1
|
Peng J, Cui Y, Liang H, Xu S, Weng L, Ru M, Ali R, Wei Q, Ruan J, Huang J. Integrated transcriptomic hypothalamic-pituitary-ovarian axis network analysis reveals the role of energy availability on egg production in layers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:66-79. [PMID: 39949733 PMCID: PMC11821414 DOI: 10.1016/j.aninu.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 02/16/2025]
Abstract
Energy is a crucial component for maintaining egg production in layers. The hypothalamic-pituitary-ovarian (HPO) axis is an energy-sensitive functional axis for follicle development, synthesis, and secretion of reproductive hormones, and plays a key role in modulating sustained ovulation in layers. To investigate the mechanism of integrated network regulation of the HPO axis under energy fluctuation, ninety Hy-line brown layers (265-day-old, 1.92 ± 0.02 kg) were randomly divided into three groups for a 17-day experiment: a control group (Con group) fed ad libitum from days 1 to 17, an energy-deprived group (ED group) that was fed ad libitum from days 1 to 12 and then underwent a fasting period from days 13 to 17 to induce a pause in laying, and a re-fed group (Rf group) that fasted for seven days (specifically, days 1 to 5, day 7, and day 9), had ad libitum access to feed on days 6 and 8, and was continuously fed from days 10 to 17. Each treatment consisted of 10 replicates with 3 birds per replicate. The study found that energy deprivation significantly decreased reproductive performance such as egg laying rate, ovarian index, number of small yellow follicles (SYF), and normal hierarchical follicles (NHIE) (P < 0.05), which recovered after refeeding, indicating the importance of energy availability for sustained ovulation in layers. In addition, estradiol (E2), estradiol to progesterone (E2/P4) ratio, and luteinizing hormone (LH) displayed changes similar to follicle number, whereas follicle-stimulating hormone (FSH) exhibited a contrasting pattern. Transcriptome analysis revealed that energy deprivation downregulated genes related to energy and appetite-regulated neurotransmitter receptors and neuropeptides in the hypothalamus. These signals combined to inhibit gonadotropin-releasing hormone (GnRH) secretion and subsequently downregulated the crucial genes responsible for synthesizing gonadotropins, gonadotropin-releasing hormone receptor (GnRHR), and glycoprotein hormones alpha chain (CGA). Consequently, this suppression of the hypothalamus and pituitary affected ovarian function through ovarian steroidogenesis and the extracellular matrix (ECM)-receptor interaction. These findings suggest that energy deprivation inhibits the function of the HPO axis, leading to impaired follicle development and reduced egg production, and that refeeding can partially restore these indicators.
Collapse
Affiliation(s)
- Jianling Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Cui
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiping Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shenyijun Xu
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Linjian Weng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Ru
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ramlat Ali
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
2
|
Kacimi L, Prevot V. GnRH and Cognition. Endocrinology 2025; 166:bqaf033. [PMID: 39996304 DOI: 10.1210/endocr/bqaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/06/2025] [Accepted: 02/23/2025] [Indexed: 02/26/2025]
Abstract
GnRH is traditionally recognized as the central regulator of reproduction through its pulsatile secretion, which governs the hypothalamic-pituitary-gonadal axis. However, recent evidence has highlighted its broader role in brain development and function, including in cognitive and higher intellectual processes. GnRH production follows distinct phases, from its early activation during minipuberty-the first postnatal activation of GnRH neurons during the infantile period-, its reactivation and stabilization starting at puberty, and its eventual decline with age and the loss of gonadal steroid feedback. This evolution depends on the establishment, maturation and activation of GnRH neurons, a complex process regulated by the cellular and molecular environment of these neurons, including multiple neuronal and glial types as well as a minipubertal "switch" in gene expression, the perturbation of which may have long-term or delayed consequences for both reproductive and cognitive function. The cognitive role of GnRH may be related to its recently revealed involvement in maintaining myelination and synaptic plasticity, whereas disruptions in its finely tuned rhythmic secretion, either age-related or pathological, are associated with cognitive decline and neurodegenerative disorders. Restoring physiological GnRH levels and pulsatility can reverse age-related cognitive decline and improve sensory functions even in adulthood, suggesting a mobilization of the "cognitive reserve" in both animal models and human patients. This review highlights recent advances in our understanding of the GnRH system and the therapeutic potential of pulsatile GnRH therapy to mitigate age-related cognitive decline and neurodegenerative processes.
Collapse
Affiliation(s)
- Loïc Kacimi
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| | - Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, FHU 1000 days for health, EGID, DistALZ, UMR_S112, Lille 59000, France
| |
Collapse
|
3
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
4
|
Bahreiny SS, Ahangarpour A, Rajaei E, Sharifani MS, Aghaei M. Meta-Analytical and Meta-Regression Evaluation of Subclinical Hyperthyroidism's Effect on Male Reproductive Health: Hormonal and Seminal Perspectives. Reprod Sci 2024; 31:2957-2971. [PMID: 39168918 DOI: 10.1007/s43032-024-01676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
Subclinical hyperthyroidism (SCH) is a subtle thyroid dysfunction marked by decreased serum thyroid-stimulating hormone (TSH) levels while maintaining a normal thyroid hormone profile. Despite its mild nature, SCH can significantly impact various physiological functions, including male reproductive health. However, the effects of SCH on reproductive hormones and semen quality are less understood compared to overt thyroid disorders. This study employed extensive search methods across various databases from January 2000 to February 2024 to explore the relationship between SCH and Hormonal and Seminal Perspectives. Effect sizes, estimated using the standardized mean difference (SMD) and pooled with a Random-effect model, provided significant insights from 748 participants. Included studies adhered to the following criteria: Patients (male individuals with SCH), Intervention (assessment of reproductive hormones and semen quality), Comparison (SCH patients versus healthy controls), and Outcome (changes in reproductive factors). Significant alterations in reproductive hormones were observed in SCH patients, including reduced LH levels (SMD = - 0.20; p = 0.007), elevated FSH levels (SMD = 0.25; p = 0.002), and stable testosterone levels (SMD = - 0.05; p = 0.50). Regarding thyroid profile, SCH was associated with increased FT3 (SMD = 0.15; p < 0.001) and FT4 (SMD = 0.08; p = 0.002) levels, along with decreased TSH levels (SMD = - 2.00; p < 0.001). Adverse effects on semen quality were also observed. These findings underscore the need to incorporate thyroid health assessments in the evaluation of male infertility, recognizing the impact of minor thyroid hormone deviations on reproductive outcomes.
Collapse
Affiliation(s)
- Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Akram Ahangarpour
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elham Rajaei
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Internal Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Guzmán A, Rosales-Torres AM, Medina-Moctezuma ZB, González-Aretia D, Hernández-Coronado CG. Effects and action mechanism of gonadotropins on ovarian follicular cells: A novel role of Sphingosine-1-Phosphate (S1P). A review. Gen Comp Endocrinol 2024; 357:114593. [PMID: 39047797 DOI: 10.1016/j.ygcen.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) control antral follicular growth by regulating several processes, such as the synthesis of hormones and signaling molecules, proliferation, survival, apoptosis, luteinization, and ovulation. To exert these effects, gonadotropins bind to their respective Gs protein-coupled receptors, activating the protein kinase A (PKA) pathway or recruiting Gq proteins to activate protein kinase C (PKC) signaling. Although the action mechanism of FSH and LH is clear, recently, it has been shown that both gonadotropins promote the synthesis of sphingosine-1-phosphate (S1P) in granulosa and theca cells through the activation of sphingosine kinase 1. Moreover, the inhibition of SPHKs reduces S1P synthesis, cell viability, and the proliferation of follicular cells in response to gonadotropins, and the addition of S1P to the culture medium increases the proliferation of granulosa and theca cells without apparent effects on sexual steroid synthesis. Therefore, we consider that S1P is a crucial signaling molecule that complements the canonical gonadotropin pathway to promote the proliferation and viability of granulosa and theca cells.
Collapse
Affiliation(s)
- A Guzmán
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - A M Rosales-Torres
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico
| | - Z B Medina-Moctezuma
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - D González-Aretia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Ciudad de México, Mexico
| | - C G Hernández-Coronado
- Universidad Autónoma Metropolitana Unidad Xochimilco, Departamento Producción Agrícola y Animal, Ciudad de México, Mexico.
| |
Collapse
|
6
|
Leng D, Zeng B, Wang T, Chen BL, Li DY, Li ZJ. Single nucleus/cell RNA-seq of the chicken hypothalamic-pituitary-ovarian axis offers new insights into the molecular regulatory mechanisms of ovarian development. Zool Res 2024; 45:1088-1107. [PMID: 39245652 PMCID: PMC11491784 DOI: 10.24272/j.issn.2095-8137.2024.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 09/10/2024] Open
Abstract
The hypothalamic-pituitary-ovarian (HPO) axis represents a central neuroendocrine network essential for reproductive function. Despite its critical role, the intrinsic heterogeneity within the HPO axis across vertebrates and the complex intercellular interactions remain poorly defined. This study provides the first comprehensive, unbiased, cell type-specific molecular profiling of all three components of the HPO axis in adult Lohmann layers and Liangshan Yanying chickens. Within the hypothalamus, pituitary, and ovary, seven, 12, and 13 distinct cell types were identified, respectively. Results indicated that the pituitary adenylate cyclase activating polypeptide (PACAP), follicle-stimulating hormone (FSH), and prolactin (PRL) signaling pathways may modulate the synthesis and secretion of gonadotropin-releasing hormone (GnRH), FSH, and luteinizing hormone (LH) within the hypothalamus and pituitary. In the ovary, interactions between granulosa cells and oocytes involved the KIT, CD99, LIFR, FN1, and ANGPTL signaling pathways, which collectively regulate follicular maturation. The SEMA4 signaling pathway emerged as a critical mediator across all three tissues of the HPO axis. Additionally, gene expression analysis revealed that relaxin 3 (RLN3), gastrin-releasing peptide (GRP), and cocaine- and amphetamine regulated transcripts (CART, also known as CARTPT) may function as novel endocrine hormones, influencing the HPO axis through autocrine, paracrine, and endocrine pathways. Comparative analyses between Lohmann layers and Liangshan Yanying chickens demonstrated higher expression levels of GRP, RLN3, CARTPT, LHCGR, FSHR, and GRPR in the ovaries of Lohmann layers, potentially contributing to their superior reproductive performance. In conclusion, this study provides a detailed molecular characterization of the HPO axis, offering novel insights into the regulatory mechanisms underlying reproductive biology.
Collapse
Affiliation(s)
- Dong Leng
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Bin-Long Chen
- College of Animal Science, Xichang University, Xichang, Sichuan 615000, China. E-mail:
| | - Di-Yan Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China. E-mail:
| | - Zhuan-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan 450046, China. E-mail:
| |
Collapse
|
7
|
Kivrak MB, Corum O, Yuksel M, Turk E, Durna Corum D, Tekeli IO, Uney K. Pharmacokinetics of letrozole and effects of its increasing doses on gonadotropins in ewes during the breeding season. J Vet Pharmacol Ther 2024; 47:193-201. [PMID: 37920137 DOI: 10.1111/jvp.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Letrozole is a non-steroidal, third-generation aromatase inhibitor used in humans. Although letrozole is not approved for use in animals, it is used off-label in cases of synchronization and infertility. The aim of this study was to determine the pharmacokinetics of letrozole after a single intravenous administration at three different doses in ewes during the breeding season and its effect on gonadotropins (luteinizing hormone (LH) and follicle-stimulating hormone (FSH)) at the beginning of proestrus. The study was carried out on 24 healthy Merino ewes. Ewes were randomly divided into four groups (n = 6) as control, 0.5, 1, and 2 mg/kg. Plasma concentrations of letrozole were measured using HPLC-UV and were analyzed by non-compartmental analysis. LH and FSH concentrations were measured with a commercial ELISA kit. The terminal elimination half-life (t1/2ʎz) was significantly prolonged from 11.82 to 18.44 h in parallel with the dose increase. The dose-normalized area under the concentration-time curve (AUC) increased, and total body clearance (ClT) decreased at the 1 and 2 mg/kg doses (0.05 L/h/kg) compared with the 0.5 mg/kg dose (0.08 L/h/kg). There were no differences in the volume of distribution at steady-state and initial (C0.083h) plasma concentration values between dose groups. The decreased ClT, prolonged t1/2ʎz, and increased AUC at increasing doses showed the nonlinear kinetic behavior of letrozole. Letrozole significantly reduced LH concentration without affecting FSH concentration at all doses. As a result, letrozole has the potential to be used in synchronization methods and manipulation of the follicular waves due to its effect on LH secretion.
Collapse
Affiliation(s)
- Mehmet Bugra Kivrak
- Department of Obstetrics and Gyneacology, Faculty of Veterinary Medicine, University of Sivas Cumhuriyet, Sivas, Turkey
| | - Orhan Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Murat Yuksel
- Department of Obstetrics and Gyneacology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Erdinc Turk
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Duygu Durna Corum
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Ibrahim Ozan Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Hatay Mustafa Kemal, Hatay, Turkey
| | - Kamil Uney
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Selcuk, Konya, Turkey
| |
Collapse
|
8
|
Szukiewicz D. Current Insights in Prolactin Signaling and Ovulatory Function. Int J Mol Sci 2024; 25:1976. [PMID: 38396659 PMCID: PMC10889014 DOI: 10.3390/ijms25041976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Prolactin (PRL) is a pleiotropic hormone released from lactotrophic cells of the anterior pituitary gland that also originates from extrapituitary sources and plays an important role in regulating lactation in mammals, as well as other actions. Acting in an endocrine and paracrine/autocrine manner, PRL regulates the hypothalamic-pituitary-ovarian axis, thus influencing the maturation of ovarian follicles and ovulation. This review provides a detailed discussion of the current knowledge on the role of PRL in the context of ovulation and ovulatory disorders, particularly with regard to hyperprolactinemia, which is one of the most common causes of infertility in women. Much attention has been given to the PRL structure and the PRL receptor (PRLR), as well as the diverse functions of PRLR signaling under normal and pathological conditions. The hormonal regulation of the menstrual cycle in connection with folliculogenesis and ovulation, as well as the current classifications of ovulation disorders, are also described. Finally, the state of knowledge regarding the importance of TIDA (tuberoinfundibular dopamine), KNDγ (kisspeptin/neurokinin B/dynorphin), and GnRH (gonadotropin-releasing hormone) neurons in PRL- and kisspeptin (KP)-dependent regulation of the hypothalamic-pituitary-gonadal (HPG) axis in women is reviewed. Based on this review, a rationale for influencing PRL signaling pathways in therapeutic activities accompanying ovulation disorders is presented.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
9
|
Izanlou S, Afshar A, Zare A, Zhilisbayeva KR, Bakhshalizadeh S, Safaei Z, Sehat-Bakhsh S, Khaledi S, Asgari HR, Kazemnejad S, Ajami M, Ajami M, Dehghan Tarzjani M, Najafzadeh V, Kouchakian MR, Mussin NM, Kaliyev AA, Aringazina RA, Mahdipour M, Shirazi R, Tamadon A. Enhancing differentiation of menstrual blood-derived stem cells into female germ cells using a bilayer amniotic membrane and nano-fibrous fibroin scaffold. Tissue Cell 2023; 85:102215. [PMID: 37716177 DOI: 10.1016/j.tice.2023.102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
Three-dimensional nanofiber scaffolds offer a promising method for simulating in vivo conditions within the laboratory. This study aims to investigate the influence of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold on the differentiation of human menstrual blood mesenchymal stromal/stem cells (MenSCs) into female germ cells. MenSCs were isolated and assigned to four culture groups: (i) MenSCs co-cultured with granulosa cells (GCs) using the scaffold (3D-T group), (ii) MenSCs using the scaffold alone (3D-C group), (iii) MenSCs co-cultured only with GCs (2D-T group), and (iv) MenSCs without co-culture or scaffold (2D-C group). Both MenSCs and GCs were independently cultured for two weeks before co-culturing was initiated. Flow cytometry was employed to characterize MenSCs based on positive markers (CD73, CD90, and CD105) and negative markers (CD45 and CD133). Additionally, flow cytometry and immunocytochemistry were used to characterize the GCs. Differentiated MenSCs were analyzed using real-time PCR and immunostaining. The real-time PCR results demonstrated significantly higher levels of VASA expression in the 3D-T group compared to the 3D-C, 2D-T, and 2D-C groups. Similarly, the SCP3 mRNA level in the 3D-T group was notably elevated compared to the 3D-C, 2D-T, and 2D-C groups. Moreover, the expression of GDF9 was significantly higher in the 3D-T group when compared to the 3D-C, 2D-T, and 2D-C groups. Immunostaining results revealed a lack of signal for VASA, SCP3, or GDF9 markers in the 2D-T group, while some cells in the 3D-T group exhibited positive staining for all these proteins. These findings suggest that the combination of a bilayer amniochorionic membrane/nanofibrous fibroin scaffold with co-culturing GCs facilitates the differentiation of MenSCs into female germ cells.
Collapse
Affiliation(s)
- Safoura Izanlou
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Islamic Republic of Iran
| | - Afshin Zare
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran
| | - Kulyash R Zhilisbayeva
- Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia.
| | - Zahra Safaei
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Soheila Sehat-Bakhsh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Islamic Republic of Iran
| | - Sajed Khaledi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Hamid-Reza Asgari
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Islamic Republic of Iran
| | - Mansoureh Ajami
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Islamic Republic of Iran
| | - Monireh Ajami
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Islamic Republic of Iran
| | - Masoumeh Dehghan Tarzjani
- Department of Gynecology and Obstetrics, Imam Khomeinin Hospital, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | | | - Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nadiar M Mussin
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Asset A Kaliyev
- General Surgery, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Raisa A Aringazina
- Department of Internal Medicine No. 1, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Shirazi
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Anatomy, School of Biomedical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia.
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Islamic Republic of Iran; Department of Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan.
| |
Collapse
|
10
|
Nerattini M, Rubino F, Jett S, Andy C, Boneu C, Zarate C, Carlton C, Loeb-Zeitlin S, Havryliuk Y, Pahlajani S, Williams S, Berti V, Christos P, Fink M, Dyke JP, Brinton RD, Mosconi L. Elevated gonadotropin levels are associated with increased biomarker risk of Alzheimer's disease in midlife women. FRONTIERS IN DEMENTIA 2023; 2:1303256. [PMID: 38774256 PMCID: PMC11108587 DOI: 10.3389/frdem.2023.1303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Introduction In preclinical studies, menopausal elevations in pituitary gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH), trigger Alzheimer's disease (AD) pathology and synaptic loss in female animals. Herein, we took a translational approach to test whether gonadotropin elevations are linked to AD pathophysiology in women. Methods We examined 191 women ages 40-65 years, carrying risk factors for late-onset AD, including 45 premenopausal, 67 perimenopausal, and 79 postmenopausal participants with clinical, laboratory, cognitive exams, and volumetric MRI scans. Half of the cohort completed 11C-Pittsburgh Compound B (PiB) amyloid-β (Aβ) PET scans. Associations between serum FSH, LH and biomarkers were examined using voxel-based analysis, overall and stratified by menopause status. Associations with region-of-interest (ROI) hippocampal volume, plasma estradiol levels, APOE-4 status, and cognition were assessed in sensitivity analyses. Results FSH levels were positively associated with Aβ load in frontal cortex (multivariable adjusted P≤0.05, corrected for family wise type error, FWE), an effect that was driven by the postmenopausal group (multivariable adjusted PFWE ≤ 0.044). LH levels were also associated with Aβ load in frontal cortex, which did not survive multivariable adjustment. FSH and LH were negatively associated with gray matter volume (GMV) in frontal cortex, overall and in each menopausal group (multivariable adjusted PFWE ≤ 0.040), and FSH was marginally associated with ROI hippocampal volume (multivariable adjusted P = 0.058). Associations were independent of age, clinical confounders, menopause type, hormone therapy status, history of depression, APOE-4 status, and regional effects of estradiol. There were no significant associations with cognitive scores. Discussion Increasing serum gonadotropin levels, especially FSH, are associated with higher Aβ load and lower GMV in some AD-vulnerable regions of midlife women at risk for AD. These findings are consistent with preclinical work and provide exploratory hormonal targets for precision medicine strategies for AD risk reduction.
Collapse
Affiliation(s)
- Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Federica Rubino
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Susan Loeb-Zeitlin
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Yelena Havryliuk
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, United States
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Valentina Berti
- Department of Experimental and Clinical Biomedical Sciences, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Paul Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States
| | - Matthew Fink
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
| | - Jonathan P. Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, United States
- Department of Radiology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
11
|
Dong Z, Zhang L, Wang W, Jiang F, Ai H. ZnSO 4 Protects against premature ovarian failure through PI3K/AKT/GSK3β signaling pathway. Theriogenology 2023; 207:61-71. [PMID: 37269597 DOI: 10.1016/j.theriogenology.2023.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Zinc (Zn) is an essential trace element with anti-inflammatory and antioxidant effects and plays a crucial role in the female reproductive system. We aimed to investigate the protective effect of ZnSO4 on premature ovarian failure (POF) in SD rats and granulosa cells (GCs) treated with cisplatin. We also explored the underlying mechanisms. In vivo experiments showed that ZnSO4 increased the serum levels of Zn2+, increased estrogen (E2) secretion, and decreased follicle-stimulating hormone (FSH) secretion in rats. ZnSO4 increased ovarian index, protected ovarian tissues and blood vessels, reduced excessive follicular atresia, and maintained follicular development. At the same time, ZnSO4 inhibited apoptosis in the ovaries. In vitro experiments showed that ZnSO4 combination treatment restored the intracellular levels of Zn2+ and inhibited the apoptosis of GCs. ZnSO4 inhibited cisplatin-induced reactive oxygen species (ROS) production and preserved mitochondrial membrane potential (MMP). We also found that ZnSO4 protected against POF by activating the PI3K/AKT/GSK3β signaling pathway and reducing apoptosis of GCs. These data suggest that ZnSO4 may be a potential therapeutic agent for protecting the ovaries and preserving fertility during chemotherapy.
Collapse
Affiliation(s)
- Zhe Dong
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lu Zhang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wei Wang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fan Jiang
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Hao Ai
- Graduate School, Jinzhou Medical University, Jinzhou, Liaoning, China; Key Laboratory of Follicular Development and Reproductive Health of Liaoning Province, Jinzhou Medical University, Jinzhou, Liaoning Province, China; Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
12
|
Yavuz A, Aydin MA, Ugur K, Aydin S, Senol A, Baykus Y, Deniz R, Sahin İ, Yalcin MH, Gencer BT, Deniz YK, Ustebay S, Karagoz ZK, Emre E, Aydin S. Betatrophin, elabela, asprosin, glucagon and subfatin peptides in breast tissue, blood and milk in gestational diabetes. Biotech Histochem 2023; 98:243-254. [PMID: 36825397 DOI: 10.1080/10520295.2023.2176546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
We investigated the presence of asprosin (ASP), betatrophin, elabela (ELA), glucagon and subfatin (SUB) in the milk of mothers with gestational diabetes mellitus (GDM) and compared their levels with blood levels. We also investigated whether these peptides are synthesized by the breast. We investigated 12 volunteer mothers with GDM and 14 pregnant non-GDM control mothers. The peptides were measured using ELISA and their tissue localization was determined using immunohistochemistry. Breast milk contains ASP, betatrophin, ELA, glucagon and SUB. The amount of the peptides ranged from highest to the lowest in colostrum, transitional milk and mature milk. The amount of peptides in the milk was greater than for blood. The peptides, except for ELA, were increased in milk and blood by GDM. Betatrophin and ELA are synthesized in the connective tissue of the breast. ASP, glucagon and SUB are synthesized in the alveolar tissue of the breast. These peptides in breast milk may contribute to the development of the gastrointestinal tract of newborns and infants.
Collapse
Affiliation(s)
- Adem Yavuz
- Department of Obstetrics and Gynecology, Nigde Omer Halis Demir Research and Education Hospital, Nigde, Turkiye
| | - Mustafa Ata Aydin
- Medical Student, School of Medicine, Gazi University, Ankara, Turkiye
| | - Kader Ugur
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), School of Medicine, Firat University, Elazig, Turkiye
| | - Suna Aydin
- Department of Cardiovascular Surgery, Fethi Sekin City Hospital, Elazig, Turkiye
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkiye
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Arzu Senol
- Department of Enfection Disease, Fethi Sekin City Hospital, Elazig, Turkiye
| | - Yakup Baykus
- Department of Obstetrics and Gynecology, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - Rulin Deniz
- Department of Obstetrics and Gynecology, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkiye
- Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkiye
| | - Mehmet Hanifi Yalcin
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Berrin Tarakci Gencer
- Department of Histology and Embryology, School of Veterinary Medicine, Firat University, Elazig, Turkiye
| | - Yaprak Kandemir Deniz
- Department of Obstetrics and Gynecology, Antalya Medicalpark Hospital Complex, Antalya, Turkiye
| | - Sefer Ustebay
- Department of Pediatrics, Bandirma 17 Eylul Univerity, Balikesir, Turkiye
| | - Zuhal Karaca Karagoz
- Department of Internal Medicine (Endocrinology and Metabolism Diseases), Fethi Sekin City Hospital, Elazig, Turkiye
| | - Elif Emre
- Department of Anatomy, School of Medicine, Firat University, Elazig, Turkiye
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry, (Firat Hormones Research Group), Medical School, Firat University, Elazig, Turkiye
| |
Collapse
|
13
|
Al-Thuwaini TM, Albazi WJ, Al-Shuhaib MBS, Merzah LH, Mohammed RG, Rhadi FA, Abd Al-Hadi AB, Alkhammas AH. A Novel c.100C > G Mutation in the FST Gene and Its Relation With the Reproductive Traits of Awassi Ewes. Bioinform Biol Insights 2023; 17:11779322231170988. [PMID: 37153841 PMCID: PMC10159244 DOI: 10.1177/11779322231170988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023] Open
Abstract
Reproductive traits are affected by many factors, including ovarian function, hormones, and genetics. Genetic polymorphisms of candidate genes are associated with reproductive traits. Several candidate genes are associated with economic traits, including the follistatin (FST) gene. Thus, this study aimed to evaluate whether the genetic variations in the FST gene are associated with the reproductive traits in Awassi ewes. The genomic DNA was extracted from 109 twin ewes and 123 single-progeny ewes. Therefore, 4 sequence fragments from the FST gene were amplified using polymerase chain reaction (PCR) (exon 2/240, exon 3/268, exon 4/254, and exon 5/266 bp, respectively). For a 254 bp amplicon, 3 genotypes were identified: CC, CG, and GG. Sequencing revealed a novel mutation in CG genotypes c.100C > G. The statistical analysis of c.100C > G showed an association with reproductive characteristics. Ewes carrying the c.100C > G had significantly (P ⩽ .01) lower litter sizes, twinning rates, lambing rates, and more days to lambing compared with CG and CC genotypes. Logistic regression analysis confirmed that the c.100C > G single-nucleotide polymorphism (SNP) is responsible for decreasing litter size. According to these results, the variant c.100C > G negatively affects the traits of interest and is associated with lower reproductive traits in Awassi sheep. As a result of this study, ewes carrying the c.100C > G SNP have lower litter size and are less prolific.
Collapse
Affiliation(s)
- Tahreer M Al-Thuwaini
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
- Tahreer M Al-Thuwaini, Department of Animal
Production, College of Agriculture, Al-Qasim Green University, Al-Qasim, Babil,
Iraq. ;
| | - Wefak J Albazi
- Department of Physiology, College of
Veterinary Medicine, University of Kerbala, Kerbala, Iraq
| | | | - Layth H Merzah
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Rihab G Mohammed
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Fadhil A Rhadi
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Ali B Abd Al-Hadi
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| | - Ahmed H Alkhammas
- Department of Animal Production,
College of Agriculture, Al-Qasim Green University, Al-Qasim, Iraq
| |
Collapse
|
14
|
RNA-seq identifies differentially expressed genes involved in csal1 overexpression in granulosa cells of prehierarchical follicles in Chinese Dagu hens. Poult Sci 2022; 102:102310. [PMID: 36442307 PMCID: PMC9706644 DOI: 10.1016/j.psj.2022.102310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
The transcription factor csal1 is an important molecule that plays a critical regulatory function in ovarian follicle development, as confirmed by our previous data. However, the candidate genes of csal1 and its regulatory mechanism remain poorly understood in the granulosa cells (GCs) of chicken prehierarchical follicles (PFs). Six transcriptomes of csal1 and empty vector were analyzed in Chinese Dagu hens by RNA sequencing. Six cDNA libraries were constructed, with more than 42 million clean reads and 16,779 unigenes. Of these 16,779 unigenes, 2,762 differentially expressed genes (DEGs) were found in GCs, including 1,605 upregulated and 1,157 downregulated unigenes. Fourteen genes, including BMP5, TACR2, AMH, PLAG1, MYOD1, BOP1, SIPA1, NOTCH1, BCL2L1, SOX9, ADGRA2, WNT5A, SLC7A11, and GATAD2B, were related to GC proliferation and differentiation, hormone production, ovarian follicular development, regulation of reproductive processes, and signaling pathways in the PFs. Further analysis demonstrated the DEGs in GCs of ovarian follicles were enriched in neuroactive ligand-receptor interaction, cell adhesion molecules, and pathways related to cytochrome P450, indicating a critical function for csal1 in the generation of egg-laying features by controlling ovarian follicle development. For the first time, the current study represents the transcriptome analysis with ectopic csal1 expression. These findings provide significant evidence for investigating the molecular mechanism by which csal1 controls PF development in the hen ovary.
Collapse
|
15
|
Falchi L, Ledda S, Zedda MT. Embryo biotechnologies in sheep: Achievements and new improvements. Reprod Domest Anim 2022; 57 Suppl 5:22-33. [PMID: 35437835 PMCID: PMC9790389 DOI: 10.1111/rda.14127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/17/2022] [Indexed: 12/30/2022]
Abstract
To date, large-scale use of multiple ovulation and embryo transfer (MOET) programmes in ovine species is limited due to unpredictable results and high costs of hormonal stimulation and treatment. Therefore, even if considered reliable, they are not fully applicable in large-scale systems. More recently, the new prospects offered by in vitro embryo production (IVEP) through collection of oocytes post-mortem or by repeated ovum pick-up from live females suggested an alternative to MOET programmes and may be more extensively used, moving from the exclusive research in the laboratory to field application. The possibility to perform oocytes recovery from juvenile lambs to obtain embryos (JIVET) offers the great advantage to significantly reduce the generation interval, speeding the rate of genetic improvement. Although in the past decades several studies implemented novel protocols to enhance embryo production in sheep, the conditions of every single stage of IVEP can significantly affect embryo yield and successful transfer into the recipients. Moreover, the recent progresses on embryo production and freezing technologies might allow wider propagation of valuable genes in small ruminants populations and may be used for constitution of flocks without risks of disease. In addition, they can give a substantial contribution in preserving endangered breeds. The new era of gene editing might offer innovative perspectives in sheep breeding, but the application of such novel techniques implies involvement of specialized operators and is limited by relatively high costs for embryo manipulation and molecular biology analysis.
Collapse
Affiliation(s)
- Laura Falchi
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Sergio Ledda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| | - Maria T. Zedda
- Sezione di Cl. Ostetrica e GinecologiaDipartimento di Medicina VeterinariaUniversità degli Studi di SassariSassariItaly
| |
Collapse
|
16
|
A novel role of follicle-stimulating hormone (FSH) in various regeneration-related functions of endometrial stem cells. Exp Mol Med 2022; 54:1524-1535. [PMID: 36117220 PMCID: PMC9534881 DOI: 10.1038/s12276-022-00858-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
Follicle-stimulating hormone (FSH) promotes the production and secretion of estrogen, which in turn stimulates the growth and maturation of ovarian follicles. Therefore, consecutive FSH treatment to induce ovarian hyperstimulation (superovulation) is still considered the most cost-effective option for the majority of assisted reproductive technologies (ARTs). However, a relatively high cancellation rate and subsequent low pregnancy outcomes (approximately 15%) are the most challenging aspects of this FSH-based ART. Currently, the main cause for this low implantation rate of FSH-based ART has not yet been revealed. Therefore, we hypothesized that these high cancellation rates with FSH-based superovulation protocols might be associated with the harmful effects of consecutive FSH treatment. Importantly, several recent studies have revealed that tissue-resident stem cell deficiency can significantly reduce cyclic endometrial regeneration and subsequently decrease the pregnancy outcome. In this context, we investigated whether FSH treatment could directly inhibit endometrial stem cell functions and consequently suppress endometrial regeneration. Consistent with our hypothesis, our results revealed for the first time that FSH could inhibit various regeneration-associated functions of endometrial stem cells, such as self-renewal, migration, and multilineage differentiation capacities, via the PI3K/Akt and ERK1/2 signaling pathways both in vitro and in vivo. Follicle-stimulating hormone (FSH) is commonly administered to treat female infertility by stimulating the ovaries, but FSH treatment can also inhibit key cellular and physiological processes required for successful pregnancy. In the light of pregnancy outcomes as low as 15 percent after FSH-based assisted reproduction technologies, In-Sun Hong at Gachon University, Incheon, South Korea, and colleagues investigated the effects of FSH. Working with cultured human stem cells from the lining of the uterus, they found that FSH could inhibit multiple cellular regenerative functions that normally maintain this lining. They also identified a specific molecular signaling pathway involved in mediating these inhibitory effects. Studies in mice supported the cell culture results. The findings could help improve infertility treatment strategies by guiding research into methods to alleviate the unwanted effects of FSH.
Collapse
|
17
|
Recchia K, Jorge AS, Pessôa LVDF, Botigelli RC, Zugaib VC, de Souza AF, Martins DDS, Ambrósio CE, Bressan FF, Pieri NCG. Actions and Roles of FSH in Germinative Cells. Int J Mol Sci 2021; 22:10110. [PMID: 34576272 PMCID: PMC8470522 DOI: 10.3390/ijms221810110] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Follicle stimulating hormone (FSH) is produced by the pituitary gland in a coordinated hypothalamic-pituitary-gonadal (HPG) axis event, plays important roles in reproduction and germ cell development during different phases of reproductive development (fetal, neonatal, puberty, and adult life), and is consequently essential for fertility. FSH is a heterodimeric glycoprotein hormone of two dissociable subunits, α and β. The FSH β-subunit (FSHβ) function starts upon coupling to its specific receptor: follicle-stimulating hormone receptor (FSHR). FSHRs are localized mainly on the surface of target cells on the testis and ovary (granulosa and Sertoli cells) and have recently been found in testicular stem cells and extra-gonadal tissue. Several reproduction disorders are associated with absent or low FSH secretion, with mutation of the FSH β-subunit or the FSH receptor, and/or its signaling pathways. However, the influence of FSH on germ cells is still poorly understood; some studies have suggested that this hormone also plays a determinant role in the self-renewal of germinative cells and acts to increase undifferentiated spermatogonia proliferation. In addition, in vitro, together with other factors, it assists the process of differentiation of primordial germ cells (PGCLCs) into gametes (oocyte-like and SSCLCs). In this review, we describe relevant research on the influence of FSH on spermatogenesis and folliculogenesis, mainly in the germ cell of humans and other species. The possible roles of FSH in germ cell generation in vitro are also presented.
Collapse
Affiliation(s)
- Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
| | - Amanda Soares Jorge
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Laís Vicari de Figueiredo Pessôa
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Ramon Cesar Botigelli
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
- Department of Pharmacology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu 18618-970, Brazil
| | - Vanessa Cristiane Zugaib
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Aline Fernanda de Souza
- Department Biomedical Science, Ontary Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Daniele dos Santos Martins
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Carlos Eduardo Ambrósio
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo 01001-010, Brazil; (K.R.); (F.F.B.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, Brazil; (A.S.J.); (L.V.d.F.P.); (R.C.B.); (V.C.Z.); (D.d.S.M.); (C.E.A.)
| |
Collapse
|
18
|
Differential Regulation of Gonadotropins as Revealed by Transcriptomes of Distinct LH and FSH Cells of Fish Pituitary. Int J Mol Sci 2021; 22:ijms22126478. [PMID: 34204216 PMCID: PMC8234412 DOI: 10.3390/ijms22126478] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/08/2023] Open
Abstract
From mammals to fish, reproduction is driven by luteinizing hormone (LH) and follicle-stimulating hormone (FSH) temporally secreted from the pituitary gland. Teleost fish are an excellent model for addressing the unique regulation and function of each gonadotropin cell since, unlike mammals, they synthesize and secrete LH and FSH from distinct cells. Only very distant vertebrate classes (such as fish and birds) demonstrate the mono-hormonal strategy, suggesting a potential convergent evolution. Cell-specific transcriptome analysis of double-labeled transgenic tilapia expressing GFP and RFP in LH or FSH cells, respectively, yielded genes specifically enriched in each cell type, revealing differences in hormone regulation, receptor expression, cell signaling, and electrical properties. Each cell type expresses a unique GPCR signature that reveals the direct regulation of metabolic and homeostatic hormones. Comparing these novel transcriptomes to that of rat gonadotrophs revealed conserved genes that might specifically contribute to each gonadotropin activity in mammals, suggesting conserved mechanisms controlling the differential regulation of gonadotropins in vertebrates.
Collapse
|
19
|
Abstract
Many physiological systems rely on hormones to communicate and time cellular and tissue-level functions. Most endocrine systems are dynamic and governed by complex regulatory systems and/or feedback mechanisms to generate precise patterns and modes of hormone release in order to optimize control of physiological and cellular processes. This Special Issue focuses on hormone release patterns (ultradian, infradian, pulsatile, circadian), with a special emphasis on the hypothalamic-pituitary axis as well as melatonin release, and how these patterns of hormone secretion change during life stages and disease.
Collapse
Affiliation(s)
- Alexander S Kauffman
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Han X, Guan Z, Xu M, Zhang Y, Yao H, Meng F, Zhuo Y, Yu G, Cao X, Du X, Bu G, Kong F, Huang A, Zeng X. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology 2020; 148:103-111. [DOI: 10.1016/j.theriogenology.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/04/2020] [Indexed: 10/24/2022]
|