1
|
Niimi T, Tanaka T, Aoyagi C, Onda Y, Nagamitsu S, Kodama S. Co-culture of vascular endothelial cells enhances corticosterone production in steroid hormone-producing cells generated from adipose-derived mesenchymal stromal cells. Sci Rep 2024; 14:18804. [PMID: 39138321 PMCID: PMC11322653 DOI: 10.1038/s41598-024-69878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Cell therapy for adrenocortical insufficiency can potentially provide steroid replacement in response to physiological stimuli. Previously, we reported that adipose tissue-derived stromal cells (ADSCs) are transformed into steroid-producing cells by overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1). The steroidogenic cells are characterized by the production of both adrenal and gonadal steroids. Cytotherapy for adrenocortical insufficiency requires cells with more adrenocortical characteristics. Considering the highly developed vascular network within the adrenal cortex, all adrenocortical cells are adjacent to and interact with vascular endothelial cells (VECs). In this study, NR5A1-induced steroidogenic cells derived from mouse ADSCs (NR5A1-ADSCs) were co-cultured with mouse VECs. Testosterone secretion in NR5A1-ADSCs was not altered; however, corticosterone secretion significantly increased while levels of steroidogenic enzymes significantly increased in the corticosterone synthesis pathway. Co-culture with lymphatic endothelial cells (LECs) or ADSCs, or transwell culture with NR5A1-ADSCs and VECs did not alter corticosterone production. VECs expressed higher levels of collagen and laminin than LECs. Culture in type-IV collagen and laminin-coated dishes increased corticosterone secretion in NR5A1-ADSCs. These results suggest that VECs may characterize ADSC-derived steroidogenic cells into a more corticosterone-producing phenotype, and VECs may be useful for generating adrenal steroidogenic cells from stem cells.
Collapse
Affiliation(s)
- Toshikazu Niimi
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Tomoko Tanaka
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Chikao Aoyagi
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Yasuhiro Onda
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Shinichiro Nagamitsu
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Shohta Kodama
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
2
|
Aoyagi C, Tanaka T, Haga N, Yanase T, Kodama S. Differentiation of human adipose tissue-derived mesenchymal stromal cells into steroidogenic cells by adenovirus-mediated overexpression of NR5A1 and implantation into adrenal insufficient mice. Cytotherapy 2023; 25:866-876. [PMID: 37149799 DOI: 10.1016/j.jcyt.2023.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/30/2023] [Accepted: 04/10/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND AIMS Cell therapy for adrenal insufficiency is a potential method for physiological glucocorticoid and mineralocorticoid replacement. We have previously shown that mouse mesenchymal stromal cells (MSCs) differentiated into steroidogenic cells by the viral vector-mediated overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1), an essential regulator of steroidogenesis, and their implantation extended the survival of bilateral adrenalectomized (bADX) mice. METHODS In this study, we examined the capability of NR5A1-induced steroidogenic cells prepared from human adipose tissue-derived MSCs (MSC [AT]) and the therapeutic effect of the implantation of human NR5A1-induced steroidogenic cells into immunodeficient bADX mice. RESULTS Human NR5A1-induced steroidogenic cells secreted adrenal and gonadal steroids and exhibited responsiveness to adrenocorticotropic hormone and angiotensin II in vitro. In vivo, the survival time of bADX mice implanted with NR5A1-induced steroidogenic cells was significantly prolonged compared with that of bADX mice implanted with control MSC (AT). Serum cortisol levels, which indicate hormone secretion from the graft, were detected in bADX mice implanted with steroidogenic cells. CONCLUSIONS This is the first report to demonstrate steroid replacement by the implantation of steroid-producing cells derived from human MSC (AT). These results indicate the potential of human MSC (AT) to be a source of steroid hormone-producing cells.
Collapse
Affiliation(s)
- Chikao Aoyagi
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Nobuhiro Haga
- Department of Urology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | | | - Shohta Kodama
- Department of Regenerative Medicine and Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
3
|
Models of Congenital Adrenal Hyperplasia for Gene Therapies Testing. Int J Mol Sci 2023; 24:ijms24065365. [PMID: 36982440 PMCID: PMC10049562 DOI: 10.3390/ijms24065365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The adrenal glands are important endocrine organs that play a major role in the stress response. Some adrenal glands abnormalities are treated with hormone replacement therapy, which does not address physiological requirements. Modern technologies make it possible to develop gene therapy drugs that can completely cure diseases caused by mutations in specific genes. Congenital adrenal hyperplasia (CAH) is an example of such a potentially treatable monogenic disease. CAH is an autosomal recessive inherited disease with an overall incidence of 1:9500–1:20,000 newborns. To date, there are several promising drugs for CAH gene therapy. At the same time, it remains unclear how new approaches can be tested, as there are no models for this disease. The present review focuses on modern models for inherited adrenal gland insufficiency and their detailed characterization. In addition, the advantages and disadvantages of various pathological models are discussed, and ways of further development are suggested.
Collapse
|
4
|
Ferrada P, Cannon JW, Kozar RA, Bulger EM, Sugrue M, Napolitano LM, Tisherman SA, Coopersmith CM, Efron PA, Dries DJ, Dunn TB, Kaplan LJ. Surgical Science and the Evolution of Critical Care Medicine. Crit Care Med 2023; 51:182-211. [PMID: 36661448 DOI: 10.1097/ccm.0000000000005708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surgical science has driven innovation and inquiry across adult and pediatric disciplines that provide critical care regardless of location. Surgically originated but broadly applicable knowledge has been globally shared within the pages Critical Care Medicine over the last 50 years.
Collapse
Affiliation(s)
- Paula Ferrada
- Division of Trauma and Acute Care Surgery, Department of Surgery, Inova Fairfax Hospital, Falls Church, VA
| | - Jeremy W Cannon
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Rosemary A Kozar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Eileen M Bulger
- Division of Trauma, Burn and Critical Care Surgery, Department of Surgery, University of Washington at Seattle, Harborview, Seattle, WA
| | - Michael Sugrue
- Department of Surgery, Letterkenny University Hospital, County of Donegal, Ireland
| | - Lena M Napolitano
- Division of Acute Care Surgery, Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Samuel A Tisherman
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Craig M Coopersmith
- Division of General Surgery, Department of Surgery, Emory University, Emory Critical Care Center, Atlanta, GA
| | - Phil A Efron
- Department of Surgery, Division of Critical Care, University of Florida, Gainesville, FL
| | - David J Dries
- Department of Surgery, University of Minnesota, Regions Healthcare, St. Paul, MN
| | - Ty B Dunn
- Division of Transplant Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Lewis J Kaplan
- Division of Trauma, Surgical Critical Care and Emergency Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Corporal Michael J. Crescenz VA Medical Center, Section of Surgical Critical Care, Surgical Services, Philadelphia, PA
| |
Collapse
|
5
|
Abstract
The adrenal cortex undergoes multiple structural and functional rearrangements to satisfy the systemic needs for steroids during fetal life, postnatal development, and adulthood. A fully functional adrenal cortex relies on the proper subdivision in regions or 'zones' with distinct but interconnected functions, which evolve from the early embryonic stages to adulthood, and rely on a fine-tuned gene network. In particular, the steroidogenic activity of the fetal adrenal is instrumental in maintaining normal fetal development and growth. Here, we review and discuss the most recent advances in our understanding of embryonic and fetal adrenal development, including the known causes for adrenal dys-/agenesis, and the steroidogenic pathways that link the fetal adrenal with the hormone system of the mother through the fetal-placental unit. Finally, we discuss what we think are the major open questions in the field, including, among others, the impact of osteocalcin, thyroid hormone, and other hormone systems on adrenal development and function, and the reliability of rodents as models of adrenal pathophysiology.
Collapse
Affiliation(s)
- Emanuele Pignatti
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Therina du Toit
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland.
| | - Christa E Flück
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
- Department for BioMedical Research, University Hospital Inselspital, University of Bern, 3010, Bern, Switzerland
| |
Collapse
|
6
|
Wang W, Gao T, Luo J, Guo L, Li X, Li Y, Chen H. Size distribution analysis of residual host cell DNA fragments in lentivirus by CGE-LIF. Electrophoresis 2023; 44:462-471. [PMID: 36353919 DOI: 10.1002/elps.202200218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022]
Abstract
During the production of cell and gene therapy products, residual host cell DNA (HCD) could cause safety risks of the biological products, and the longer the residual HCD fragment, the greater the risk to the human body. For this reason, it was necessary to develop an effective method for the size distribution analysis of residual HCD fragments with high accuracy and sensitivity. In this study, capillary gel electrophoresis with laser-induced fluorescence detector (CGE-LIF) was used to analyze the size distribution of residual HCD fragments in lentivirus products. The results confirmed that lentiviral RNA genome could interfere with the size distribution analysis of residual HCD fragments. By optimizing the amount of RNase I and digestion time in sample pretreatment process, the interfere of RNA genome could be avoided. The specificity, precision, accuracy, linear range, the detection of limit (LOD), and the quantification of limit (LOQ) of CGE-LIF method were also validated. The results showed that the CGE-LIF method had a good performance both in terms of specificity and reproducibility. The intra- and inter-day relative standard deviations of migration time and corrected peak area were all less than 1% and 2%, respectively. The 200 bp DNA marker had a good linearity between 50 and 1000 pg/ml. The LOD and LOQ of 200 bp DNA marker were 2.59 and 8.64 pg/ml, respectively. In addition, this method was successfully used to analyze the size distribution analysis of residual HCD fragments in lentivirus products with different production processes.
Collapse
Affiliation(s)
| | | | - Ji Luo
- SCIEX, Beijing, P. R. China
| | | | - Xiang Li
- Division of Recombinant Biological Products, National Institutes for Food and Drug Control (NIFDC), Beijing, P. R. China
| | - Yan Li
- National Medical Products Administration (NMPA), Key Laboratory for Quality Control and Evaluation of Vaccines and Biological Products, SiChuan Institute for Drug Control, Chengdu, P. R. China
| | | |
Collapse
|
7
|
Rushworth RL, Chrisp GL, Bownes S, Torpy DJ, Falhammar H. Adrenal crises in adolescents and young adults. Endocrine 2022; 77:1-10. [PMID: 35583847 PMCID: PMC9242908 DOI: 10.1007/s12020-022-03070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Review the literature concerning adrenal insufficiency (AI) and adrenal crisis (AC) in adolescents and young adults. METHODS Searches of PubMed identifying relevant reports up to March 2022. RESULTS AI is rare disorder that requires lifelong glucocorticoid replacement therapy and is associated with substantial morbidity and occasional mortality among adolescents and young adults. Aetiologies in this age group are more commonly congenital, with acquired causes, resulting from tumours in the hypothalamic-pituitary area and autoimmune adrenalitis among others, increasing with age. All patients with AI are at risk of AC, which have an estimated incidence of 6 to 8 ACs/100 patient years. Prevention of ACs includes use of educational interventions to achieve competency in dose escalation and parenteral glucocorticoid administration during times of physiological stress, such as an intercurrent infection. While the incidence of AI/AC in young children and adults has been documented, there are few studies focussed on the AC occurrence in adolescents and young adults with AI. This is despite the range of developmental, psychosocial, and structural changes that can interfere with chronic disease management during this important period of growth and development. CONCLUSION In this review, we examine the current state of knowledge of AC epidemiology in emerging adults; examine the causes of ACs in this age group; and suggest areas for further investigation that are aimed at reducing the incidence and health impact of ACs in these patients.
Collapse
Affiliation(s)
- R Louise Rushworth
- School of Medicine, Sydney, The University of Notre Dame, 160 Oxford St, Darlinghurst, NSW, 2010, Australia
| | - Georgina L Chrisp
- School of Medicine, Sydney, The University of Notre Dame, 160 Oxford St, Darlinghurst, NSW, 2010, Australia
| | - Suzannah Bownes
- School of Medicine, Sydney, The University of Notre Dame, 160 Oxford St, Darlinghurst, NSW, 2010, Australia
| | - David J Torpy
- Endocrine and Metabolic Unit, Royal Adelaide Hospital, Adelaide, SA, Australia
- University of Adelaide, Adelaide, SA, Australia
| | - Henrik Falhammar
- Department of Endocrinology, Karolinska University Hospital, SE-17176, Stockholm, Sweden.
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden.
| |
Collapse
|
8
|
Martinez A, Schedl A. Dissecting a zonated organ - Special issue on adrenal biology. Mol Cell Endocrinol 2022; 539:111486. [PMID: 34626732 DOI: 10.1016/j.mce.2021.111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Antoine Martinez
- Institut Génétique, Reproduction et Développement (iGReD), CNRS, Inserm, Université Clermont-Auvergne, Clermont-Ferrand, France
| | - Andreas Schedl
- Institut de Biologie Valrose (iBV), Inserm, CNRS, Université Côte d'Azur, Nice, France.
| |
Collapse
|
9
|
Prete A, Auchus RJ, Ross RJ. Clinical advances in the pharmacotherapy of congenital adrenal hyperplasia. Eur J Endocrinol 2021; 186:R1-R14. [PMID: 34735372 PMCID: PMC8679847 DOI: 10.1530/eje-21-0794] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 11/04/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Patients with 21-hydroxylase deficiency congenital adrenal hyperplasia (21OHD-CAH) have poor health outcomes with increased mortality, short stature, impaired fertility, and increased cardiovascular risk factors such as obesity. To address this, there are therapies in development that target the clinical goal of treatment, which is to control excess androgens with an adrenal replacement dose of glucocorticoid. METHODS Narrative review of publications on recent clinical developments in the pharmacotherapy of congenital adrenal hyperplasia. SUMMARY Therapies in clinical development target different levels of the hypothalamo-pituitary-adrenal axis. Two corticotrophin-releasing factor type 1 (CRF1) receptor antagonists, Crinecerfont and Tildacerfont, have been trialled in poorly controlled 21OHD-CAH patients, and both reduced ACTH and androgen biomarkers while patients were on stable glucocorticoid replacement. Improvements in glucocorticoid replacement include replacing the circadian rhythm of cortisol that has been trialled with continuous s.c. infusion of hydrocortisone and Chronocort, a delayed-release hydrocortisone formulation. Chronocort optimally controlled 21OHD-CAH in 80% of patients on an adrenal replacement dose of hydrocortisone, which was associated with patient-reported benefits including restoration of menses and pregnancies. Adrenal-targeted therapies include the steroidogenesis-blocking drug Abiraterone acetate, which reduced adrenal androgen biomarkers in poorly controlled patients. CONCLUSIONS CRF1 receptor antagonists hold promise to avoid excess glucocorticoid replacement in patients not controlled on standard or circadian glucocorticoid replacement such as Chronocort. Gene and cell therapies are the only therapeutic approaches that could potentially correct both cortisol deficiency and androgen excess.
Collapse
Affiliation(s)
- Alessandro Prete
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, Departments of Pharmacology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Richard J Ross
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Correspondence should be addressed to R J Ross;
| |
Collapse
|