosome during epididymal maturation and ejaculation till the acrosomal exocytosis. We detected CD9 and CD81 tetraspanins as the potential partners of αV integrin. Their similar staining pattern in testicular tissue suggested the involvement of these molecules in the tetraspanin web of "testisomes". Moreover, the complex of αV with β1 and β3 integrin subunits cannot be excluded at least in sperm. The presented findings contribute to understanding the mutual action of integrins and tetraspanins during sperm development and maturation.
Collapse
Affiliation(s)
- Jana Antalíková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, v.v.i., Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Petra Sečová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, v.v.i., Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Katarína Michalková
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, v.v.i., Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Ľubica Horovská
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, v.v.i., Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Veronika Páleníková
- Group of Reproductive Biology, Institute of Biotechnology, Czech Academy of Sciences, v.v.i., BIOCEV, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 128 40 Prague 2, Czech Republic
| | - Jana Jankovičová
- Laboratory of Reproductive Physiology, Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, v.v.i., Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic.
| |
Collapse
|
9
|
McKendrick JG, Emmerson E. The role of salivary gland macrophages in infection, disease and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 368:1-34. [PMID: 35636925 DOI: 10.1016/bs.ircmb.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Macrophages are mononuclear innate immune cells which have become of increasing interest in the fields of disease and regeneration, as their non-classical functions have been elucidated in addition to their classical inflammatory functions. Macrophages can regulate tissue remodeling, by both mounting and reducing inflammatory responses; and exhibit direct communication with other cells to drive tissue turnover and cell replacement. Furthermore, macrophages have recently become an attractive therapeutic target to drive tissue regeneration. The major salivary glands are glandular tissues that are exposed to pathogens through their close connection with the oral cavity. Moreover, there are a number of diseases that preferentially destroy the salivary glands, causing irreversible injury, highlighting the need for a regenerative strategy. However, characterization of macrophages in the mouse and human salivary glands is sparse and has been mostly determined from studies in infection or autoimmune pathologies. In this review, we describe the current literature around salivary gland macrophages, and speculate about the niches they inhabit and how their role in development, regeneration and cancer may inform future therapeutic advances.
Collapse
Affiliation(s)
- John G McKendrick
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
| | - Elaine Emmerson
- The Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
10
|
Li X, Tian E, Wang Y, Wen Z, Lei Z, Zhong Y, Ge RS. Stem Leydig cells: Current research and future prospects of regenerative medicine of male reproductive health. Semin Cell Dev Biol 2021; 121:63-70. [PMID: 34001436 DOI: 10.1016/j.semcdb.2021.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Stem cells are specialized cells that can renew themselves through cell division and can differentiate into multi-lineage cells. Mesenchymal stem cells are adult stem cells that exist in animal and human tissues. Mesenchymal stem cells have the ability to differentiate into mesodermal lineages, such as Leydig cells, adipocytes, osteocytes, and chondrocytes. Mesenchymal stem cells express cell surface markers, such as cluster of differentiation (CD) 29, CD44, CD73, CD90, CD105, and lack the expression of CD14, CD34, CD45 and HLA (human leukocyte antigen)-DR. Stem Leydig cells are one kind of mesenchymal stem cells, which are present in the interstitial compartment of testis. Stem Leydig cells are multipotent and can differentiate into Leydig cells, adipocytes, osteocytes, and chondrocytes. Stem Leydig cells have been isolated from rodent and human testes. Stem Leydig cells may have potential therapeutic values in several clinical applications, such as the treatment of male hypogonadism and infertility. In this review, we focus on the latest research on stem Leydig cells of both rodents and human, the expression of cell surface markers, culture, differentiation potential, and their applications.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Erpo Tian
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Zina Wen
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Zhen Lei
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China
| | - Ying Zhong
- Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, Zhejiang 325027, China; Xi'nan Gynecological Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
11
|
Zhao X, Ji M, Wen X, Chen D, Huang F, Guan X, Tian J, Xie J, Shao J, Wang J, Huang L, Lin H, Ye L, Chen H. Effects of Midazolam on the Development of Adult Leydig Cells From Stem Cells In Vitro. Front Endocrinol (Lausanne) 2021; 12:765251. [PMID: 34867807 PMCID: PMC8632869 DOI: 10.3389/fendo.2021.765251] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Midazolam is a neurological drug with diverse functions, including sedation, hypnosis, decreased anxiety, anterograde amnesia, brain-mediated muscle relaxation, and anticonvulsant activity. Since it is frequently used in children and adolescents for extended periods of time, there is a risk that it may affect their pubertal development. Here, we report a potential effect of the drug on the development of Leydig cells (LCs), the testosterone (T)-producing cells in the testis. METHODS Stem LCs (SLCs), isolated from adult rat testes by a magnetic-activated cell sorting technique, were induced to differentiate into LCs in vitro for 3 weeks. Midazolam (0.1-30 μM) was added to the culture medium, and the effects on LC development were assayed. RESULTS Midazolam has dose-dependent effects on SLC differentiation. At low concentrations (0.1-5 μM), the drug can mildly increase SLC differentiation (increased T production), while at higher concentrations (15-30 μM), it inhibits LC development (decreased T production). T increases at lower levels may be due to upregulations of scavenger receptor class b Member 1 (SCARB1) and cytochrome P450 17A1 (CYP17A1), while T reductions at higher levels of midazolam could be due to changes in multiple steroidogenic proteins. The uneven changes in steroidogenic pathway proteins, especially reductions in CYP17A1 at high midazolam levels, also result in an accumulation of progesterone. In addition to changes in T, increases in progesterone could have additional impacts on male reproduction. The loss in steroidogenic proteins at high midazolam levels may be mediated in part by the inactivation of protein kinase B/cAMP response element-binding protein (AKT/CREB) signaling pathway. CONCLUSION Midazolam has the potential to affect adult Leydig cell (ALC) development at concentrations comparable with the blood serum levels in human patients. Further studies are needed to test the effects on human cells.
Collapse
Affiliation(s)
- Xingyi Zhao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minpeng Ji
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Wen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dan Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fu Huang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoju Guan
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Tian
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiajia Xie
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Shao
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiexia Wang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Luoqi Huang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Leping Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| | - Haolin Chen
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Department of Pharmacology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Haolin Chen, ; Leping Ye,
| |
Collapse
|
12
|
Yu Y, Li Z, Ma F, Chen Q, Lin L, Xu Q, Li Y, Xin X, Pan P, Huang T, Wang Y, Fei Q, Ge RS. Neurotrophin-3 stimulates stem Leydig cell proliferation during regeneration in rats. J Cell Mol Med 2020; 24:13679-13689. [PMID: 33090725 PMCID: PMC7753877 DOI: 10.1111/jcmm.15886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/30/2020] [Accepted: 08/17/2020] [Indexed: 11/28/2022] Open
Abstract
Neurotrophin‐3 (NT‐3) acts as an important growth factor to stimulate and control tissue development. The NT‐3 receptor, TRKC, is expressed in rat testis. Its function in regulation of stem Leydig cell development and its underlying mechanism remain unknown. Here, we reported the role of NT‐3 to regulate stem Leydig cell development in vivo and in vitro. Ethane dimethane sulphonate was used to kill all Leydig cells in adult testis, and NT‐3 (10 and 100 ng/testis) was injected intratesticularly from the 14th day after ethane dimethane sulphonate injection for 14 days. NT‐3 significantly reduced serum testosterone levels at doses of 10 and 100 ng/testis without affecting serum luteinizing hormone and follicle‐stimulating hormone levels. NT‐3 increased CYP11A1‐positive Leydig cell number at 100 ng/testis and lowered Leydig cell size and cytoplasmic size at doses of 10 and 100 ng/testis. After adjustment by the Leydig cell number, NT‐3 significantly down‐regulated the expression of Leydig cell genes (Lhcgr, Scarb1, Star, Cyp11a1, Hsd3b1, Cyp17a1, Hsd17b3, Hsd11b1, Insl3, Trkc and Nr5a1) and the proteins. NT‐3 increased the phosphorylation of AKT1 and mTOR, decreased the phosphorylation of 4EBP, thereby increasing ATP5O. In vitro study showed that NT‐3 dose‐dependently stimulated EdU incorporation into stem Leydig cells and inhibited stem Leydig cell differentiation into Leydig cells, thus leading to lower medium testosterone levels and lower expression of Lhcgr, Scarb1, Trkc and Nr5a1 and their protein levels. NT‐3 antagonist Celitinib can antagonize NT‐3 action in vitro. In conclusion, the present study demonstrates that NT‐3 stimulates stem Leydig cell proliferation but blocks the differentiation via TRKC receptor.
Collapse
Affiliation(s)
- Yige Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zengqiang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feifei Ma
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Quanxu Chen
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liben Lin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Xu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yang Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiu Xin
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Peipei Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tongliang Huang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qianjin Fei
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Li X, Wang Y, Zhu Q, Yuan K, Su Z, Ge F, Ge RS, Huang Y. Epidermal growth factor regulates the development of stem and progenitor Leydig cells in rats. J Cell Mol Med 2020; 24:7313-7330. [PMID: 32441057 PMCID: PMC7339176 DOI: 10.1111/jcmm.15302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Epidermal growth factor (EGF) has many physiological roles. However, its effects on stem and progenitor Leydig cell development remain unclear. Rat stem and progenitor Leydig cells were cultured with different concentrations of EGF alone or in combination with EGF antagonist, erlotinib or cetuximab. EGF (1 and 10 ng/mL) stimulated the proliferation of stem Leydig cells on the surface of seminiferous tubules and isolated CD90+ stem Leydig cells and progenitor Leydig cells but it blocked their differentiation. EGF also exerted anti‐apoptotic effects of progenitor Leydig cells. Erlotinib and cetuximab are able to reverse EGF‐mediated action. Gene microarray and qPCR of EGF‐treated progenitor Leydig cells revealed that the down‐regulation of steroidogenesis‐related proteins (Star and Hsd3b1) and antioxidative genes. It was found that EGF acted as a proliferative agent via increasing phosphorylation of AKT1. In conclusion, EGF stimulates the proliferation of rat stem and progenitor Leydig cells but blocks their differentiation.
Collapse
Affiliation(s)
- Xiaoheng Li
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China.,Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiyan Wang
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiqi Zhu
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kaiming Yuan
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhijian Su
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| | - Fei Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ren-Shan Ge
- Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yadong Huang
- Department of Cell Biology & Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou, China
| |
Collapse
|