1
|
Turkel I, Ozerklig B, Yazgan B, Ozenc AE, Kubat GB, Simsek G, Atakan MM, Kosar SN. Systemic and tissue-specific spexin response to acute treadmill exercise in rats. Peptides 2024; 180:171281. [PMID: 39111593 DOI: 10.1016/j.peptides.2024.171281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Spexin (SPX) is a 14-amino-acid peptide that plays an important role in the regulation of metabolism and energy homeostasis. It is well known that a variety of bioactive molecules released into the circulation by organs and tissues in response to acute and chronic exercise, known as exerkines, mediate the benefits of exercise by improving metabolic health. However, it is unclear whether acute exercise affects SPX levels in the circulation and peripheral tissues. This study aimed to determine whether acute treadmill exercise induces plasma SPX levels, as well as mRNA expression and immunostaining of SPX in skeletal muscle, adipose tissue, and liver. Male Sprague Dawley rats were divided into sedentary and acute exercise groups. Plasma, soleus (SOL), extensor digitorum longus (EDL), adipose tissue, and liver samples were collected at six time points (0, 1, 3, 6, 12, and 24 h) following 60 min of acute treadmill exercise at a speed of 25 m/min and 0 % grade. Acute exercise increased plasma SPX levels and induced mRNA expression of Spx in the SOL, EDL, and liver. Immunohistochemical analysis demonstrated that acute exercise led to a decrease in SPX immunostaining in the liver. Taken together, these findings suggest that SPX increases in response to acute exercise as a potential exerkine candidate, and the liver may be one of the sources of acute exercise-induced plasma SPX levels in rats. However, a comprehensive analysis is needed to fully elucidate the systemic response of SPX to acute exercise, as well as the tissue from which SPX is secreted.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey.
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Burak Yazgan
- Department of Medical Services and Techniques, Sabuncuoglu Serefeddin Health Services Vocational School, Amasya University, Amasya, Turkey
| | - Ahmet Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey; Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, Ankara, Turkey
| | - Muhammed Mustafa Atakan
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Sukran Nazan Kosar
- Division of Exercise Nutrition and Metabolism, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Fang P, She Y, Yu M, Yan J, Yu X, Zhao J, Jin Y, Min W, Shang W, Zhang Z. Novel hypothalamic pathways for metabolic effects of spexin. Pharmacol Res 2024; 208:107399. [PMID: 39245191 DOI: 10.1016/j.phrs.2024.107399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
One of the main underlying etiologies of type 2 diabetes (T2DM) is insulin resistance, which is most frequently caused by obesity. Notably, the deregulation of adipokine secretion from visceral adiposity has been identified as a crucial characteristic of type 2 diabetes and obesity. Spexin is an adipokine that is released by many different tissues, including white adipocytes and the glandular stomach, and is negatively connected with the state of energy storage. This peptide acts through GALR2/3 receptors to control a wide range of metabolic processes, including inflammation, browning, lipolysis, energy expenditure, and eating behavior. Specifically, spexin can enter the hypothalamus and regulate the hypothalamic melanocortin system, which in turn balances energy expenditure and food intake. This review examines recent advances and the underlying mechanisms of spexin in obesity and T2DM. In particular, we address a range of topics from basic research to clinical findings, such as an analysis of the possible function of spexin in the hypothalamic melanocortin response, which involves reducing energy intake and increasing energy expenditure while also enhancing insulin sensitivity and glucose tolerance. Gaining more insight into the mechanisms that underlie the spexin system's control over energy metabolism and homeostasis may facilitate the development of innovative treatment approaches that focus on combating obesity and diabetes.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Nanjing Pukou People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
3
|
Rizk FH, Barhoma RAE, El-Saka MH, Ibrahim HA, El-Gohary RM, Ismail R, Motawea SM, Salem O, Hegab II. Exercise training and spexin ameliorate thyroid changes in obese type 2 diabetic rats: the possible interlaying mechanisms. Am J Physiol Endocrinol Metab 2024; 327:E313-E327. [PMID: 39017682 DOI: 10.1152/ajpendo.00213.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024]
Abstract
Thyroid dysfunction and diabetes mellitus are prevalent endocrine disorders that often coexist and influence each other. The role of spexin (SPX) in diabetes and obesity is well documented, but its connection to thyroid function is less understood. This study investigates the influence of exercise (EX) and SPX on thyroid hypofunction in obese type 2 diabetic rats. Rats were divided into normal control, obese diabetic sedentary, obese diabetic EX, and obese diabetic SPX groups, with subdivisions for M871 and HT-2157 treatment in the latter two groups. High-fat diet together with streptozotocin (STZ) injection induced obesity and diabetes. The EX group underwent swimming, and the SPX group received SPX injections for 8 wk. Results showed significant improvements in thyroid function and metabolic, oxidative, and inflammatory states with EX and SPX treatment. The study also explored the involvement of galanin receptor isoforms (GALR)2/3 in SPX effects on thyroid function. Blocking GALR2/3 receptors partially attenuated the beneficial effects, indicating their interaction. These findings underscore the importance of EX and SPX in modulating thyroid function in obesity and diabetes. Comprehending this interplay could enable the development of new treatment approaches for thyroid disorders associated with obese type 2 diabetes. Additional research is necessary to clarify the exact mechanisms connecting SPX, EX activity, and thyroid function.NEW & NOTEWORTHY This study proves, for the first time, the beneficial effects of SPX on thyroid dysfunction in obese diabetic rats and suggests that SPX mediates the EX effect on thyroid gland and exerts its effect mainly via GALR2.
Collapse
Affiliation(s)
- Fatma H Rizk
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ramez A E Barhoma
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Restorative Dentistry and Basic Medical Sciences, Faculty of Dentistry, University of Petra, Amman, Jordan
| | - Mervat H El-Saka
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Rehab M El-Gohary
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Radwa Ismail
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Shaimaa M Motawea
- Department of Anatomy and Embryology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ola Salem
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Islam Ibrahim Hegab
- Department of Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
- Department of Bio-Physiology, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Chen X, Feng Y, Dai S, Guo B, Yan L, Liu J, Zhu H. Advances in research on spexin-mediated regulation of reproductive function in vertebrates. Front Endocrinol (Lausanne) 2024; 15:1422711. [PMID: 38915898 PMCID: PMC11194384 DOI: 10.3389/fendo.2024.1422711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
Spexin (SPX, NPQ) is a 14-amino acid neuroactive peptide identified using bioinformatics. This amino acid sequence of the mature spexin peptide has been highly conserved during species evolution and is widely distributed in the central nervous system and peripheral tissues and organs. Therefore, spexin may play a role in various biological functions. Spexin, the cognate ligand for GALR2/3, acting as a neuromodulator or endocrine signaling factor, can inhibit reproductive performance. However, controversies and gaps in knowledge persist regarding spexin-mediated regulation of animal reproductive functions. This review focuses on the hypothalamic-pituitary-gonadal axis and provides a comprehensive overview of the impact of spexin on reproduction. Through this review, we aim to enhance understanding and obtain in-depth insights into the regulation of reproduction by spexin peptides, thereby providing a scientific basis for future investigations into the molecular mechanisms underlying the influence of spexin on reproductive function. Such investigations hold potential benefits for optimizing farming practices in livestock, poultry, and fish industries.
Collapse
Affiliation(s)
- Xiaojing Chen
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuyan Feng
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Shudi Dai
- School of Life Science, Jiangsu University, Zhenjiang, China
| | - Binbin Guo
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Leyan Yan
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Jie Liu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| | - Huanxi Zhu
- Key Laboratory of Crop and Livestock Integration, Ministry of Agriculture, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Jiangsu Province Engineering Research Center of Precision Animal Breeding, Nanjing, China
| |
Collapse
|
5
|
Mahdavi K, Zendehdel M, Zarei H. The role of central neurotransmitters in appetite regulation of broilers and layers: similarities and differences. Vet Res Commun 2024; 48:1313-1328. [PMID: 38286893 DOI: 10.1007/s11259-024-10312-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
The importance of feeding as a vital physiological function, on the one hand, and the spread of complications induced by its disorder in humans and animals, on the other hand, have led to extensive research on its regulatory factors. Unfortunately, despite many studies focused on appetite, only limited experiments have been conducted on avian, and our knowledge of this species is scant. Considering this, the purpose of this review article is to examine the role of central neurotransmitters in regulating food consumption in broilers and layers and highlight the similarities and differences between these two strains. The methodology of this review study includes a comprehensive search of relevant literature on the topic using appropriate keywords in reliable electronic databases. Based on the findings, the central effect of most neurotransmitters on the feeding of broilers and laying chickens was similar, but in some cases, such as dopamine, ghrelin, nitric oxide, and agouti-related peptide, differences were observed. Also, the lack of conducting a study on the role of some neurotransmitters in one of the bird strains made it impossible to make an exact comparison. Finally, it seems that although there are general similarities in appetite regulatory mechanisms in meat and egg-type chickens, the long-term genetic selection appropriate to breeding goals (meat or egg production) has caused differences in the effect of some neurotransmitters. Undoubtedly, conducting future studies while completing the missing links can lead to a comprehensive understanding of this process and its manipulation according to the breeding purposes of chickens.
Collapse
Affiliation(s)
- Kimia Mahdavi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, 14155-6453, Iran.
| | - Hamed Zarei
- Department of Biology, Faculty of Basic Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Lin Y, Li J, Gu Y, Jin L, Bai J, Zhang J, Wang Y, Liu P, Long K, He M, Li D, Liu C, Han Z, Zhang Y, Li X, Zeng B, Lu L, Kong F, Sun Y, Fan Y, Wang X, Wang T, Jiang A, Ma J, Shen L, Zhu L, Jiang Y, Tang G, Fan X, Liu Q, Li H, Wang J, Chen L, Ge L, Li X, Tang Q, Li M. Haplotype-resolved 3D chromatin architecture of the hybrid pig. Genome Res 2024; 34:310-325. [PMID: 38479837 PMCID: PMC10984390 DOI: 10.1101/gr.278101.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024]
Abstract
In diploid mammals, allele-specific three-dimensional (3D) genome architecture may lead to imbalanced gene expression. Through ultradeep in situ Hi-C sequencing of three representative somatic tissues (liver, skeletal muscle, and brain) from hybrid pigs generated by reciprocal crosses of phenotypically and physiologically divergent Berkshire and Tibetan pigs, we uncover extensive chromatin reorganization between homologous chromosomes across multiple scales. Haplotype-based interrogation of multi-omic data revealed the tissue dependence of 3D chromatin conformation, suggesting that parent-of-origin-specific conformation may drive gene imprinting. We quantify the effects of genetic variations and histone modifications on allelic differences of long-range promoter-enhancer contacts, which likely contribute to the phenotypic differences between the parental pig breeds. We also observe the fine structure of somatically paired homologous chromosomes in the pig genome, which has a functional implication genome-wide. This work illustrates how allele-specific chromatin architecture facilitates concomitant shifts in allele-biased gene expression, as well as the possible consequential phenotypic changes in mammals.
Collapse
Affiliation(s)
- Yu Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yiren Gu
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Pengliang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mengnan He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Diyan Li
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Can Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyin Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaokai Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Zeng
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Fanli Kong
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Geriatric Health, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yongliang Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xun Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Wang
- School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - An'an Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jideng Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyuan Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanzhi Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guoqing Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaolan Fan
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qingyou Liu
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Hua Li
- Animal Molecular Design and Precise Breeding Key Laboratory of Guangdong Province, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Jinyong Wang
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Li Chen
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Liangpeng Ge
- Pig Industry Sciences Key Laboratory of Ministry of Agriculture and Rural Affairs, Chongqing Academy of Animal Sciences, Chongqing 402460, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xuewei Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
7
|
Forma E, Urbańska K, Bryś M. Menopause Hot Flashes and Molecular Mechanisms Modulated by Food-Derived Nutrients. Nutrients 2024; 16:655. [PMID: 38474783 DOI: 10.3390/nu16050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The causes of vasomotor symptoms, including hot flashes, are not fully understood, may be related to molecular factors, and have a polygenic architecture. Nutrients and bioactive molecules supplied to the body with food are metabolized using various enzymatic pathways. They can induce molecular cell signaling pathways and, consequently, activate effector proteins that modulate processes related to hot flashes in menopausal women. In this review, we analyzed the literature data from the last 5 years, especially regarding genome-wide association study (GWAS) analysis, and selected molecular factors and cell signaling pathways that may potentially be related to hot flashes in women. These are the kisspeptin-GnRH pathway, adipocyte-derived hormones, aryl hydrocarbon receptor signaling, catechol estrogens and estrogen sulfotransferase, inflammatory and oxidative stress biomarkers, and glucose availability. Then, single compounds or groups of food ingredients were selected that, according to experimental data, influence the course of the discussed molecular pathways and thus can be considered as potential natural therapeutic agents to effectively reduce the troublesome symptoms of menopause in women.
Collapse
Affiliation(s)
- Ewa Forma
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Karina Urbańska
- Faculty of Medicine, Medical University of Lodz, 90-419 Lodz, Poland
| | - Magdalena Bryś
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
8
|
Gallagher DM, O'Harte FPM, Irwin N. An update on galanin and spexin and their potential for the treatment of type 2 diabetes and related metabolic disorders. Peptides 2024; 171:171096. [PMID: 37714335 DOI: 10.1016/j.peptides.2023.171096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides widely expressed in the central nervous system as well as within peripheral tissues in humans and other species. SPX and GAL mediate their biological actions through binding and activation of galanin receptors (GALR), namely GALR1, GALR2 and GLAR3. GAL appears to trigger all three galanin receptors, whereas SPX interacts more specifically with GALR2 and GLAR3. Whilst the biological effects of GAL have been well-described over the years, in-depth knowledge of physiological action profile of SPX is still in its preliminary stages. However, it is recognised that both peptides play a significant role in modulating overall energy homeostasis, suggesting possible therapeutically exploitable benefits in diseases such as obesity and type 2 diabetes mellitus. Accordingly, although both peptides activate GALR's, it appears GAL may be more useful for the treatment of eating disorders such as anorexia and bulimia, whereas SPX may find therapeutic application for obesity and obesity-driven forms of diabetes. This short narrative review aims to provide an up-to-date account of SPX and GAL biology together with putative approaches on exploiting these peptides for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Daniel M Gallagher
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Finbarr P M O'Harte
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, BT52 1SA, UK.
| |
Collapse
|
9
|
Kaya S, Yalçın T, Boydak M, Dönmez HH. Protective Effect of N-Acetylcysteine Against Aluminum-Induced Kidney Tissue Damage in Rats. Biol Trace Elem Res 2023; 201:1806-1815. [PMID: 35553365 DOI: 10.1007/s12011-022-03276-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022]
Abstract
Aluminum (AL) is an important nephrotoxic agent with a high daily exposure rate and property of accumulation in tissues. This study aimed to investigate the potential protective efficacy of N-acetylcysteine (NAC) against AL exposure-induced nephrotoxicity in rats. Twenty-eight rats were randomly divided into 4 groups as control, N-acetylcysteine group (NC), AL, and AL + NC, with an equal number of rats in each group (n = 7). No application was made to the control group. A total of 150 mg/kg/day NAC was administered to the NC group and 30 mg/kg/day AL was administered to the AL group intraperitoneally (i.p.). The AL + NC group received 30 mg/kg/day AL and 150 mg/kg/day NAC i.p. Biochemical parameters in blood serum and histopathological changes in kidney tissue, oxidative stress parameters, spexin (SPX), and apoptotic protein levels were examined after 15 days. Histopathological changes, biochemical parameters, oxidative stress parameters, and apoptotic protein levels were significantly irregular in the AL group compared to the control group. Moreover, SPX levels increased in the AL group. However, NAC treatment regulated AL exposure-related changes in the AL + NC group. NAC treatment may have a prophylactic effect against nephrotoxicity due to AL exposure. SPX may play a role in AL-induced nephrotoxicity.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Health Services Vocational School, Batman University, Batman, Turkey.
| | - Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Health Services Vocational School, Batman University, Batman, Turkey
| | - Murat Boydak
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| | - Hasan Hüseyin Dönmez
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Selçuk University, Konya, Turkey
| |
Collapse
|
10
|
He W, Tran A, Chen CT, Loganathan N, Bazinet RP, Belsham DD. Oleate restores altered autophagic flux to rescue palmitate lipotoxicity in hypothalamic neurons. Mol Cell Endocrinol 2022; 557:111753. [PMID: 35981630 DOI: 10.1016/j.mce.2022.111753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023]
Abstract
Accumulation of excess lipids in non-adipose tissues, such as the hypothalamus, is termed lipotoxicity and causative of free fatty acid-mediated pathology in metabolic disease. This study aimed to elucidate the molecular mechanisms behind oleate (OA)- and palmitate (PA)-mediated changes in hypothalamic neurons. Using the well-characterized hypothalamic neuronal cell model, mHypoE-46, we assessed gene changes through qRT-PCR, cell death with quantitative imaging, PA metabolism using stable isotope labeling, and cellular mechanisms using pharmacological modulation of lipid metabolism and autophagic flux. Palmitate (PA) disrupts gene expression, including Npy, Grp78, and Il-6 mRNA in mHypoE-46 hypothalamic neurons. Blocking PA metabolism using triacsin-C prevented the increase of these genes, implying that these changes depend on PA intracellular metabolism. Co-incubation with oleate (OA) is also potently protective and prevents cell death induced by increasing concentrations of PA. However, OA does not decrease U-13C-PA incorporation into diacylglycerol and phospholipids. Remarkably, OA can reverse PA toxicity even after significant PA metabolism and cellular impairment. OA can restore PA-mediated impairment of autophagy to prevent or reverse the accumulation of PA metabolites through lysosomal degradation, and not through other reported mechanisms. The autophagic flux inhibitor chloroquine (CQ) mimics PA toxicity by upregulating autophagy-related genes, Npy, Grp78, and Il-6, an effect partially reversed by OA. CQ also prevented the OA defense against PA toxicity, whereas the autophagy inducer rapamycin provided some protection. Thus, PA impairment of autophagic flux significantly contributes to its lipotoxicity, and OA-mediated protection requires functional autophagy. Overall, our results suggest that impairment of autophagy contributes to hypothalamic lipotoxicity.
Collapse
Affiliation(s)
- Wenyuan He
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Andy Tran
- Department of Physiology, University of Toronto, Ontario, Canada
| | - Chuck T Chen
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | | | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, University of Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Ontario, Canada.
| |
Collapse
|
11
|
Fang P, Guo W, Ju M, Huang Y, Zeng H, Wang Y, Yu M, Zhang Z. Exercise training rescues adipose tissue spexin expression and secretion in diet-induced obese mice. Physiol Behav 2022; 256:113958. [PMID: 36087747 DOI: 10.1016/j.physbeh.2022.113958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022]
Abstract
Exercise training improves obesity-induced metabolic diseases through regulation of adipokines. Previous studies have shown that adipocyte-spexin participates in metabolic diseases such as obesity and diabetes via the modulation of energy homeostasis and insulin resistance. The objective of this research was to investigate the effects of swimming exercise on the levels of adipocyte-spexin and the underlying mechanisms. The normal chow diet (NC)-fed and high-fat diet (HFD)-fed mice were divided into exercise or sedentary groups. The expression and secretion of spexin in adipose tissue were assessed by quantitative real-time PCR and ELISA. The present findings uncovered the effect of exercise-induced spexin expression in the adipose tissue of obese mice. Besides, chronic exercise-induced upregulation of adipose spexin may be mediated by COUP-TF2 and KLF9. In addition, constant-moderate intensity exercise increased the levels of GLUT4, SIRT1 and PGC-1α in the skeletal muscles of mice. These results suggest that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. Thus, exercise restores spexin production and release, which increases insulin sensitivity and maintains metabolic balance in the adipose tissues of HFD-induced obese mice.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, China
| | - Wancheng Guo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Yujie Huang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Hanjin Zeng
- Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, China
| | - Yajing Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, China.
| |
Collapse
|
12
|
Yu M, Ju M, Fang P, Zhang Z. Emerging central and peripheral actions of spexin in feeding behavior, leptin resistance and obesity. Biochem Pharmacol 2022; 202:115121. [PMID: 35679893 DOI: 10.1016/j.bcp.2022.115121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022]
Abstract
Consumption of a high calorie diet with irregular eating and sedentary behavior habits is typical of the current suboptimal lifestyle, contributing to the development of metabolic diseases such as obesity and type 2 diabetes mellitus. Most notably, the disorder of adipokine secretion in visceral adiposity is a major contributor to metabolic diseases with advancing age. In this regard, spexin and leptin are established as anorexigenic adipokines that can modulate adipogenesis and glucose metabolism by suppressing food intake or increasing energy expenditure, respectively. Emerging evidence points out that spexin levels are lower in the serum and adipose tissue of patients with obesity and/or insulin resistance, whereas circulating levels of leptin are higher in obesity and comorbidities. In turn, spexin and leptin pharmacologically induce beneficial effects on the brain's modulation of food intake and energy expenditure. On the other hand, endocrine crosstalk via spexin and leptin has also been reported in patients suffering from obesity and diabetes. Spexin plays a crucial role in the regulation of leptin secretion and leptin resistance. It should therefore be taken into account that studying the role of spexin in leptin regulation will help us combat the pathologies of obesity caused by leptin resistance.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou 225300, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
13
|
Wang M, Zhu Z, Kan Y, Yu M, Guo W, Ju M, Wang J, Yi S, Han S, Shang W, Zhang Z, Zhang L, Fang P. Treatment with spexin mitigates diet-induced hepatic steatosis in vivo and in vitro through activation of galanin receptor 2. Mol Cell Endocrinol 2022; 552:111688. [PMID: 35654225 DOI: 10.1016/j.mce.2022.111688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/28/2022] [Accepted: 05/25/2022] [Indexed: 01/12/2023]
Abstract
It was reported that spexin as an adipocyte-secreted protein could regulate obesity and insulin resistance. However, the specific metabolic contribution of spexin to fatty liver remains incompletely understood. Herein, we investigated the effects of spexin on hepatosteatosis and explored the underlying molecular mechanisms. HFD-fed mice were injected with spexin and/or GALR2 antagonist M871, while PA-induced HepG2 cells were treated with spexin in the absence or presence of M871 for 12 h, respectively. Gene expression in liver tissues and hepatocytes was assessed by qRT-PCR and western blotting, respectively. The results showed that body weight, visceral fat content, liver lipid droplet formation, hepatic intracellular triglyceride, and serum triglyceride were reduced in spexin-treated mice. Furthermore, spexin increased the expression of hepatic CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK in vivo and in vitro. Additionally, spexin treatment improved glucose tolerance and insulin sensitivity in mice fed the HFD. Interestingly, these spexin-mediated beneficial effects were abolished by the GALR2 antagonist M871 in mice fed HFD and PA-induced HepG2 cells, suggesting that spexin mitigated HFD-induced hepatic steatosis by activating the GALR2, thereby increasing CPT1A, PPARα, SIRT1, KLF9, PGC-1α and PEPCK expression. Taken together, these data suggest that spexin ameliorates NAFLD by improving lipolysis and fatty acid oxidation via activation of GALR2 signaling.
Collapse
Affiliation(s)
- Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyue Zhu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wancheng Guo
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Mengxian Ju
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Junjun Wang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shuxin Yi
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Li Zhang
- Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
14
|
Yu M, Wang M, Han S, Han L, Kan Y, Zhao J, Yu X, Yan J, Jin Y, Zhang Z, Shang W, Fang P. Spexin ameliorates skeletal muscle insulin resistance through activation of GAL2 receptor. Eur J Pharmacol 2022; 917:174731. [PMID: 34973950 DOI: 10.1016/j.ejphar.2021.174731] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/29/2021] [Accepted: 12/24/2021] [Indexed: 01/12/2023]
Abstract
Skeletal muscle is a principal tissue involved in energy expenditure and glucose metabolism. Although the results of our and other studies show that spexin could decrease food intake and obesity, the specific metabolic effect of spexin on glucose metabolism of skeletal muscle is still unclear. The aim of this study is to investigate whether spexin might mitigate obesity-induced insulin resistance in skeletal muscles and to explore its underlying mechanisms. The high fat diet-fed mice were treated with 50 μg/kg/d spexin for 21 consecutive days, and the differentiated myotubes of L6 were treated with spexin (200, 400, 800 nM) in the absence or presence of M871 (800 nM) for 12 h respectively. Besides, the galanin type 2 (GAL2) receptor knockdown myotubes were treated with 800 nM spexin for 12 h in this study. The present findings showed that spexin reversed hyperglycemia and glucose intolerance as well as insulin intolerance and insulin resistance in the mice fed with high fat diet. Furthermore, spexin markedly augmented the peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) expression and deacetylation, and further triggered glucose transporter 4 (GLUT4) expression and trafficking in myotubes through p38 mitogen-activated protein kinase (P38MAPK) and protein kinase B (AKT) activation. More importantly, the elevation of glucose consumption related genes by spexin were abolished by GAL2 receptor antagonist or silencing of GAL2 receptor in myotubes. In conclusion, our findings provide a novel insight that spexin can protect against insulin resistance and increase glucose consumption in skeletal muscles mainly through activation of GAL2/GLUT4 signal pathway. Spexin might therefore be a novel therapeutic target for hyperglycemia and insulin resistance in clinic.
Collapse
Affiliation(s)
- Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Pharmacy, Taizhou Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Taizhou, 225300, China
| | - Mengyuan Wang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shiyu Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Long Han
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yue Kan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu, 225001, China.
| | - Wenbing Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Department of Physiology, Hanlin College, Nanjing University of Chinese Medicine, Taizhou, 225300, China.
| |
Collapse
|
15
|
Wang X, Xu T, Liu R, Wu G, Gu L, Zhang Y, Zhang F, Fu H, Ling Y, Wei X, Luo Y, Shen J, Zhao L, Peng Y, Zhang C, Ding X. High-Fiber Diet or Combined With Acarbose Alleviates Heterogeneous Phenotypes of Polycystic Ovary Syndrome by Regulating Gut Microbiota. Front Endocrinol (Lausanne) 2022; 12:806331. [PMID: 35185786 PMCID: PMC8847200 DOI: 10.3389/fendo.2021.806331] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/31/2021] [Indexed: 01/04/2023] Open
Abstract
Objective Gut microbial dysbiosis is associated with high heterogeneity of polycystic ovary syndrome (PCOS); however, studies about gut microbiota targeted clinical intervention in PCOS are limited. Our study aimed to evaluate the effects of high-fiber diet or combined with acarbose on the clinical phenotypes of PCOS, focusing on the possible influence of gut microbiota in this process. Methods Twenty-five patients with PCOS were recruited and randomly divided into two groups, W group (n = 14) received the WTP diet (a high-fiber diet composed of whole grains, traditional Chinese medicinal foods, and prebiotics), and A group (n = 11) received the WTP diet combined with acarbose. The follow-up time was 12 weeks. The sex hormonal and glycolipid metabolic parameters, inflammatory factors, brain-gut peptides, and alteration of gut microbiota were evaluated. Results The PCOS clinical phenotypes, inflammatory state, and brain-gut peptides secretion were all alleviated in both groups, while the hyperandrogenism, insulin resistance, and brain-gut peptides secretion were better improved in the A group. Alpha and beta diversities were altered more significantly in the A group. Amplicon sequence variants (ASVs) were clustered into 14 co-abundant groups (CAGs) as potential functional groups that may respond to the intervention. The CAGs predominantly comprised of Bifidobacterium and Lactobacillus were more enriched, while the CAGs predominantly comprised of Bacteroides vulgatus, Alistipes, Blautia, Lachnospira, and Roseburia were more inhibited in the A group than in W group. Moreover, the CAGs enriched in the A group had a stronger negative correlation with the luteinizing hormone (LH)/follicle-stimulating hormone (FSH) ratio, testosterone, homeostasis model assessment-insulin resistance (HOMA-IR), α-1-acid glycoprotein (α-AGP), and leptin, and positive correlation with adiponectin and spexin, while the CAGs inhibited showed an opposite trend. Conclusions High-fiber diet could alleviate the chronic metabolic inflammation, reproductive function, and brain-gut peptides secretion of patients with PCOS, and high-fiber diet combined with acarbose could better improve the PCOS clinical phenotypes. The remodeling of gut microbiota by our intervention may play an important role in these improvements. Clinical Trial Registration http://www.chictr.org.cn/showproj.aspx?proj=4500, ChiCTR-TRC-14005075.
Collapse
Affiliation(s)
- Xuejiao Wang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Xu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Liu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Guojun Wu
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Liping Gu
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Zhang
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Huaqing Fu
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yunxia Ling
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Wei
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunchen Luo
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Shen
- Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liping Zhao
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Department of Biochemistry and Microbiology and New Jersey Institute for Food, Nutrition, and Health, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ, United States
| | - Yongde Peng
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism and Ministry of Education Key Laboratory of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoying Ding
- Department of Endocrinology and Metabolism, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Mohd Zahir I, Ogawa S, Dominic NA, Soga T, Parhar IS. Spexin and Galanin in Metabolic Functions and Social Behaviors With a Focus on Non-Mammalian Vertebrates. Front Endocrinol (Lausanne) 2022; 13:882772. [PMID: 35692389 PMCID: PMC9174643 DOI: 10.3389/fendo.2022.882772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/19/2022] [Indexed: 01/31/2023] Open
Abstract
Spexin (SPX) and galanin (GAL) are two neuropeptides that are phylogenetically related and have descended from a common ancestral gene. Considerable attention has been given to these two multifunctional neuropeptides because they share GAL receptors 1,2, and 3. Since GAL and SPX-synthesizing neurons have been detected in several brain areas, therefore, it can be speculated that SPX and GAL are involved in various neurophysiological functions. Several studies have shown the functions of these two neuropeptides in energy regulation, reproduction, and response to stress. SPX acts as a satiety factor to suppress food intake, while GAL has the opposite effect as an orexigenic factor. There is evidence that SPX acts as an inhibitor of reproductive functions by suppressing gonadotropin release, while GAL modulates the activity of gonadotropin-releasing hormone (GnRH) neurons in the brain and gonadotropic cells in the pituitary. SPX and GAL are responsive to stress. Furthermore, SPX can act as an anxiolytic factor, while GAL exerts anti-depressant and pro-depressive effects depending on the receptor it binds. This review describes evidence supporting the central roles of SPX and GAL neuropeptides in energy balance, reproduction, stress, and social behaviors, with a particular focus on non-mammalian vertebrate systems.
Collapse
Affiliation(s)
- Izzati Mohd Zahir
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | | | - Tomoko Soga
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Ishwar S. Parhar
- Brain Research Institute Monash Sunway, School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
- *Correspondence: Ishwar S. Parhar,
| |
Collapse
|
17
|
Ogawa S, Parhar IS. Functions of habenula in reproduction and socio-reproductive behaviours. Front Neuroendocrinol 2022; 64:100964. [PMID: 34793817 DOI: 10.1016/j.yfrne.2021.100964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/11/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
Habenula is an evolutionarily conserved structure in the brain of vertebrates. Recent reports have drawn attention to the habenula as a processing centre for emotional decision-making and its role in psychiatric disorders. Emotional decision-making process is also known to be closely associated with reproductive conditions. The habenula receives innervations from reproductive centres within the brain and signals from key reproductive neuroendocrine regulators such as gonadal sex steroids, gonadotropin-releasing hormone (GnRH), and kisspeptin. In this review, based on morphological, biochemical, physiological, and pharmacological evidence we discuss an emerging role of the habenula in reproduction. Further, we discuss the modulatory role of reproductive endocrine factors in the habenula and their association with socio-reproductive behaviours such as mating, anxiety and aggression.
Collapse
Affiliation(s)
- Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
18
|
Gu L, Yan S, Huang Y, Yang J, Peng Y, Wang Y. Serum spexin differed in newly diagnosed type 2 diabetes patients according to body mass index and increased with the improvement of metabolic status. Front Endocrinol (Lausanne) 2022; 13:1086497. [PMID: 36589830 PMCID: PMC9794602 DOI: 10.3389/fendo.2022.1086497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this study was to explore serum spexin levels in newly diagnosed type 2 diabetes mellitus (T2DM) patients with different body mass indexes (BMIs) and to investigate the changes of spexin after improvement of metabolic indicators. METHODS A total of 323 newly diagnosed T2DM patients from national Metabolic Management Center (MMC) in Shanghai General Hospital were recruited. T2DM patients were categorized into three groups: diabetes with obesity group (DM-OB group, BMI≥28 kg/m2, n=89), diabetes with overweight group (DM-OV group, 24≤BMI<28 kg/m2, n=161), and diabetes with normal weight group (DM-NW group, 18≤BMI<24 kg/m2, n=73). In addition, 41 volunteers with normal glucose tolerance (NGT) were used as controls. Spexin and metabolic parameters were compared at baseline, and changes after MMC follow-up in 100 DM patients were investigated. RESULTS In the DM-OB group, the level of spexin was significantly lower than that in the DM-OV group and the DM-NW group (P < 0.01). Spexin was significantly negatively related to body mass index (BMI, β=-0.214, P<0.001), waist circumference (β=-0.249, P<0.001), visceral fat area (VFA, β=-0.214, P<0.001), and subcutaneous fat area (SFA, β=-0.265, P<0.001) after adjustment for age and sex. Among all the metabolic indicators, the decline in BMI in the DM-OB group was the most obvious among those in the three groups (-3.7 ± 0.8 kg/m2 vs. -0.9 ± 0.3 kg/m2 vs. 0.7 ± 0.6 kg/m2, P<0.01) after one year of MMC standardized management. The serum spexin level in the DM-OB group increased the most (1.00 ± 0.10 ng/mL vs. 0.49 ± 0.06 ng/mL in DM-OV group and 0.58 ± 0.09 ng/mL in DM-NW group, P < 0.001). CONCLUSIONS Serum spexin differed in newly diagnosed T2DM patients according to BMI and was lowest in the DM-OB group. With the improvement of metabolic indicators, especially the decline in BMI, serum spexin increased significantly after MMC management.
Collapse
|
19
|
Fang P, Ge R, She Y, Zhao J, Yan J, Yu X, Jin Y, Shang W, Zhang Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res Rev 2022; 73:101509. [PMID: 34752956 DOI: 10.1016/j.arr.2021.101509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China.
| | - Ran Ge
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|
20
|
Spexin Promotes the Proliferation and Differentiation of C2C12 Cells In Vitro—The Effect of Exercise on SPX and SPX Receptor Expression in Skeletal Muscle In Vivo. Genes (Basel) 2021; 13:genes13010081. [PMID: 35052420 PMCID: PMC8774514 DOI: 10.3390/genes13010081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 01/04/2023] Open
Abstract
SPX (spexin) and its receptors GalR2 and GalR3 (galanin receptor subtype 2 and galanin receptor subtype 3) play an important role in the regulation of lipid and carbohydrate metabolism in human and animal fat tissue. However, little is still known about the role of this peptide in the metabolism of muscle. The aim of this study was to determine the impact of SPX on the metabolism, proliferation and differentiation of the skeletal muscle cell line C2C12. Moreover, we determined the effect of exercise on the SPX transduction pathway in mice skeletal muscle. We found that increased SPX, acting via GalR2 and GalR3 receptors, and ERK1/2 phosphorylation stimulated the proliferation of C2C12 cells (p < 0.01). We also noted that SPX stimulated the differentiation of C2C12 by increasing mRNA and protein levels of differentiation markers Myh, myogenin and MyoD (p < 0.01). SPX consequently promoted myoblast fusion into the myotubule (p < 0.01). Moreover, we found that, in the first stage (after 2 days) of myocyte differentiation, GalR2 and GalR3 were involved, whereas in the last stage (day six), the effect of SPX was mediated by the GalR3 isoform. We also noted that exercise stimulated SPX and GalR2 expression in mice skeletal muscle as well as an increase in SPX concentration in blood serum. These new insights may contribute to a better understanding of the role of SPX in the metabolism of skeletal muscle.
Collapse
|
21
|
Spexin: Its role, regulation, and therapeutic potential in the hypothalamus. Pharmacol Ther 2021; 233:108033. [PMID: 34763011 DOI: 10.1016/j.pharmthera.2021.108033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022]
Abstract
Spexin is the most recently discovered member of the galanin/kisspeptin/spexin family of peptides. This 14-amino acid peptide is highly conserved and is implicated in homeostatic functions including, but not limited to, metabolism, energy homeostasis, and reproduction. Spexin is expressed by neurons in the hypothalamus, which coordinate energy homeostasis and reproduction. Critically, levels of spexin appear to be altered in disorders related to energy homeostasis and reproduction, such as obesity, diabetes, and polycystic ovarian syndrome. In this review, we discuss the evidence for the involvement of spexin in the hypothalamic control of energy homeostasis and reproduction. The anorexigenic properties of spexin have been attributed to its effects on the energy-regulating neuropeptide Y/agouti-related peptide neurons and proopiomelanocortin neurons. While the role of spexin in reproduction remains unclear, there is evidence that gonadotropin-releasing hormone expressing neurons may produce and respond to spexin. Furthermore, we discuss the disorders and concomitant treatments, which have been reported to alter spexin expression, as well as the underlying signaling mechanisms that may be involved. Finally, we discuss the biochemical basis of spexin, its interaction with its cognate receptors, and how this information can be adapted to develop therapeutics for disorders related to the alteration of energy homeostasis and reproduction.
Collapse
|
22
|
Kumar S, Mankowski RT, Anton SD, Babu Balagopal P. Novel insights on the role of spexin as a biomarker of obesity and related cardiometabolic disease. Int J Obes (Lond) 2021; 45:2169-2178. [PMID: 34253845 DOI: 10.1038/s41366-021-00906-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023]
Abstract
Spexin (SPX) is a 14-amino acid neuropeptide, discovered recently using bioinformatic techniques. It is encoded by the Ch12:orf39 gene that is widely expressed in different body tissues/organs across species, and secreted into systemic circulation. Recent reports have highlighted a potentially important regulatory role of SPX in obesity and related comorbidities. SPX is also ubiquitously expressed in human tissues, including white adipose tissue. The circulating concentration of SPX is significantly lower in individuals with obesity compared to normal weight counterparts. SPX's role in obesity appears to be related to various factors, such as the regulation of energy expenditure, appetite, and eating behaviors, increasing locomotion, and inhibiting long-chain fatty acid uptake into adipocytes. Recent reports have also suggested SPX's relationship with novel biomarkers of cardiovascular disease (CVD) and glucose metabolism and evoked the potential role of SPX as a key biomarker/player in the early loss of cardiometabolic health and development of CVD and diabetes later in life. Data on age-related changes in SPX and SPX's response to various interventions are also emerging. The current review focuses on the role of SPX in obesity and related comorbidities across the life span, and its response to interventions in these conditions. It is expected that this article will provide new ideas for future research on SPX and its metabolic regulation, particularly related to cardiometabolic diseases.
Collapse
Affiliation(s)
- Seema Kumar
- Division of Pediatric Endocrinology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| | - Robert T Mankowski
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - Stephen D Anton
- Department of Aging and Geriatric Research, Institute on Aging, University of Florida, Gainesville, FL, USA
| | - P Babu Balagopal
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA. .,Department of Biomedical Research, Nemours Children's Health System, Jacksonville, FL, USA.
| |
Collapse
|
23
|
Abstract
The incidence of congenital hypogonadotropic hypogonadism (HH) is approximately 1-10 in 100,000 live births. Known syndromes, such as Kallman syndrome, caused by a mutation in the KAL-1 gene, and other genes listed in the Online Mendelian Inheritance in Man database, account for 2/3 of the cases. The rest of these cases where there is no known genetic cause for HH are termed idiopathic. In this editorial, I describe each of the articles in the Special Issue on Hypogonadotropic Hypogonadism, with a focus on new genes that might be included in future screens of idiopathic patients.
Collapse
Affiliation(s)
- Deborah J Good
- Department of Human Nutrition, Foods, and Exercise, 1981 Kraft Drive (0913), Integrated Life Sciences Building, Virginia Tech, Blacksburg, VA, 24060, USA.
| |
Collapse
|