1
|
Lee Y, Lee HJ, Kim KJ, Shin HB, Shin YA, Jin H, Ham JR, Choi SY, Lee MJ, Lee MK, Son YJ. "Betaone" barley water extract suppresses ovariectomy-induced osteoporosis in vivo and RANKL-induced osteoclast differentiation in vitro. PLoS One 2025; 20:e0317894. [PMID: 39982961 PMCID: PMC11844866 DOI: 10.1371/journal.pone.0317894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/05/2025] [Indexed: 02/23/2025] Open
Abstract
Betaone is a variety of barley developed by the Korea Rural Development Administration. This study investigated the anti-osteoporosis effects of Betaone barley water extract (B1W) on ovariectomy (OVX)-induced bone loss in mice. To elucidate its mechanism, the effect of B1W on osteoclasts was assessed by measuring the protein expression of nuclear factor-activated T cells c1 (NFATc1), the expression of genes involved in osteoclast differentiation, and bone pit assays. B1W (300 mg/kg/day) significantly increased bone mineral density and bone volume fraction, but decreased trabecular separation compared to the OVX group. B1W also showed a trend towards decreasing serum C-telopeptide of collagen type 1 levels in OVX mice. Additionally, B1W reduced the expression of NFATc1 and downregulated the mRNA expression levels of various marker genes such as c-Fos, tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK), dendritic cell-specific transmembrane protein (DC-STAMP), and osteoclast-associated Ig-like receptor (OSCAR). B1W reduced the osteoclast activity in the receptor activator of nuclear factor-κB ligand (RANKL)-treated osteoclasts by inhibiting the mitogen-activated protein kinase (MAPK) pathway. Based on the results, B1W can be considered a useful candidate for a therapeutic agent for treating conditions of bone loss and could also be used as an ingredient in health supplements.
Collapse
Affiliation(s)
- Yongjin Lee
- Department of Nutritional Science & Food Management, Ewha Womans University, Seodaemun-gu, Seoul, Republic of Korea
| | - Hyun-Jin Lee
- The DABOM Inc, Seodaemun-gu, Seoul, Republic of Korea
| | - Kwang-Jin Kim
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Han-Byeol Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Yoon-A Shin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Holim Jin
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Ju Ri Ham
- Mokpo Marin Food-Industry Research Center, Mokpo-si, Jeollanam-do, Republic of Korea
| | - Soo-Young Choi
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Mi-Ja Lee
- Crop Foundation Research Division, National Institute of Crop Science, Rural Development Administration (RDA), Wanju-si, Jeollabuk-do, Republic of Korea
| | - Mi-Kyung Lee
- Department of Food and Nutrition, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon-si, Jeollanam-do, Republic of Korea
| |
Collapse
|
2
|
Naffaa MM, Yin HH. A cholinergic signaling pathway underlying cortical circuit activation of quiescent neural stem cells in the lateral ventricle. Sci Signal 2024; 17:eadk8810. [PMID: 39316665 DOI: 10.1126/scisignal.adk8810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/18/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
Neural stem cells (NSCs) in the subventricular zone (SVZ) located along the lateral ventricles (LVs) of the mammalian brain continue to self-renew to produce new neurons after birth and into adulthood. Quiescent LV cells, which are situated close to the ependymal cells lining the LVs, are activated by choline acetyltransferase-positive (ChAT+) neurons within the subependymal (subep) region of the SVZ when these neurons are stimulated by projections from the anterior cingulate cortex (ACC). Here, we uncovered a signaling pathway activated by the ACC-subep-ChAT+ circuit responsible for the activation and proliferation of quiescent LV NSCs specifically in the ventral area of the SVZ. This circuit activated muscarinic M3 receptors on quiescent LV NSCs, which subsequently induced signaling mediated by the inositol 1,4,5-trisphosphate receptor type 1 (IP3R1). Downstream of IP3R1 activation, which would be expected to increase intracellular Ca2+, Ca2+-/calmodulin-dependent protein kinase II δ and the MAPK10 signaling pathway were stimulated and required for the proliferation of quiescent LV NSCs in the SVZ. These findings reveal the mechanisms that regulate quiescent LV NSCs and underscore the critical role of projections from the ACC in promoting their proliferative activity within the ventral SVZ.
Collapse
Affiliation(s)
- Moawiah M Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, School of Medicine, Durham, NC 27710, USA
| | - Henry H Yin
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
3
|
Yuan T, Wang Y, Wang H, Lu Q, Zhang X, Li Z, Sun S. Suppressing ERp57 diminishes osteoclast activity and ameliorates ovariectomy-induced bone loss via the intervention in calcium oscillation and the calmodulin/calcineurin/Nfatc1 pathway. Heliyon 2024; 10:e35374. [PMID: 39170388 PMCID: PMC11336591 DOI: 10.1016/j.heliyon.2024.e35374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Background Increased osteoclast activity constitutes the primary etiology of excessive bone erosion in postmenopausal osteoporosis. ERp57, otherwise referred to as protein disulfide isomerase A3 (PDIA3), plays a crucial role in the regulation of intracellular calcium signaling. This is documented to exert a profound impact on osteoclast differentiation and functionality. Methods To ascertain the potential role of ERp57 in disease progression, prevention, and treatment, network pharmacology and bioinformatics analyses were conducted in relation to postmenopausal osteoporosis and ERp57 inhibitor (Loc14). Then, subsequent experimental verifications were employed in vitro on osteoclast and osteoblast, and in vivo on ovariectomy (OVX) mice models. Results Multiple enrichment analyses suggested that the "calcium signaling pathway" may constitute a potential avenue for therapeutic intervention by Loc14 in the treatment of postmenopausal osteoporosis. In vitro experiments demonstrated inhibition of ERp57 could block osteoclast differentiation and function by interfering with the expression of osteoclast marker genes (Traf6, Nfatc1, and Ctsk). Further mechanisms studies based on calcium imaging, qPCR, and WB established that ERp57 inhibitor (Loc14) could obstruct calcium oscillation in osteoclast precursor cells (OPCs) by limiting the entry sources of cytosolic Ca2+ and interfering with calmodulin/calcineurin/Nfatc1 pathway. Evidence from Micro-CT scanning and double calcein labeling confirmed that the application of Loc14 in vivo could alleviate bone loss and partially reversed the osteogenic impairment caused by OVX in mice. Conclusions Our findings proved the suppressive effects of Loc14 on osteoclastogenesis via attenuating calcium oscillation and associated singling pathways, providing ERp57 as a potential therapeutic target for postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Tao Yuan
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
4
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Yin Z, Shuaipan Z, He P, Zhang Q, Fang M, Lu P. Efficacy of Tuina in chronic low back pain with anxiety: study protocol for a randomised controlled trial. BMJ Open 2023; 13:e073671. [PMID: 37857544 PMCID: PMC10603401 DOI: 10.1136/bmjopen-2023-073671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Chronic low back pain (cLBP) is one of the largest and most frequent public health problems worldwide. Tuina is a physical therapy commonly used in China to treat musculoskeletal diseases. Compared with traction, there is little high-quality scientific evidence that can demonstrate the effectiveness of Tuina in the treatment of patients with cLBP. Therefore, the purpose of this clinical trial is to evaluate the effect of massage on cLBP patients compared with traction. METHODS AND ANALYSES This is a single-centre, assessor-blinded and analyst-blinded prospective randomised controlled trial with two parallel arms. Ninety-four patients with cLBP will be recruited. Three treatments were given every week for a total of 4 weeks. In the Traction group, participants were given traction therapy in the Tuina group, participants will receive a four-step physiotherapy including kneading, rolling, plucking and oblique pulling. The outcomes will be measured at baseline, at the end of treatment, as well as 1 and 2 months after treatment. The primary outcome will be the Hamilton Anxiety Scale after 12 sessions of treatment. The secondary outcomes will be the Visual Analogue Scale, the medical outcomes study Short Form 36, Serum Quantitative Index and genetic testing after 12 sessions of treatment. ETHICS AND DISSEMINATION The study was approved by the Ethics Committee of Yueyang Hospital of Integrated Traditional Chinese and Western Medicine affiliated with Shanghai University of Traditional Chinese Medicine. TRIAL REGISTRATION NUMBER ChiCTR2200065448.
Collapse
Affiliation(s)
- Zhiyang Yin
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Zhang Shuaipan
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Pei He
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Qi Zhang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Min Fang
- Shanghai University of Traditional Chinese Medicine Affiliated Shuguang Hospital, Shanghai, People's Republic of China
- Shanghai Institute of Traditional Chinese Medicine Tuina Research Institute, Shanghai, People's Republic of China
| | - Ping Lu
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Niu Q, Gao J, Wang L, Liu J, Zhang L. Regulation of differentiation and generation of osteoclasts in rheumatoid arthritis. Front Immunol 2022; 13:1034050. [PMID: 36466887 PMCID: PMC9716075 DOI: 10.3389/fimmu.2022.1034050] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 09/25/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA), which affects nearly 1% of the world's population, is a debilitating autoimmune disease. Bone erosion caused by periarticular osteopenia and synovial pannus formation is the most destructive pathological changes of RA, also leads to joint deformity and loss of function,and ultimately affects the quality of life of patients. Osteoclasts (OCs) are the only known bone resorption cells and their abnormal differentiation and production play an important role in the occurrence and development of RA bone destruction; this remains the main culprit behind RA. METHOD Based on the latest published literature and research progress at home and abroad, this paper reviews the abnormal regulation mechanism of OC generation and differentiation in RA and the possible targeted therapy. RESULT OC-mediated bone destruction is achieved through the regulation of a variety of cytokines and cell-to-cell interactions, including gene transcription, epigenetics and environmental factors. At present, most methods for the treatment of RA are based on the regulation of inflammation, the inhibition of bone injury and joint deformities remains unexplored. DISCUSSION This article will review the mechanism of abnormal differentiation of OC in RA, and summarise the current treatment oftargeting cytokines in the process of OC generation and differentiation to reduce bone destruction in patients with RA, which isexpected to become a valuable treatment choice to inhibit bone destruction in RA.
Collapse
Affiliation(s)
- Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Lei Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Liyun Zhang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Chen F, Tian L, Pu X, Zeng Q, Xiao Y, Chen X, Zhang X. Enhanced ectopic bone formation by strontium-substituted calcium phosphate ceramics through regulation of osteoclastogenesis and osteoblastogenesis. Biomater Sci 2022; 10:5925-5937. [PMID: 36043373 DOI: 10.1039/d2bm00348a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To explore how strontium influences osteoclastogenesis and osteoblastogenesis during material-induced ectopic bone formation, porous strontium-substituted biphasic calcium phosphate (Sr-BCP) and BCP ceramics with equivalent pore structures and comparable grain size and porosity were prepared. In vitro results showed that compared with BCP, Sr-BCP inhibited the osteoclastic differentiation of osteoclast precursors by delaying cell fusion, down-regulating the expression of osteoclast marker genes, and reducing the activity of osteoclast specific proteins, possibly due to the activated ERK signaling pathway but the suppressed p38, JNK and AKT signaling pathways. Meanwhile, Sr-BCP promoted the osteogenic differentiation of mesenchymal stem cells (MSCs) by up-regulating the osteogenic gene expression. Sr-BCP also mediated the expression of important osteoblast-osteoclast coupling factors, as evidenced by the increased Opg/Rankl ratio in mMSCs, and the reduced Rank expression and enhanced EphrinB2 expression in osteoclast precursors. Similar results were observed in an in vivo study based on a murine intramuscular implantation model. The sign of ectopic bone formation was only seen in Sr-BCP at 8 weeks. Compared to BCP, Sr-BCP obviously hindered the formation of TRAP- and CTSK-positive multinucleated osteoclast-like cells during the early implantation time up to 6 weeks, which is consistent with the in vivo PCR results. This suggested that Sr-BCP could clearly accelerate the ectopic bone formation by promoting osteogenesis but suppressing osteoclastogenesis, which might be closely related to the expression of osteoblast-osteoclast coupling factors regulated by Sr2+. These findings may help in the design and fabrication of smart bone substitutes with the desired potential for bone regeneration through modulating both osteoclastic resorption and osteoblastic synthesis.
Collapse
Affiliation(s)
- Fuying Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Ximing Pu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Qin Zeng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Fu YY, Cen JK, Song HL, Song SY, Zhang ZJ, Lu HJ. Ginsenoside Rh2 Ameliorates Neuropathic Pain by inhibition of the miRNA21-TLR8-MAPK axis. Mol Pain 2022; 18:17448069221126078. [PMID: 36039405 PMCID: PMC9478689 DOI: 10.1177/17448069221126078] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ginsenoside Rh2 is one of the major bioactive ginsenosides in Panax
ginseng. Although Rh2 is known to enhance immune cells activity for
treatment of cancer, its anti-inflammatory and neuroprotective effects have yet
to be determined. In this study, we investigated the effects of Rh2 on spared
nerve injury (SNI)-induced neuropathic pain and elucidated the potential
mechanisms. We found that various doses of Rh2 intrathecal injection
dose-dependently attenuated SNI-induced mechanical allodynia and thermal
hyperalgesia. Rh2 also inhibited microglia and astrocyte activation in the
spinal cord of a murine SNI model. Rh2 treatment inhibited SNI-induced increase
of proinflammatory cytokines, including tumor necrosis factor-α, interleukin
(IL)-1 and IL-6. Expression of miRNA-21, an endogenous ligand of Toll like
receptor (TLR)8 was also decreased. Rh2 treatment blocked the mitogen-activated
protein kinase (MAPK) signaling pathway by inhibiting of phosphorylated
extracellular signal-regulated kinase expression. Finally, intrathecal injection
of TLR8 agonist VTX-2337 reversed the analgesic effect of Rh2. These results
indicated that Rh2 relieved SNI-induced neuropathic pain via inhibiting the
miRNA-21-TLR8-MAPK signaling pathway, thus providing a potential application of
Rh2 in pain therapy.
Collapse
Affiliation(s)
- Yuan-Yuan Fu
- Institute of Pain Medicine and
Special Environmental Medicine, Nantong University, Jiangsu, China
- Department of Human Anatomy, School
of Medicine, Nantong University, Jiangsu, China
| | - Jian-Ke Cen
- Institute of Pain Medicine and
Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Hao-Lin Song
- Department of Human Anatomy, School
of Medicine, Nantong University, Jiangsu, China
| | - Si-Yuan Song
- Institute of Pain Medicine and
Special Environmental Medicine, Nantong University, Jiangsu, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School
of Medicine, Nantong University, Jiangsu, China
- Zhi-jun Zhang, Department of Human Anatomy,
School of Medicine, Nantong University, Jiangsu 226019, China,
| | - Huan-Jun Lu
- Institute of Pain Medicine and
Special Environmental Medicine, Nantong University, Jiangsu, China
- Huan-Jun Lu, Institute of Pain Medicine and
Special Environmental Medicine, Nantong University, Jiangsu 226019, China,
| |
Collapse
|
9
|
Xu L, Wang S, Zhang L, Liu B, Zheng S, Yao M. Cobratoxin Alleviates Cancer-Induced Bone Pain in Rats via Inhibiting CaMKII Signaling Pathway after Acting on M4 Muscarinic Cholinergic Receptors. ACS Chem Neurosci 2022; 13:1422-1432. [PMID: 35420768 DOI: 10.1021/acschemneuro.2c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cancer-induced bone pain (CIBP) is a common pain in clinics, which can reduce the quality of life and increase the mortality of patients, but the treatment of CIBP is limited. This study was designed to investigate the analgesic effect of α-cobratoxin on CIBP and further to explore the molecular target and potential signal pathway. As shown by the mechanical allodynia test in a CIBP rat model, administration of α-cobratoxin produced significant analgesia in a dose-dependent manner, and the analgesic effects were blocked by pretreatment with an intrathecal injection of M4 mAChR-siRNA or intraperitoneal injection of tropicamide, an antagonist of M4 muscarinic cholinergic receptor. Whole-cell patch-clamp recording showed that α-cobratoxin can decrease the spontaneous firing and spontaneous excitatory postsynaptic currents of SDH neurons in CIBP rats. In primary lumber SDH neurons, intracellular calcium measurement revealed that α-cobratoxin decreased intracellular calcium concentration, and immunofluorescence demonstrated that M4 muscarinic cholinergic receptor and CaMKII/CREB were co-expressed. In the CIBP model and primary SDH neurons, Western blot showed that the levels of p-CaMKII and p-CREB were increased by α-cobratoxin and the effect of α-cobratoxin was antagonized by M4 mAChR-siRNA. The quantitative polymerase chain reaction (qPCR) results showed that α-cobratoxin downregulated the expression of proinflammatory cytokines through M4 muscarinic cholinergic receptor in SDH. These results suggest that α-cobratoxin may activate M4 muscarinic cholinergic receptor, triggering the inhibition of SDH neuronal excitability via CaMKII signaling pathway, thereby resulting in antagonistic effects in the CIBP rat model.
Collapse
Affiliation(s)
- Longsheng Xu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shizhen Wang
- Department of Basic Medicine, Jiangsu Vocational College of Nursing, Huaian 223001, China
| | - Ling Zhang
- Department of central laboratory, Affiliated Zhangjiagang Hospital of Suzhou University, Zhangjiagang 215600, China
| | - Beibei Liu
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Shang Zheng
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Ming Yao
- Department of Anesthesia and Pain Medicine, Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| |
Collapse
|
10
|
Tan Y, Chen L, Li K, Lou B, Liu Y, Liu Z. Yeast as carrier for drug delivery and vaccine construction. J Control Release 2022; 346:358-379. [PMID: 35483637 DOI: 10.1016/j.jconrel.2022.04.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022]
Abstract
Yeast has been employed as an effective derived drug carrier as a unicellular microorganism. Many research works have been devoted to the encapsulation of nucleic acid compounds, insoluble small molecule drugs, small molecules, liposomes, polymers, and various nanoparticles in yeast for the treatment of disease. Recombinant yeast-based vaccine carriers (WYV) have played a major role in the development of vaccines. Herein, the latest reports on the application of yeast carriers and the development of related research are summarized, a conceptual description of gastrointestinal absorption of yeast carriers, as well as the various package forms of different drug molecules and nanoparticles in yeast carriers are introduced. In addition, the advantages and development of recombinant yeast vaccine carriers for the disease, veterinary and aquaculture applications are discussed. Moreover, the current challenges and future directions of yeast carriers are proposed.
Collapse
Affiliation(s)
- Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan Province, PR China; Molecular Imaging Research Center of Central South University, Changsha 410008, Hunan, PR China.
| |
Collapse
|
11
|
Wan QQ, Jiao K, Ma YX, Gao B, Mu Z, Wang YR, Wang YH, Duan L, Xu KH, Gu JT, Yan JF, Li J, Shen MJ, Tay FR, Niu LN. Smart, Biomimetic Periosteum Created from the Cerium(III, IV) Oxide-Mineralized Eggshell Membrane. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14103-14119. [PMID: 35306805 DOI: 10.1021/acsami.2c02079] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.
Collapse
Affiliation(s)
- Qian-Qian Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yu-Xuan Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yi-Rong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Yan-Hao Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research & Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lian Duan
- Southwest University, Chongqing 400715, China
| | - Ke-Hui Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jun-Ting Gu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jian-Fei Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Min-Juan Shen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, Georgia 30912, United States
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Hena 453003, China
| |
Collapse
|
12
|
Interleukin-17 promotes osteoclastogenesis and periodontal damage via autophagy in vitro and in vivo. Int Immunopharmacol 2022; 107:108631. [PMID: 35219162 DOI: 10.1016/j.intimp.2022.108631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Because of its potent pro-inflammatory properties, interleukin-17 (IL-17) contributes to the pathogenesis of various inflammatory diseases. This study explored the effects of IL-17 on osteoclastogenesis in an osteoclast monoculture and osteoblast-osteoclast co-culture system, as tools to investigate the molecular mechanisms underlying the interactions between osteoclastogenesis and autophagy. METHODS Various ratios of calvarial osteoblasts (OB) and osteoclast precursor cells (mouse macrophage cell line RAW264.7, hereinafter referred to as OC) were tested. Tartrate-resistant acid phosphatase (TRAP) staining was used to detect the optimum osteoblasts:osteoclasts ratio. IL-17 was added to the co-culture system to test its effects on multinucleated osteoclast formation and osteoclast-related proteins. We assessed the effects of IL-17 on receptor activator of nuclear factor-kappa B ligand (RANKL) expression in osteoblasts, and determined if IL-17 alone could modulate osteoclast formation in an osteoclast monoculture. Administration of exogenous RANKL combined with IL-17 was employed to stimulate RAW264.7 cells osteoclastogenesis and to determine production of osteoclasts and autophagy-related proteins. We knocked down Beclin1 expression in RAW264.7 cells and examined the expression of autophagy-related and osteoclast-related proteins in RAW264.7 cells and the co-culture system, and the TAK1-binding protein 3 (TAB3)/ extracellular signal regulated kinase (ERK) pathway. RESULTS A ratio of 20 OB : 1 OC yielded the highest rate of osteoclast formation. Low IL-17 concentrations increased osteoclastogenesis in co-cultures significantly, but high levels of IL-17 had the opposite effect. IL-17 alone could not induce formation of TRAP+ multinucleated cells in RAW264.7 cells. Low IL-17 concentrations promoted osteoclast differentiation and autophagy in RAW264.7 cells induced by exogenous RANKL, but high IL-17 concentrations inhibited this process. Knockdown of Beclin1 reversed the enhanced effects of 0.1 ng/mL IL-17 on osteoclastogenesis and autophagy in RAW264.7 cells. The TAB3/ERK pathway was also blocked after autophagy inhibition. CONCLUSION In the co-culture model used in this study, a ratio of 20 OB:1 OC proved to be the optimal ratio to facilitate osteoclast formation. IL-17 regulated RANKL-induced osteoclastogenesis via autophagy. The Beclin1/TAB3/ERK pathway was involved in osteoclast autophagy.
Collapse
|
13
|
Controlled release of dopamine coatings on titanium bidirectionally regulate osteoclastic and osteogenic response behaviors. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112376. [PMID: 34579895 DOI: 10.1016/j.msec.2021.112376] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/23/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Bone diseases, for example, osteoporosis, cause excessive differentiation of osteoclasts and decreased bone formation, resulting in imbalance of bone remodeling and poor osseointegration, which can be considered a relative contraindication for titanium implants. Dopamine (DA) might provide a solution to this problem by inhibiting osteoclasts and promoting osteoblasts at different concentrations. However, current commercial implants cannot load bone-active molecules, such as DA. Therefore, this study aimed to develop a surface modification method for implants to achieve a controlled release of DA and enhance the resistance of titanium implants to bone resorption and bone regeneration. DA-loaded alginate-arginine-glycine-aspartic acid (RGD) (AlgR) coatings on a vaterite-modified titanium surface were successfully assembled, which continuously and steadily released DA. In vitro studies have shown that materials showing good biocompatibility can not only inhibit receptor activator of nuclear factor-kappa B (NFκB) ligand (RANKL)-induced osteoclastogenesis but also enhance the adhesion and osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs). The optimal DA-loaded concentration of this bidirectional regulation is 100 μM. Interestingly, DA more effectively attenuated osteoclastogenesis when released in a sustained manner from titanium coatings than it did via traditional, free administration, and the alginate-RGD coating and DA clearly exhibited great synergy. This study provides a design of titanium implant surface modification to improve bone remodeling around implants.
Collapse
|
14
|
Colorectal cancer cells promote osteoclastogenesis and bone destruction through regulating EGF/ERK/CCL3 pathway. Biosci Rep 2021; 40:225098. [PMID: 32478376 PMCID: PMC7315727 DOI: 10.1042/bsr20201175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/23/2022] Open
Abstract
Bone metastasis of colorectal cancer (CRC) cells leads to osteolysis. Aberrant activation of osteoclasts is responsible for bone resorption in tumor. In general, bone marrow-derived monocytes (BMMs) differentiate into osteoclasts, however, how CRC cells interact with BMMs and how to regulate the differentiation is elusive. We here report that CRC cells promote bone resorption in bone metastasis. Transcriptomic profiling revealed CCL3 up-regulated in MC-38 conditional medium treated BMMs. Further investigation demonstrated that CCL3 produced by BMMs facilitated cell infusion and thus promoted the osteoclastogenesis. In addition, CRC cells derived EGF stimulated the production of CCL3 in BMMs through activation of ERK/CREB pathway. Blockage of EGF or CCL3 can efficiently attenuate the osteolysis in bone metastasis of CRC.
Collapse
|
15
|
Lin Y, Gu Y, Zuo G, Jia S, Liang Y, Qi M, Dong W. [Zoledronate regulates osteoclast differentiation and bone resorption in high glucose through p38 MAPK pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1439-1447. [PMID: 33118518 DOI: 10.12122/j.issn.1673-4254.2020.10.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the effect of zoledronate (ZOL) on osteoclast differentiation and bone resorption under high glucose, and the regulation mechanism of p38 mitogen activated kinase (p38 MAPK) signaling pathway in this process. METHODS RAW264.7 cells were divided into four groups: low group, high group, low+ZOL group and high+ZOL group after induced into osteoclasts. Cell proliferation activity was determined by MTT assay. The migration of RAW264.7 cells were examined Optical microscopy. Immunofluorescence microscopy was used to observe the cytoskeleton and sealing zones of osteoclasts. After adding group 5: high + ZOL + SB203580 group, trap staining was used to identify the number of positive osteoclasts in each group. The number and area of resorption lacunae were observed by SEM. The mRNA and protein expression of osteoclast related factors were detected by real-time PCR and Western blotting. RESULTS The cells in the 5 groups showed similar proliferative activity. High glucose promoted the migration of RAW264.7 cells (P < 0.05), inhibited the clarity of cytoskeleton and the formation of sealing zones in the osteoclasts. Exposure to high glucose significantly lowered the expressions of p38 MAPK, p-p38 MAPK, NFATc1, CTSK and TRAP, and inhibited osteoclast differentiation and bone absorption (P < 0.05). Treatment with ZOL obviously suppressed the migration ability of RAW264.7 cells, further reduced the clarity of the cytoskeleton, inhibited the formation of sealing zones of the osteoclasts, lowered the expressions of p38 MAPK, p-p38 MAPK, NFATc1, CTSK, and TRAP (P < 0.05), and inhibited osteoclast differentiation and bone absorption. Treatment with SB203580 obviously inhibited osteoclast differentiation and bone resorption and the expressions of P38 MAPK, p-p38 MAPK, NFATc1, CTSK and TRAP (P < 0.05). CONCLUSIONS High glucose inhibits osteoclast differentiation and bone resorption. ZOL inhibits osteoclast differentiation and bone resorption in high-glucose conditions by regulating p38 MAPK pathway, which can be a new pathway for ZOL to regulate diabetic osteoporosis.
Collapse
Affiliation(s)
- Yifan Lin
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| | - Yingying Gu
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| | - Guifu Zuo
- School of Materials Science and Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Shunyi Jia
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| | - Yongqiang Liang
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| | - Mengchun Qi
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| | - Wei Dong
- School of Stomatology, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|