1
|
Cai J, Han X, Peng S, Chen J, Zhang JV, Huang C. Chemerin facilitates placental trophoblast invasion and spiral artery remodeling through the pentose phosphate pathway. Life Sci 2025; 373:123645. [PMID: 40280299 DOI: 10.1016/j.lfs.2025.123645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/19/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
AIMS The invasion of trophoblasts and remodeling of spiral arteries are the requisite processes for successful placentation. A defect of trophoblast invasion is closely associated with pregnancy complications, including miscarriage and preeclampsia. In this study, we investigated the function of chemerin in trophoblast invasion and artery remodeling and explored the underlying mechanism in this process. MAIN METHODS Immunostaining was performed to examine chemerin expression in different days of mouse placenta and early stage of human placenta. Chemerin KO and LPS-treated mice, with exogenous chemerin peptide, were used to evaluate trophoblast giant cells (TGC) invasion, artery remodeling, and NK cell infiltration. Chemerin KO and LPS-treated decidua on E8.5 were conducted in metabolites file and measured related enzymes' expression. Chemerin's function was further examined by human trophoblast HTR-8 cell migration and the enzymes expression in the pentose phosphate pathway. KEY FINDINGS Chemerin has high expression in mouse-invasive TGC and human extra-villous trophoblast cells. Deficiency of chemerin and LPS treatment in pregnant mice impaired placental TGC invasion, spiral artery remodeling, and NK cell infiltration in decidua, which mainly attributed to the downregulation of metabolites and G6PD and RPIA expression in pentose phosphate pathway (PPP). Chemerin activated the PPP to accelerate HTR-8 cell migration. Exogenous chemerin administration remarkably attenuated the defect of TGC invading and artery remodeling in LPS-treated mice, and promoted NK infiltration and maternal blood perfusion. SIGNIFICANCE This study described the indispensable role of chemerin in trophoblast invasion and arterial remodeling, and suggested its potential application in pregnancy complications miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jiaxuan Cai
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, China
| | - Xinyue Han
- Department of Obstetrics and Gynecology, Shenzhen University General Hospital, Shenzhen, China
| | - Suohao Peng
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jie Chen
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Jian V Zhang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, China.
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
2
|
Zhao Y, Yue R. White adipose tissue in type 2 diabetes and the effect of antidiabetic drugs. Diabetol Metab Syndr 2025; 17:116. [PMID: 40186308 PMCID: PMC11969724 DOI: 10.1186/s13098-025-01678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/19/2025] [Indexed: 04/07/2025] Open
Abstract
White adipose tissue (WAT) is highly flexible and was previously considered a passive location for energy storage. Its endocrine function has been established for several years, earning it the title of an "endocrine organ" due to its ability to secrete many adipokines that regulate metabolism. WAT is one of the core tissues that influence insulin sensitivity. Its dysfunction enhances insulin resistance and type 2 diabetes (T2D) progression. However, T2D may cause WAT dysfunction, including changes in distribution, metabolism, adipocyte hypertrophy, inflammation, aging, and adipokines and free fatty acid levels, which may exacerbate insulin resistance. This review used PubMed to search WAT dysfunction in T2D and the effects of these changes on insulin resistance. Additionally, we described and discussed the effects of antidiabetic drugs, including insulin therapy, sulfonylureas, metformin, glucose-like peptide-1 receptor agonists, thiazolidinediones, and sodium-dependent glucose transporters-2 inhibitors, on WAT parameters under T2D conditions.
Collapse
Affiliation(s)
- Yixuan Zhao
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China
| | - Rensong Yue
- Chengdu University of Traditional Chinese Medicine, Hospital of Chengdu, University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan Province, 610072, P. R. China.
| |
Collapse
|
3
|
Zhang Q, Jia Y, Guo Y, Yu X, Wang R, Wang X. Chemerin loss-of-function attenuates glucagon-like peptide-1 secretion in exercised obese mice. Diabetes Obes Metab 2025; 27:1296-1313. [PMID: 39803714 DOI: 10.1111/dom.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/24/2024] [Accepted: 11/24/2024] [Indexed: 02/08/2025]
Abstract
AIMS To investigate the role of chemerin reduction in mediating exercise-induced Glucagon-like peptide-1 (GLP-1) secretion and the amelioration of pancreatic β-cell function in obesity. MATERIALS AND METHODS Obesity models were established using wild-type and chemerin systemic knockout mice, followed by 8 weeks of moderate-intensity continuous aerobic exercise training. Serum chemerin levels, GLP-1 synthesis, glucose tolerance, pancreatic β-cell function, structure, and apoptosis were assessed. In vitro experiments were conducted on STC-1 cells, derived from murine intestinal endocrine cells, to evaluate GLP-1 secretion following exogenous chemerin treatment. Additionally, colonic tissue inflammation and apoptosis were analyzed using qPCR and TUNEL staining. RESULTS In obese wild-type mice, moderate-intensity aerobic exercise significantly reduced serum chemerin levels, enhanced GLP-1 secretion, and improved glucose tolerance, pancreatic β-cell structure, function, and apoptosis. These effects were absent in obese chemerin knockout mice. Exogenous chemerin treatment reduced GLP-1 secretion in STC-1 cells. Furthermore, the beneficial effects of exercise on colonic inflammation and apoptosis observed in wild-type mice were abolished in chemerin knockout mice. CONCLUSION Reduction of chemerin is crucial for the beneficial effects of aerobic exercise on GLP-1 secretion and pancreatic β-cell function in obesity. The mechanisms behind these effects may involve improvements in colonic inflammation and apoptosis. These findings offer new insights into the molecular mechanisms through which exercise improves obesity-related metabolic dysfunction.
Collapse
Affiliation(s)
- Qilong Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
- School of Physical Education, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Yi Jia
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Yifan Guo
- School of Elderly Care Services and Management, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaohan Yu
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Ru Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Wang D, Mahmud I, Thakur VS, Kiat Tan S, Isom DG, Lombard DB, Gonzalgo ML, Kryvenko ON, Lorenzi PL, Tcheuyap VT, Brugarolas J, Welford SM. GPR1 and CMKLR1 Control Lipid Metabolism to Support the Development of Clear Cell Renal Cell Carcinoma. Cancer Res 2024; 84:2141-2154. [PMID: 38640229 PMCID: PMC11290988 DOI: 10.1158/0008-5472.can-23-2926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 04/21/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC), the most common type of kidney cancer, is largely incurable in the metastatic setting. ccRCC is characterized by excessive lipid accumulation that protects cells from stress and promotes tumor growth, suggesting that the underlying regulators of lipid storage could represent potential therapeutic targets. Here, we evaluated the regulatory roles of GPR1 and CMKLR1, two G protein-coupled receptors of the protumorigenic adipokine chemerin that is involved in ccRCC lipid metabolism. Both genetic and pharmacologic suppression of either receptor suppressed lipid formation and induced multiple forms of cell death, including apoptosis, ferroptosis, and autophagy, thereby significantly impeding ccRCC growth in cell lines and patient-derived xenograft models. Comprehensive lipidomic and transcriptomic profiling of receptor competent and depleted cells revealed overlapping and unique signaling of the receptors granting control over triglyceride synthesis, ceramide production, and fatty acid saturation and class production. Mechanistically, both receptors enforced suppression of adipose triglyceride lipase, but each receptor also demonstrated distinct functions, such as the unique ability of CMKLR1 to control lipid uptake through regulation of sterol regulatory element-binding protein 1c and the CD36 scavenger receptor. Treating patient-derived xenograft models with the CMKLR1-targeting small molecule 2-(α-naphthoyl) ethyltrimethylammonium iodide (α-NETA) led to a dramatic reduction in tumor growth, lipid storage, and clear-cell morphology. Together, these findings provide mechanistic insights into lipid regulation in ccRCC and identify a targetable axis at the core of the histologic definition of this tumor that could be exploited therapeutically. Significance: Extracellular control of lipid accumulation via G protein receptor-mediated cell signaling is a metabolic vulnerability in clear cell renal cell carcinoma, which depends on lipid storage to avoid oxidative toxicity.
Collapse
Affiliation(s)
- Dazhi Wang
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Iqbal Mahmud
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vijay S. Thakur
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Sze Kiat Tan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Daniel G. Isom
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - David B. Lombard
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Bruce W. Carter VAMC, Miami FL 33125, USA
| | - Mark L. Gonzalgo
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Oleksandr N. Kryvenko
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Department of Pathology & Laboratory Medicine, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Desai Sethi Urology Institute, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| | - Philip L. Lorenzi
- Department of Bioinformatics & Computational Biology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine/Hematology-Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Scott M. Welford
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida, 33136, USA
| |
Collapse
|
5
|
Mukherji AB, Idowu V, Zhao L, Leung LLK, Shen S, Palaniappan L, Morser J. Chemerin Levels in Individuals with Type 2 Diabetes and a Normal Weight versus Individuals with Type 2 Diabetes and Obesity: An Observational, Cross-Sectional Study. Biomedicines 2024; 12:983. [PMID: 38790945 PMCID: PMC11117893 DOI: 10.3390/biomedicines12050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Chemerin acts as both a chemotactic agent and an adipokine that undergoes proteolytic cleavage, converting inactive precursors into their active forms before being subsequently inactivated. Elevated chemerin levels are linked to obesity and type 2 diabetes mellitus (T2D). This study aimed to elucidate the effects of T2D and obesity on chemerin levels by comparing plasma samples from individuals with a normal weight and T2D (BMI < 25; NWD group n = 22) with those from individuals who are overweight or obese and have T2D (BMI ≥ 25; OWD group n = 39). The total chemerin levels were similar in the NWD and OWD groups, suggesting that T2D may equalize the chemerin levels irrespective of obesity status. The cleavage of chemerin has been previously linked to myocardial infarction and stroke in NWD, with potential implications for inflammation and mortality. OWD plasma exhibited lower levels of cleaved chemerin than the NWD group, suggesting less inflammation in the OWD group. Here, we showed that the interaction between obesity and T2D leads to an equalization in the total chemerin levels. The cleaved chemerin levels and the associated inflammatory state, however, differ significantly, underscoring the complex relationship between chemerin, T2D, and obesity.
Collapse
Affiliation(s)
- Aishee B. Mukherji
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Victoria Idowu
- Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Lawrence L. K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | - Sa Shen
- Quantitative Sciences Unit, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Latha Palaniappan
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Division of General Medical Disciplines, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA; (L.Z.); (L.L.K.L.)
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| |
Collapse
|
6
|
Zhao L, Zhou J, Abbasi F, Fathzadeh M, Knowles JW, Leung LLK, Morser J. Chemerin in Participants with or without Insulin Resistance and Diabetes. Biomedicines 2024; 12:924. [PMID: 38672278 PMCID: PMC11048116 DOI: 10.3390/biomedicines12040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chemerin is a chemokine/adipokine, regulating inflammation, adipogenesis and energy metabolism whose activity depends on successive proteolytic cleavages at its C-terminus. Chemerin levels and processing are correlated with insulin resistance. We hypothesized that chemerin processing would be higher in individuals with type 2 diabetes (T2D) and in those who are insulin resistant (IR). This hypothesis was tested by characterizing different chemerin forms by specific ELISA in the plasma of 18 participants with T2D and 116 without T2D who also had their insulin resistance measured by steady-state plasma glucose (SSPG) concentration during an insulin suppression test. This approach enabled us to analyze the association of chemerin levels with a direct measure of insulin resistance (SSPG concentration). Participants were divided into groups based on their degree of insulin resistance using SSPG concentration tertiles: insulin sensitive (IS, SSPG ≤ 91 mg/dL), intermediate IR (IM, SSPG 92-199 mg/dL), and IR (SSPG ≥ 200 mg/dL). Levels of different chemerin forms were highest in patients with T2D, second highest in individuals without T2D who were IR, and lowest in persons without T2D who were IM or IS. In the whole group, chemerin levels positively correlated with both degree of insulin resistance (SSPG concentration) and adiposity (BMI). Participants with T2D and those without T2D who were IR had the most proteolytic processing of chemerin, resulting in higher levels of both cleaved and degraded chemerin. This suggests that increased inflammation in individuals who have T2D or are IR causes more chemerin processing.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jonathan Zhou
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27705, USA;
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Mohsen Fathzadeh
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Lawrence L. K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
7
|
Zhang Q, Ye J, Wang X. Progress in the contrary effects of glucagon-like peptide-1 and chemerin on obesity development. Exp Biol Med (Maywood) 2023; 248:2020-2029. [PMID: 38058030 PMCID: PMC10800121 DOI: 10.1177/15353702231214270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023] Open
Abstract
Glucagon-like peptide-1 (GLP-1), secreted by intestinal L-cells, plays a pivotal role in the modulation of β-cell insulin secretion in a glucose-dependent manner, concurrently promoting β-cell survival and β-cell mass. Notably, GLP-1 has emerged as an effective second-line treatment for type 2 diabetes mellitus, gaining further prominence for its pronounced impact on body weight reduction, positioning it as a potent antiobesity agent. However, the mechanism by which GLP-1 improves obesity remains unclear. Some reports suggest that this mechanism may be associated with the regulation of adipokine synthesis within adipose tissue. Chemerin, a multifunctional adipokine and chemokine, has been identified as a pivotal player in adipocyte differentiation and the propagation of systemic inflammation, a hallmark of obesity. This review provides a comprehensive overview of the mechanisms by which GLP-1 and chemerin play crucial roles in obesity and obesity-related diseases. It discusses well-established aspects, such as their effects on food intake and glycolipid metabolism, as well as recent insights, including their influence on macrophage polarization and adipose tissue thermogenesis. GLP-1 has been shown to increase the population of anti-inflammatory M2 macrophages, promote brown adipose tissue thermogenesis, and induce the browning of white adipose tissue. In contrast, chemerin exhibits opposite effects in these processes. In addition, recent research findings have demonstrated the promising potential of GLP-1-based therapies in directly or indirectly regulating chemerin expression. In an intriguing reciprocal relationship, chemerin has also been newly identified as a negative regulator of GLP-1 in vivo. This review delineates the intricate interplay between GLP-1 and chemerin, unraveling their mutual inhibitory interactions. To the best of our knowledge, no previous reviews have focused on this specific topic, making this review particularly valuable in expanding our understanding of the endocrine mechanisms of obesity and providing potential strategies for the treatment of obesity and related diseases.
Collapse
Affiliation(s)
- Qilong Zhang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Center for Advanced Medicine, College of Medicine, Zhengzhou University, Zhengzhou 450007, China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China
| |
Collapse
|
8
|
Fang P, She Y, Yu M, Min W, Shang W, Zhang Z. Adipose-Muscle crosstalk in age-related metabolic disorders: The emerging roles of adipo-myokines. Ageing Res Rev 2023; 84:101829. [PMID: 36563906 DOI: 10.1016/j.arr.2022.101829] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Obesity and type 2 diabetes account for a considerable proportion of the global burden of age-related metabolic diseases. In age-related metabolic diseases, tissue crosstalk and metabolic regulation have been primarily linked to endocrine processes. Skeletal muscle and adipose tissue are endocrine organs that release myokines and adipokines into the bloodstream, respectively. These cytokines regulate metabolic responses in a variety of tissues, including skeletal muscle and adipose tissue. However, the intricate mechanisms underlying adipose-muscle crosstalk in age-related metabolic diseases are not fully understood. Recent exciting evidence suggests that myokines act to control adipose tissue functions, including lipolysis, browning, and inflammation, whereas adipokines mediate the beneficial actions of adipose tissue in the muscle, such as glucose uptake and metabolism. In this review, we assess the mechanisms of adipose-muscle crosstalk in age-related disorders and propose that the adipokines adiponectin and spexin, as well as the myokines irisin and interleukin-6 (IL-6), are crucial for maintaining the body's metabolic balance in age-related metabolic disorders. In addition, these changes of adipose-muscle crosstalk in response to exercise or dietary flavonoid consumption are part of the mechanisms of both functions in the remission of age-related metabolic disorders. A better understanding of the intricate relationships between adipose tissue and skeletal muscle could lead to more potent therapeutic approaches to prolong life and prevent age-related metabolic diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing 211899, China
| | - Mei Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wen Min
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenbin Shang
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou 225001, China.
| |
Collapse
|
9
|
Chemerin Forms: Their Generation and Activity. Biomedicines 2022; 10:biomedicines10082018. [PMID: 36009565 PMCID: PMC9405667 DOI: 10.3390/biomedicines10082018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
Chemerin is the product of the RARRES2 gene which is secreted as a precursor of 143 amino acids. That precursor is inactive, but proteases from the coagulation and fibrinolytic cascades, as well as from inflammatory reactions, process the C-terminus of chemerin to first activate it and then subsequently inactivate it. Chemerin can signal via two G protein-coupled receptors, chem1 and chem2, as well as be bound to a third non-signaling receptor, CCRL2. Chemerin is produced by the liver and secreted into the circulation as a precursor, but it is also expressed in some tissues where it can be activated locally. This review discusses the specific tissue expression of the components of the chemerin system, and the role of different proteases in regulating the activation and inactivation of chemerin. Methods of identifying and determining the levels of different chemerin forms in both mass and activity assays are reviewed. The levels of chemerin in circulation are correlated with certain disease conditions, such as patients with obesity or diabetes, leading to the possibility of using chemerin as a biomarker.
Collapse
|
10
|
Yu M, Yang Y, Huang C, Ge L, Xue L, Xiao Z, Xiao T, Zhao H, Ren P, Zhang JV. Chemerin: A Functional Adipokine in Reproductive Health and Diseases. Biomedicines 2022; 10:biomedicines10081910. [PMID: 36009457 PMCID: PMC9406010 DOI: 10.3390/biomedicines10081910] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022] Open
Abstract
As a multifaceted adipokine, chemerin has been found to perform functions vital for immunity, adiposity, and metabolism through its three known receptors (chemokine-like receptor 1, CMKLR1; G-protein-coupled receptor 1, GPR1; C-C motif chemokine receptor-like 2, CCRL2). Chemerin and the cognate receptors are also expressed in the hypothalamus, pituitary gland, testis, ovary, and placenta. Accumulating studies suggest that chemerin participates in normal reproduction and underlies the pathological mechanisms of certain reproductive system diseases, including polycystic ovary syndrome (PCOS), preeclampsia, and breast cancer. Herein, we present a comprehensive review of the roles of the chemerin system in multiple reproductive processes and human reproductive diseases, with a brief discussion and perspectives on future clinical applications.
Collapse
Affiliation(s)
- Ming Yu
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Yali Yang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chen Huang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Lei Ge
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Xue
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhonglin Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Tianxia Xiao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Huashan Zhao
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Peigen Ren
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
| | - Jian V. Zhang
- Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Metabolic Health, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
11
|
Thromboinflammatory Processes at the Nexus of Metabolic Dysfunction and Prostate Cancer: The Emerging Role of Periprostatic Adipose Tissue. Cancers (Basel) 2022; 14:cancers14071679. [PMID: 35406450 PMCID: PMC8996963 DOI: 10.3390/cancers14071679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary As overweight and obesity increase among the population worldwide, a parallel increase in the number of individuals diagnosed with prostate cancer was observed. There appears to be a relationship between both diseases where the increase in the mass of fat tissue can lead to inflammation. Such a state of inflammation could produce many factors that increase the aggressiveness of prostate cancer, especially if this inflammation occurred in the fat stores adjacent to the prostate. Another important observation that links obesity, fat tissue inflammation, and prostate cancer is the increased production of blood clotting factors. In this article, we attempt to explain the role of these latter factors in the effect of increased body weight on the progression of prostate cancer and propose new ways of treatment that act by affecting how these clotting factors work. Abstract The increased global prevalence of metabolic disorders including obesity, insulin resistance, metabolic syndrome and diabetes is mirrored by an increased incidence of prostate cancer (PCa). Ample evidence suggests that these metabolic disorders, being characterized by adipose tissue (AT) expansion and inflammation, not only present as risk factors for the development of PCa, but also drive its increased aggressiveness, enhanced progression, and metastasis. Despite the emerging molecular mechanisms linking AT dysfunction to the various hallmarks of PCa, thromboinflammatory processes implicated in the crosstalk between these diseases have not been thoroughly investigated. This is of particular importance as both diseases present states of hypercoagulability. Accumulating evidence implicates tissue factor, thrombin, and active factor X as well as other players of the coagulation cascade in the pathophysiological processes driving cancer development and progression. In this regard, it becomes pivotal to elucidate the thromboinflammatory processes occurring in the periprostatic adipose tissue (PPAT), a fundamental microenvironmental niche of the prostate. Here, we highlight key findings linking thromboinflammation and the pleiotropic effects of coagulation factors and their inhibitors in metabolic diseases, PCa, and their crosstalk. We also propose several novel therapeutic targets and therapeutic interventions possibly modulating the interaction between these pathological states.
Collapse
|
12
|
Fischer TF, Beck-Sickinger AG. Chemerin - exploring a versatile adipokine. Biol Chem 2022; 403:625-642. [PMID: 35040613 DOI: 10.1515/hsz-2021-0409] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
Chemerin is a small chemotactic protein and a key player in initiating the early immune response. As an adipokine, chemerin is also involved in energy homeostasis and the regulation of reproductive functions. Secreted as inactive prochemerin, it relies on proteolytic activation by serine proteases to exert biological activity. Chemerin binds to three distinct G protein-coupled receptors (GPCR), namely chemokine-like receptor 1 (CMKLR1, recently named chemerin1), G protein-coupled receptor 1 (GPR1, recently named chemerin2), and CC-motif chemokine receptor-like 2 (CCRL2). Only CMKLR1 displays conventional G protein signaling, while GPR1 only recruits arrestin in response to ligand stimulation, and no CCRL2-mediated signaling events have been described to date. However, GPR1 undergoes constitutive endocytosis, making this receptor perfectly adapted as decoy receptor. Here, we discuss expression pattern, activation, and receptor binding of chemerin. Moreover, we review the current literature regarding the involvement of chemerin in cancer and several obesity-related diseases, as well as recent developments in therapeutic targeting of the chemerin system.
Collapse
Affiliation(s)
- Tobias F Fischer
- Institute of Biochemistry, University of Leipzig, Brüderstraße 34, D-04103 Leipzig, Germany
| | | |
Collapse
|
13
|
Magnan C, Valet P. Editorial for special issue on "Endocrinology of adipokines". Mol Cell Endocrinol 2022; 539:111498. [PMID: 34678440 DOI: 10.1016/j.mce.2021.111498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Christophe Magnan
- Université de Paris, Functional and Adaptive Biology Unit, UMR 8251, CNRS, 4 rue Marie Andrée Lagroua Weill-Halle, 75013, Paris, France.
| | - Philippe Valet
- Université Paul Sabatier, RESTORE research center, UMR 1301 Inserm 5070 CNRS, 4bis Ave H. Curien, 31100, Toulouse, France
| |
Collapse
|
14
|
Fang P, Ge R, She Y, Zhao J, Yan J, Yu X, Jin Y, Shang W, Zhang Z. Adipose tissue spexin in physical exercise and age-associated diseases. Ageing Res Rev 2022; 73:101509. [PMID: 34752956 DOI: 10.1016/j.arr.2021.101509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
It is known that a strong association exists between a suboptimal lifestyle (physical inactivity and sedentary behavior and/or high calorie diet) and increased propensity of developing age-associated diseases, such as obesity and T2DM. Physical exercise can alleviate obesity-induced insulin resistance and T2DM, however, the precise mechanism for this outcome is not fully understood. The endocrine disorder of adipose tissue in obesity plays a critical role in the development of insulin resistance. In this regard, spexin has been recently described as an adipokine that plays an important role in the pathophysiology of obesity-induced insulin resistance and T2DM. In obese states, expression of adipose tissue spexin is reduced, inducing the adipose tissue and skeletal muscle more susceptible to insulin resistance. Emerging evidences point out that exercise can increase spexin expression. In return, spexin could exert the exercise-protective roles to ameliorate insulin resistance, suggesting that spexin is a potential mediator for exercise to ameliorate obesity-induced insulin resistance and T2DM, namely, the beneficial effect of exercise on insulin sensitivity is at least partly mediated by spexin. This review summarizes our and others' recent studies regarding the effects of obesity on adipose tissue spexin induction, along with the potential effect of exercise on this response in obese context, and provides a new insight into the multivariate relationship among exercise, spexin and T2DM. It should be therefore taken into account that a combination of spexin and exercise training is an effective therapeutic strategy for age-associated diseases.
Collapse
Affiliation(s)
- Penghua Fang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China.
| | - Ran Ge
- Department of Physiology, Nanjing University of Chinese Medicine Hanlin College, Taizhou, China
| | - Yuqing She
- Department of Endocrinology, Pukou Branch of Jiangsu People's Hospital, Nanjing, China
| | - Juan Zhao
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xizhong Yu
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Jin
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenbin Shang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China; Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Zhenwen Zhang
- Department of Endocrinology, Clinical Medical College, Yangzhou University, Yangzhou, China.
| |
Collapse
|