1
|
Khan MQ, Jamal SB, Faheem M, Bakhtiar SM. 3-Dimensional structure prediction of C-terminal disrupted in schizophrenia 1: a suspected culprit of schizophrenia. J Biomol Struct Dyn 2025:1-11. [PMID: 39987524 DOI: 10.1080/07391102.2025.2460079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/15/2024] [Indexed: 02/25/2025]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a scaffolding protein involved in neurogenesis, synaptic development and cell signaling. It acts as a hub protein in different pathways by interacting with multiple proteins and regulates their function it is localized in various subcellular locations, including the nucleus, mitochondria, and cytoskeleton, this 854-amino acid protein comprises two segments: an N-terminal head and a C-terminal coiled-coil region. There are over two hundred interacting partners of DISC1. It is encoded by a gene present on chromosome 1q42.1 and its mutations lead to different genetic defects causing psychiatric conditions. A major genetic defect regarding DISC1 is a translocation event t(1;11) (q42.1;q14.3) which leads to a C-terminal truncated protein residues ∼1-598. This indicates the importance of DISC1 as a therapeutic target but the complete three-dimensional structure of DISC1 is yet not determined only partially reported in complexes or predicted structures are available. To understand the etiology, and pathophysiology of DISC1 the structure of the C-terminus needs to be determined as it participates in major molecular interactions. In this study, different approaches were used to determine the structure of C-terminus DISC1 where threading enabled us to develop a suitable model which was initially refined and later analyzed using quality assessment and validation tools. These findings are a key resource to understand the structural and functional properties of DISC1 and how they can help to identify new therapeutic targets for schizophrenia.
Collapse
Affiliation(s)
- Muhammad Qasim Khan
- Department of Bioinformatics And Biosciences, Capital University of Science And Technology (CUST), Islamabad, Pakistan
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Syeda Marriam Bakhtiar
- Department of Bioinformatics And Biosciences, Capital University of Science And Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
2
|
Samardžija B, Juković M, Zaharija B, Renner É, Palkovits M, Bradshaw NJ. Co-Aggregation and Parallel Aggregation of Specific Proteins in Major Mental Illness. Cells 2023; 12:1848. [PMID: 37508512 PMCID: PMC10378145 DOI: 10.3390/cells12141848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Disrupted proteostasis is an emerging area of research into major depressive disorder. Several proteins have been implicated as forming aggregates specifically in the brains of subsets of patients with psychiatric illnesses. These proteins include CRMP1, DISC1, NPAS3 and TRIOBP-1. It is unclear, however, whether these proteins normally aggregate together in the same individuals and, if so, whether each protein aggregates independently of each other ("parallel aggregation") or if the proteins physically interact and aggregate together ("co-aggregation"). MATERIALS AND METHODS Post mortem insular cortex samples from major depressive disorder and Alzheimer's disease patients, suicide victims and control individuals had their insoluble fractions isolated and tested by Western blotting to determine which of these proteins are insoluble and, therefore, likely to be aggregating. The ability of the proteins to co-aggregate (directly interact and form common aggregate structures) was tested by systematic pairwise expression of the proteins in SH-SY5Y neuroblastoma cells, which were then examined by immunofluorescent microscopy. RESULTS Many individuals displayed multiple insoluble proteins in the brain, although not enough to imply interaction between the proteins. Cell culture analysis revealed that only a few of the proteins analyzed can consistently co-aggregate with each other: DISC1 with each of CRMP1 and TRIOBP-1. DISC1 was able to induce aggregation of full length TRIOBP-1, but not individual domains of TRIOBP-1 when they were expressed individually. CONCLUSIONS While specific proteins are capable of co-aggregating, and appear to do so in the brains of individuals with mental illness and potentially also with suicidal tendency, it is more common for such proteins to aggregate in a parallel manner, through independent mechanisms. This information aids in understanding the distribution of protein aggregates among mental illness patients and is therefore important for any future diagnostic or therapeutic approaches based on this aspect of mental illness pathology.
Collapse
Affiliation(s)
- Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Éva Renner
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | - Miklós Palkovits
- Human Brain Tissue Bank & Laboratory, Semmelweis University, 1094 Budapest, Hungary
| | | |
Collapse
|
3
|
Habibi S, Yaghoubzad-Maleki M, Heshmati E, Khalifeh K. Effects of representative point mutations on dynamic behavior of the DISC1-Ndel1 complex: a molecular dynamics study. J Biomol Struct Dyn 2023; 41:13228-13234. [PMID: 36858606 DOI: 10.1080/07391102.2023.2183030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/18/2023] [Indexed: 03/03/2023]
Abstract
It has been found that the development of schizophrenia and some other psychiatric disorders is related to defects in the normal functioning of Disrupted-In-Schizophrenia 1 (DISC1). It is a large-sized protein containing 855 residues and acts as an active hub at the core of many interactions with various proteins. On the other hand, NudE Neurodevelopment Protein 1 Like 1 (Ndel1) plays a role in nervous system development via interaction with the DISC1. It was shown that some point mutations on DISC1 have clinical implications. In line with these reports, here we have used the NMR structure of the wild-type (WT) C-terminal tail of DISC1 in complex with the N-terminal fragment of Ndel1, and have constructed the three-dimensional structures of L62Q and L29Q mutants, as the pathologic variants of the complex. The time-dependent interaction of DISC1 with Ndel1 in the WT complex and mutants was simulated by performing molecular dynamics (MD) simulation using programs in the GROMACS package. It was found that the flexibility of residues in some regions of the protein chains increases, and secondary structural changes from ordered toward unordered one leads to destabilizing of the complex in mutants. Destabilization of the complex upon substitution of Leu by Gln was also confirmed by analysis of the contact map plot.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Saba Habibi
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | | | - Emran Heshmati
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| |
Collapse
|
4
|
Garrott SR, Gillies JP, DeSantis ME. Nde1 and Ndel1: Outstanding Mysteries in Dynein-Mediated Transport. Front Cell Dev Biol 2022; 10:871935. [PMID: 35493069 PMCID: PMC9041303 DOI: 10.3389/fcell.2022.871935] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the primary microtubule minus-end directed molecular motor in most eukaryotes. As such, dynein has a broad array of functions that range from driving retrograde-directed cargo trafficking to forming and focusing the mitotic spindle. Dynein does not function in isolation. Instead, a network of regulatory proteins mediate dynein’s interaction with cargo and modulate dynein’s ability to engage with and move on the microtubule track. A flurry of research over the past decade has revealed the function and mechanism of many of dynein’s regulators, including Lis1, dynactin, and a family of proteins called activating adaptors. However, the mechanistic details of two of dynein’s important binding partners, the paralogs Nde1 and Ndel1, have remained elusive. While genetic studies have firmly established Nde1/Ndel1 as players in the dynein transport pathway, the nature of how they regulate dynein activity is unknown. In this review, we will compare Ndel1 and Nde1 with a focus on discerning if the proteins are functionally redundant, outline the data that places Nde1/Ndel1 in the dynein transport pathway, and explore the literature supporting and opposing the predominant hypothesis about Nde1/Ndel1’s molecular effect on dynein activity.
Collapse
Affiliation(s)
- Sharon R. Garrott
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - John P. Gillies
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Morgan E. DeSantis
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Morgan E. DeSantis,
| |
Collapse
|
5
|
Chen YM, Lin CH, Lane HY. Distinctively lower DISC1 mRNA levels in patients with schizophrenia, especially in those with higher positive, negative, and depressive symptoms. Pharmacol Biochem Behav 2022; 213:173335. [PMID: 35033484 DOI: 10.1016/j.pbb.2022.173335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/18/2022]
Abstract
BACKGROUND The issue of genetic influence on schizophrenia has received considerable attention. The DISC1 gene has been shown in several studies to play a role in the pathophysiology of schizophrenia. However, the relationship between DISC1 mRNA expression vs. schizophrenia and its clinical symptoms is uncertain. METHODS Fifty-six subjects (32 patients with schizophrenia and 24 healthy controls) were enrolled. Peripheral blood was obtained from all subjects to exam the DISC1 mRNA expression. Schizophrenia patients were evaluated with Hamilton Rating Scale for Depression (HAMD), Positive and Negative Syndrome Scale (PANSS), Brief Psychiatric Rating Scale (BPRS) and Scale for the Assessment of Negative Symptoms (SANS) scales. Healthy subjects were assessed with HAMD scale. RESULTS Patients with schizophrenia had significantly lower levels of the DISC1 mRNA expression than the healthy control (P = 0.002). We also found that lower DISC1 mRNA levels in schizophrenia patients were associated with higher degree of depression in HAMD (P = 0.037), severer positive symptoms in PANSS (P = 0.032) and more negative symptoms in SANS (P = 0.038). CONCLUSION The results showed that schizophrenia patients had lower levels of DISC1 mRNA than healthy individuals, and that the schizophrenia patients with lower DISC1 mRNA levels were more likely to manifest more marked symptoms, including positive, negative, and depressive symptoms. The findings suggest that lower DISC1 expression may be related with the pathogenesis and phenotypes of schizophrenia. Future studies are needed to replicate the results and to further establish its potential role in clinical application of early diagnosis and outcome follow-up.
Collapse
Affiliation(s)
- Yu-Ming Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Department of Psychiatry & Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan; Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
6
|
Mutations in DISC1 alter IP 3R and voltage-gated Ca 2+ channel functioning, implications for major mental illness. Neuronal Signal 2021; 5:NS20180122. [PMID: 34956649 PMCID: PMC8663806 DOI: 10.1042/ns20180122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022] Open
Abstract
Disrupted in Schizophrenia 1 (DISC1) participates in a wide variety of
developmental processes of central neurons. It also serves critical roles that
underlie cognitive functioning in adult central neurons. Here we summarize
DISC1’s general properties and discuss its use as a model system for
understanding major mental illnesses (MMIs). We then discuss the cellular
actions of DISC1 that involve or regulate Ca2+ signaling in adult
central neurons. In particular, we focus on the tethering role DISC1 plays in
transporting RNA particles containing Ca2+ channel subunit RNAs,
including IP3R1, CACNA1C and CACNA2D1, and in transporting mitochondria into
dendritic and axonal processes. We also review DISC1’s role in modulating
IP3R1 activity within mitochondria-associated ER membrane (MAM).
Finally, we discuss DISC1-glycogen synthase kinase 3β (GSK3β)
signaling that regulates functional expression of voltage-gated Ca2+
channels (VGCCs) at central synapses. In each case, DISC1 regulates the movement
of molecules that impact Ca2+ signaling in neurons.
Collapse
|
7
|
Cukkemane A, Becker N, Zielinski M, Frieg B, Lakomek NA, Heise H, Schröder GF, Willbold D, Weiergräber OH. Conformational heterogeneity coupled with β-fibril formation of a scaffold protein involved in chronic mental illnesses. Transl Psychiatry 2021; 11:639. [PMID: 34921141 PMCID: PMC8683410 DOI: 10.1038/s41398-021-01765-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/23/2021] [Accepted: 12/07/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic mental illnesses (CMIs) pose a significant challenge to global health due to their complex and poorly understood etiologies and hence, absence of causal therapies. Research of the past two decades has revealed dysfunction of the disrupted in schizophrenia 1 (DISC1) protein as a predisposing factor involved in several psychiatric disorders. DISC1 is a multifaceted protein that serves myriads of functions in mammalian cells, for instance, influencing neuronal development and synapse maintenance. It serves as a scaffold hub forming complexes with a variety (~300) of partners that constitute its interactome. Herein, using combinations of structural and biophysical tools, we demonstrate that the C-region of the DISC1 protein is highly polymorphic, with important consequences for its physiological role. Results from solid-state NMR spectroscopy and electron microscopy indicate that the protein not only forms symmetric oligomers but also gives rise to fibrils closely resembling those found in certain established amyloid proteinopathies. Furthermore, its aggregation as studied by isothermal titration calorimetry (ITC) is an exergonic process, involving a negative enthalpy change that drives the formation of oligomeric (presumably tetrameric) species as well as β-fibrils. We have been able to narrow down the β-core region participating in fibrillization to residues 716-761 of full-length human DISC1. This region is absent in the DISC1Δ22aa splice variant, resulting in reduced association with proteins from the dynein motor complex, viz., NDE-like 1 (NDEL1) and lissencephaly 1 (LIS1), which are crucial during mitosis. By employing surface plasmon resonance, we show that the oligomeric DISC1 C-region has an increased affinity and shows cooperativity in binding to LIS1 and NDEL1, in contrast to the noncooperative binding mode exhibited by the monomeric version. Based on the derived structural models, we propose that the association between the binding partners involves two neighboring subunits of DISC1 C-region oligomers. Altogether, our findings highlight the significance of the DISC1 C-region as a crucial factor governing the balance between its physiological role as a multifunctional scaffold protein and aggregation-related aberrations with potential significance for disease.
Collapse
Affiliation(s)
- Abhishek Cukkemane
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Nina Becker
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Mara Zielinski
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Benedikt Frieg
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Nils-Alexander Lakomek
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Henrike Heise
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| | - Gunnar F. Schröder
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany ,grid.411327.20000 0001 2176 9917Physics Department, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany. .,Institut für Physikalische Biologie, Heinrich Heine University Düsseldorf, Düsseldorf, Germany. .,Jülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany.
| | - Oliver H. Weiergräber
- grid.8385.60000 0001 2297 375XInstitute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany ,grid.8385.60000 0001 2297 375XJülich Centre for Structural Biology (JuStruct), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
8
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
9
|
Tibbo AJ, Baillie GS. Phosphodiesterase 4B: Master Regulator of Brain Signaling. Cells 2020; 9:cells9051254. [PMID: 32438615 PMCID: PMC7291338 DOI: 10.3390/cells9051254] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022] Open
Abstract
Phosphodiesterases (PDEs) are the only superfamily of enzymes that have the ability to break down cyclic nucleotides and, as such, they have a pivotal role in neurological disease and brain development. PDEs have a modular structure that allows targeting of individual isoforms to discrete brain locations and it is often the location of a PDE that shapes its cellular function. Many of the eleven different families of PDEs have been associated with specific diseases. However, we evaluate the evidence, which suggests the activity from a sub-family of the PDE4 family, namely PDE4B, underpins a range of important functions in the brain that positions the PDE4B enzymes as a therapeutic target for a diverse collection of indications, such as, schizophrenia, neuroinflammation, and cognitive function.
Collapse
|
10
|
Bradshaw NJ, Trossbach SV, Köber S, Walter S, Prikulis I, Weggen S, Korth C. Disrupted in Schizophrenia 1 regulates the processing of reelin in the perinatal cortex. Schizophr Res 2020; 215:506-513. [PMID: 28433501 DOI: 10.1016/j.schres.2017.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Disrupted in Schizophrenia 1 (DISC1) is a prominent gene in mental illness research, encoding a scaffold protein known to be of importance in the developing cerebral cortex. Reelin is a critical extracellular protein for development and lamination of the prenatal cortex and which has also been independently implicated in mental illness. Regulation of reelin activity occurs through processing by the metalloproteinases ADAMTS-4 and ADAMTS-5. Through cross-breeding of heterozygous transgenic DISC1 mice with heterozygous reeler mice, which have reduced reelin, pups heterozygous for both phenotypes were generated. From these, we determine that transgenic DISC1 leads to a reduction in the processing of reelin, with implications for its downstream signalling element Dab1. An effect of DISC1 on reelin processing was confirmed in vitro, and revealed that intracellular DISC1 affects ADAMTS-4 protein, which in turn is exported and affects processing of extracellular reelin. In transgenic rat cortical cultures, an effect of DISC1 on reelin processing could also be seen specifically in early, immature neurons, but was lost in calretinin and reelin-positive mature neurons, suggesting cell-type specificity. DISC1 therefore acts upstream of reelin in the perinatal cerebral cortex in a cell type/time specific manner, leading to regulation of its activity through altered proteolytic cleavage. Thus a functional link is demonstrated between two proteins, each of independent importance for both cortical development and associated cognitive functions leading to behavioural maladaptation and mental illness.
Collapse
Affiliation(s)
- Nicholas J Bradshaw
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - Svenja V Trossbach
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sabrina Köber
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Susanne Walter
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sascha Weggen
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany.
| |
Collapse
|
11
|
Translating preclinical findings in clinically relevant new antipsychotic targets: focus on the glutamatergic postsynaptic density. Implications for treatment resistant schizophrenia. Neurosci Biobehav Rev 2019; 107:795-827. [DOI: 10.1016/j.neubiorev.2019.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/20/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
|
12
|
Shokouhifar A, Askari N, Yazdani S, Mehrabadi JF. DISC1 gene polymorphisms and the risk of schizophrenia in an Iranian population: A preliminary study. J Cell Biochem 2019; 120:1588-1597. [PMID: 30324622 DOI: 10.1002/jcb.27427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/12/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Schizophrenia, schizoaffective disorder, and bipolar illness are common psychological disorders with high heritability and variable phenotypes. The disrupted in schizophrenia 1 ( DISC1) gene, on chromosome 1q42, has an essential role in neurite outgrowth and cell signaling. The purpose of this study was to investigate the association of three single-nucleotide polymorphisms (SNPs; rs6675281, rs2255340, and rs2738864) with schizophrenia disorder. These three SNPs were chosen as they had been used in most of the previous studies. METHODS In a case-control study of Iranian population for the first time 778 blood samples were collected including, 402 schizophrenic patients and 376 healthy controls. Genomic DNA was extracted from peripheral blood using DNA extraction kit (BioFlux Co). The genotypes of rs6675281, rs2255340, and rs2738864 were detected by nested allele-specific multiplex polymersae chain reaction (PCR). RESULTS Our data revealed that the three SNPs are significantly associated with schizophrenia (rs2255349 C>T: confidence interval (CI), 2.115 to 3.268; P = 0.0000 OR: 2.629; rs2738864 C>T: CI, 1.538 to 2.339; P = 0.0000 OR: 1.897; rs6675281 C>T: CI, 2.788 to 4.662; P = 0.0009241 OR: 3.605). Through applying the expectation-maximization (EM) algorithm, we calculated the haplotype frequency, and finally performed haplotype analysis with Bonferroni correction and data preprocessing methods and the results showed rs66875281 to have the highest association. DISCUSSION Our findings primarily showed that DISC1 gene polymorphisms contribute to schizophrenia risk and have a significant association with this disorder among Iranian population. The strategy was found to be easy, rapid, specific, and consistent for the co-occurring detection of the DISC1 polymorphisms. We could finally confirm that the polymorphisms are related to schizophrenia studied in Iranian population.
Collapse
Affiliation(s)
- Alireza Shokouhifar
- Department of Molecular Medicine, Genomic Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Cellular and Molecular Medicine, Mehrvarzan-e-Saba Gostar Medical Rehabilitation and Maintenance Center of Chronic Mental Patients, Karaj, Iran
| | - Nasrin Askari
- Department of Cellular and Molecular Medicine, Mehrvarzan-e-Saba Gostar Medical Rehabilitation and Maintenance Center of Chronic Mental Patients, Karaj, Iran
| | | | | |
Collapse
|
13
|
Weng YT, Chien T, Kuan II, Chern Y. The TRAX, DISC1, and GSK3 complex in mental disorders and therapeutic interventions. J Biomed Sci 2018; 25:71. [PMID: 30285728 PMCID: PMC6171312 DOI: 10.1186/s12929-018-0473-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023] Open
Abstract
Psychiatric disorders (such as bipolar disorder, depression, and schizophrenia) affect the lives of millions of individuals worldwide. Despite the tremendous efforts devoted to various types of psychiatric studies and rapidly accumulating genetic information, the molecular mechanisms underlying psychiatric disorder development remain elusive. Among the genes that have been implicated in schizophrenia and other mental disorders, disrupted in schizophrenia 1 (DISC1) and glycogen synthase kinase 3 (GSK3) have been intensively investigated. DISC1 binds directly to GSK3 and modulates many cellular functions by negatively inhibiting GSK3 activity. The human DISC1 gene is located on chromosome 1 and is highly associated with schizophrenia and other mental disorders. A recent study demonstrated that a neighboring gene of DISC1, translin-associated factor X (TRAX), binds to the DISC1/GSK3β complex and at least partly mediates the actions of the DISC1/GSK3β complex. Previous studies also demonstrate that TRAX and most of its interacting proteins that have been identified so far are risk genes and/or markers of mental disorders. In the present review, we will focus on the emerging roles of TRAX and its interacting proteins (including DISC1 and GSK3β) in psychiatric disorders and the potential implications for developing therapeutic interventions.
Collapse
Affiliation(s)
- Yu-Ting Weng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China.,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China
| | - Ting Chien
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - I-I Kuan
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, 115, Taiwan, Republic of China. .,Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan, Republic of China.
| |
Collapse
|
14
|
Tropea D, Hardingham N, Millar K, Fox K. Mechanisms underlying the role of DISC1 in synaptic plasticity. J Physiol 2018; 596:2747-2771. [PMID: 30008190 PMCID: PMC6046077 DOI: 10.1113/jp274330] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022] Open
Abstract
Disrupted in schizophrenia 1 (DISC1) is an important hub protein, forming multimeric complexes by self-association and interacting with a large number of synaptic and cytoskeletal molecules. The synaptic location of DISC1 in the adult brain suggests a role in synaptic plasticity, and indeed, a number of studies have discovered synaptic plasticity impairments in a variety of different DISC1 mutants. This review explores the possibility that DISC1 is an important molecule for organizing proteins involved in synaptic plasticity and examines why mutations in DISC1 impair plasticity. It concentrates on DISC1's role in interacting with synaptic proteins, controlling dendritic structure and cellular trafficking of mRNA, synaptic vesicles and mitochondria. N-terminal directed mutations appear to impair synaptic plasticity through interactions with phosphodiesterase 4B (PDE4B) and hence protein kinase A (PKA)/GluA1 and PKA/cAMP response element-binding protein (CREB) signalling pathways, and affect spine structure through interactions with kalirin 7 (Kal-7) and Rac1. C-terminal directed mutations also impair plasticity possibly through altered interactions with lissencephaly protein 1 (LIS1) and nuclear distribution protein nudE-like 1 (NDEL1), thereby affecting developmental processes such as dendritic structure and spine maturation. Many of the same molecules involved in DISC1's cytoskeletal interactions are also involved in intracellular trafficking, raising the possibility that impairments in intracellular trafficking affect cytoskeletal development and vice versa. While the multiplicity of DISC1 protein interactions makes it difficult to pinpoint a single causal signalling pathway, we suggest that the immediate-term effects of N-terminal influences on GluA1, Rac1 and CREB, coupled with the developmental effects of C-terminal influences on trafficking and the cytoskeleton make up the two main branches of DISC1's effect on synaptic plasticity and dendritic spine stability.
Collapse
Affiliation(s)
- Daniela Tropea
- Neurospychiatric GeneticsTrinity Center for Health Sciences and Trinity College Institute of Neuroscience (TCIN)Trinity College DublinDublinIreland
| | - Neil Hardingham
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| | - Kirsty Millar
- Centre for Genomic & Experimental MedicineMRC Institute of Genetics & Molecular MedicineWestern General HospitalUniversity of EdinburghCrewe RoadEdinburghUK
| | - Kevin Fox
- School of BiosciencesMuseum AvenueCardiff UniversityCardiffUK
| |
Collapse
|
15
|
Gou N, Liu Z, Palaniyappan L, Li M, Pan Y, Chen X, Tao H, Wu G, Ouyang X, Wang Z, Dou T, Xue Z, Pu W. Effects of DISC1 Polymorphisms on Resting-State Spontaneous Neuronal Activity in the Early-Stage of Schizophrenia. Front Psychiatry 2018; 9:137. [PMID: 29875705 PMCID: PMC5974222 DOI: 10.3389/fpsyt.2018.00137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/29/2018] [Indexed: 12/02/2022] Open
Abstract
Background: Localized abnormalities in the synchrony of spontaneous neuronal activity, measured with regional homogeneity (ReHo), has been consistently reported in patients with schizophrenia (SCZ) and their unaffected siblings. To date, little is known about the genetic influences affecting the spontaneous neuronal activity in SCZ. DISC1, a strong susceptible gene for SCZ, has been implicated in neuronal excitability and synaptic function possibly associated with regional spontaneous neuronal activity. This study aimed to examine the effects of DISC1 variations on the regional spontaneous neuronal activity in SCZ. Methods: Resting-state fMRI data were obtained from 28 SCZ patients and 21 healthy controls (HC) for ReHo analysis. Six single nucleotide polymorphisms (SNPs) of DISC1 gene were genotyped using the PCR and direct sequencing. Results: Significant diagnosis × genotype interactions were noted for three SNPs (rs821616, rs821617, and rs2738880). For rs821617, the interactions were localized to the precuneus, basal ganglia and pre-/post-central regions. Significant interactive effects were identified at the temporal and post-central gyri for rs821616 (Ser704Cys) and the inferior temporal gyrus for rs2738880. Furthermore, post-hoc analysis revealed that the DISC1 variations on these SNPs exerted different influences on ReHo between SCZ patients and HC. Conclusion: To our knowledge this is the first study to unpick the influence of DISC1 variations on spontaneous neuronal activity in SCZ; Given the emerging evidence that ReHo is a stable inheritable phenotype for schizophrenia, our findings suggest the DISC1 variations are possibly an inheritable source for the altered ReHo in this disorder.
Collapse
Affiliation(s)
- Ningzhi Gou
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Zhening Liu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Lena Palaniyappan
- Departments of Psychiatry and Medical Biophysics & Robarts and Lawson Research Institutes, University of Western Ontario, London, ON, Canada
| | - Mingding Li
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunzhi Pan
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Xudong Chen
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Haojuan Tao
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Guowei Wu
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Xuan Ouyang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Zheng Wang
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Taotao Dou
- Department of Neurosurgery, The First affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhimin Xue
- Mental Health Institute, Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Psychiatry and Mental Health of Hunan Province, The China National Clinical Research Center for Mental Health Disorders, National Technology Institute of Psychiatry, Changsha, China
| | - Weidan Pu
- Medical Psychological Center, Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute of Central South University, Changsha, China
| |
Collapse
|
16
|
NDE1 positively regulates oligodendrocyte morphological differentiation. Sci Rep 2018; 8:7644. [PMID: 29769557 PMCID: PMC5955916 DOI: 10.1038/s41598-018-25898-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Oligodendrocytes, the myelin-forming cells in the central nervous system (CNS), undergo morphological differentiation characterized by elaborated branched processes to enwrap neuronal axons. However, the basic molecular mechanisms underlying oligodendrocyte morphogenesis remain unknown. Herein, we describe the essential roles of Nuclear Distribution E Homolog 1 (NDE1), a dynein cofactor, in oligodendrocyte morphological differentiation. In the mouse corpus callosum, Nde1 mRNA expression was detected in oligodendrocyte lineage cells at the postnatal stage. In vitro analysis revealed that downregulation of NDE1 by siRNA impaired the outgrowth and extensive branching of oligodendrocyte processes and led to a decrease in the expression of myelin-related markers, namely, CNPase and MBP. In myelinating co-cultures with dorsal root ganglion (DRG) neurons, NDE1-knockdown oligodendrocyte precursor cells (OPCs) failed to develop into MBP-positive oligodendrocytes with multiple processes contacting DRG axons. Immunoprecipitation studies showed that NDE1 interacts with the dynein intermediate chain (DIC) in oligodendrocytes, and an overexpressed DIC-binding region of NDE1 exerted effects on oligodendrocyte morphogenesis that were similar to those following NDE1 knockdown. Furthermore, NDE1-knockdown-impaired oligodendrocyte process formation was rescued by siRNA-resistant wild-type NDE1 but not by DIC-binding region-deficient NDE1 overexpression. These results suggest that NDE1 plays a crucial role in oligodendrocyte morphological differentiation via interaction with dynein.
Collapse
|
17
|
LaMarca EA, Powell SK, Akbarian S, Brennand KJ. Modeling Neuropsychiatric and Neurodegenerative Diseases With Induced Pluripotent Stem Cells. Front Pediatr 2018; 6:82. [PMID: 29666786 PMCID: PMC5891587 DOI: 10.3389/fped.2018.00082] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) have revolutionized our ability to model neuropsychiatric and neurodegenerative diseases, and recent progress in the field is paving the way for improved therapeutics. In this review, we discuss major advances in generating hiPSC-derived neural cells and cutting-edge techniques that are transforming hiPSC technology, such as three-dimensional "mini-brains" and clustered, regularly interspersed short palindromic repeats (CRISPR)-Cas systems. We examine specific examples of how hiPSC-derived neural cells are being used to uncover the pathophysiology of schizophrenia and Parkinson's disease, and consider the future of this groundbreaking research.
Collapse
Affiliation(s)
- Elizabeth A. LaMarca
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Samuel K. Powell
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristen J. Brennand
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
18
|
Yerabham ASK, Müller-Schiffmann A, Ziehm T, Stadler A, Köber S, Indurkhya X, Marreiros R, Trossbach SV, Bradshaw NJ, Prikulis I, Willbold D, Weiergräber OH, Korth C. Biophysical insights from a single chain camelid antibody directed against the Disrupted-in-Schizophrenia 1 protein. PLoS One 2018; 13:e0191162. [PMID: 29324815 PMCID: PMC5764400 DOI: 10.1371/journal.pone.0191162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 12/31/2017] [Indexed: 01/17/2023] Open
Abstract
Accumulating evidence suggests an important role for the Disrupted-in-Schizophrenia 1 (DISC1) protein in neurodevelopment and chronic mental illness. In particular, the C-terminal 300 amino acids of DISC1 have been found to mediate important protein-protein interactions and to harbor functionally important phosphorylation sites and disease-associated polymorphisms. However, long disordered regions and oligomer-forming subdomains have so far impeded structural analysis. VHH domains derived from camelid heavy chain only antibodies are minimal antigen binding modules with appreciable solubility and stability, which makes them well suited for the stabilizing proteins prior to structural investigation. Here, we report on the generation of a VHH domain derived from an immunized Lama glama, displaying high affinity for the human DISC1 C region (aa 691-836), and its characterization by surface plasmon resonance, size exclusion chromatography and immunological techniques. The VHH-DISC1 (C region) complex was also used for structural investigation by small angle X-ray scattering analysis. In combination with molecular modeling, these data support predictions regarding the three-dimensional fold of this DISC1 segment as well as its steric arrangement in complex with our VHH antibody.
Collapse
Affiliation(s)
- Antony S. K. Yerabham
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Tamar Ziehm
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Stadler
- Jülich Centre for Neutron Science JCNS and Institute for Complex Systems ICS, Forschungszentrum Jülich, Jülich, Germany
| | - Sabrina Köber
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Xela Indurkhya
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja V. Trossbach
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- Institute for Physical Biology and BMFZ, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver H. Weiergräber
- Institute of Complex Systems (ICS-6: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
19
|
DISC1 Regulates Neurogenesis via Modulating Kinetochore Attachment of Ndel1/Nde1 during Mitosis. Neuron 2017; 96:1041-1054.e5. [PMID: 29103808 DOI: 10.1016/j.neuron.2017.10.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/18/2017] [Accepted: 10/05/2017] [Indexed: 02/08/2023]
Abstract
Mutations of DISC1 (disrupted-in-schizophrenia 1) have been associated with major psychiatric disorders. Despite the hundreds of DISC1-binding proteins reported, almost nothing is known about how DISC1 interacts with other proteins structurally to impact human brain development. Here we solved the high-resolution structure of DISC1 C-terminal tail in complex with its binding domain of Ndel1. Mechanistically, DISC1 regulates Ndel1's kinetochore attachment, but not its centrosome localization, during mitosis. Functionally, disrupting DISC1/Ndel1 complex formation prolongs mitotic length and interferes with cell-cycle progression in human cells, and it causes cell-cycle deficits of radial glial cells in the embryonic mouse cortex and human forebrain organoids. We also observed similar deficits in organoids derived from schizophrenia patient induced pluripotent stem cells (iPSCs) with a DISC1 mutation that disrupts its interaction with Ndel1. Our study uncovers a new mechanism of action for DISC1 based on its structure, and it has implications for how genetic insults may contribute to psychiatric disorders.
Collapse
|
20
|
Murphy LC, Millar JK. Regulation of mitochondrial dynamics by DISC1, a putative risk factor for major mental illness. Schizophr Res 2017; 187:55-61. [PMID: 28082141 DOI: 10.1016/j.schres.2016.12.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/22/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022]
Abstract
Mitochondria are dynamic organelles that are essential to power the process of neurotransmission. Neurons must therefore ensure that mitochondria maintain their functional integrity and are efficiently transported along the full extent of the axons and dendrites, from soma to synapses. Mitochondrial dynamics (trafficking, fission and fusion) co-ordinately regulate mitochondrial quality control and function. DISC1 is a component of the mitochondrial transport machinery and regulates mitochondrial dynamics. DISC1's role in this is adversely affected by sequence variants connected to brain structure/function and disease risk, and by mutant truncation. The DISC1 interactors NDE1 and GSK3β are also involved, indicating a convergence of putative risk factors for psychiatric illness upon mitochondrial dynamics.
Collapse
Affiliation(s)
- Laura C Murphy
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - J Kirsty Millar
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetic and Molecular Medicine at the University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK.
| |
Collapse
|
21
|
Bradshaw NJ. The interaction of schizophrenia-related proteins DISC1 and NDEL1, in light of the newly identified domain structure of DISC1. Commun Integr Biol 2017. [PMCID: PMC5595412 DOI: 10.1080/19420889.2017.1335375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DISC1 and NDEL1 are both key proteins in cortical neurodevelopment, which are each also implicated in the pathogenesis of mental illness. That the two proteins interact with each other in a functionally important manner is well established, but two distinct binding domains for NDEL1 on DISC1 have been proposed. A partial domain structure for DISC1 has recently been described, consisting of 4 structured regions referred to as “D,” “I,” “S” and “C” respectively, with one of the NDEL1 binding sites lying in the “C” region of DISC1. In light of this domain structure, it can be deduced that this site is the likely location at which NDEL1 binds, although the other proposed site (which lies in the DISC1 “I” and “S” regions) may indirectly impact on DISC1-NDEL1 interactions through determination of the oligomeric state of DISC1.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Hisatsune C, Mikoshiba K. IP 3 receptor mutations and brain diseases in human and rodents. J Neurochem 2017; 141:790-807. [PMID: 28211945 DOI: 10.1111/jnc.13991] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/03/2017] [Accepted: 02/12/2017] [Indexed: 01/15/2023]
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3 R) is a huge Ca2+ channel that is localized at the endoplasmic reticulum. The IP3 R releases Ca2+ from the endoplasmic reticulum upon binding to IP3 , which is produced by various extracellular stimuli through phospholipase C activation. All vertebrate organisms have three subtypes of IP3 R genes, which have distinct properties of IP3 -binding and Ca2+ sensitivity, and are differently regulated by phosphorylation and by their associated proteins. Each cell type expresses the three subtypes of IP3 R in a distinct proportion, which is important for creating and maintaining spatially and temporally appropriate intracellular Ca2+ level patterns for the regulation of specific physiological phenomena. Of the three types of IP3 Rs, the type 1 receptor (IP3 R1) is dominantly expressed in the brain and is important for brain function. Recent emerging evidence suggests that abnormal Ca2+ signals from the IP3 R1 are closely associated with human brain pathology. In this review, we focus on the recent advances in our knowledge of the regulation of IP3 R1 and its functional implication in human brain diseases, as revealed by IP3 R mutation studies and analysis of human disease-associated genes. This article is part of the mini review series "60th Anniversary of the Japanese Society for Neurochemistry".
Collapse
Affiliation(s)
- Chihiro Hisatsune
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| | - Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, Brain Science Institute, Institute of Physical and Chemical Research (RIKEN), Saitama, Japan
| |
Collapse
|
23
|
Tanaka M, Ishizuka K, Nekooki-Machida Y, Endo R, Takashima N, Sasaki H, Komi Y, Gathercole A, Huston E, Ishii K, Hui KKW, Kurosawa M, Kim SH, Nukina N, Takimoto E, Houslay MD, Sawa A. Aggregation of scaffolding protein DISC1 dysregulates phosphodiesterase 4 in Huntington's disease. J Clin Invest 2017; 127:1438-1450. [PMID: 28263187 DOI: 10.1172/jci85594] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/11/2017] [Indexed: 01/19/2023] Open
Abstract
Huntington's disease (HD) is a polyglutamine (polyQ) disease caused by aberrant expansion of the polyQ tract in Huntingtin (HTT). While motor impairment mediated by polyQ-expanded HTT has been intensively studied, molecular mechanisms for nonmotor symptoms in HD, such as psychiatric manifestations, remain elusive. Here we have demonstrated that HTT forms a ternary protein complex with the scaffolding protein DISC1 and cAMP-degrading phosphodiesterase 4 (PDE4) to regulate PDE4 activity. We observed pathological cross-seeding between DISC1 and mutant HTT aggregates in the brains of HD patients as well as in a murine model that recapitulates the polyQ pathology of HD (R6/2 mice). In R6/2 mice, consequent reductions in soluble DISC1 led to dysregulation of DISC1-PDE4 complexes, aberrantly increasing the activity of PDE4. Importantly, exogenous expression of a modified DISC1, which binds to PDE4 but not mutant HTT, normalized PDE4 activity and ameliorated anhedonia in the R6/2 mice. We propose that cross-seeding of mutant HTT and DISC1 and the resultant changes in PDE4 activity may underlie the pathology of a specific subset of mental manifestations of HD, which may provide an insight into molecular signaling in mental illness in general.
Collapse
|
24
|
Snyder GL, Vanover KE. PDE Inhibitors for the Treatment of Schizophrenia. ADVANCES IN NEUROBIOLOGY 2017; 17:385-409. [DOI: 10.1007/978-3-319-58811-7_14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Hong JH, Kwak Y, Woo Y, Park C, Lee SA, Lee H, Park SJ, Suh Y, Suh BK, Goo BS, Mun DJ, Sanada K, Nguyen MD, Park SK. Regulation of the actin cytoskeleton by the Ndel1-Tara complex is critical for cell migration. Sci Rep 2016; 6:31827. [PMID: 27546710 PMCID: PMC4992831 DOI: 10.1038/srep31827] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/27/2016] [Indexed: 11/16/2022] Open
Abstract
Nuclear distribution element-like 1 (Ndel1) plays pivotal roles in diverse biological processes and is implicated in the pathogenesis of multiple neurodevelopmental disorders. Ndel1 function by regulating microtubules and intermediate filaments; however, its functional link with the actin cytoskeleton is largely unknown. Here, we show that Ndel1 interacts with TRIO-associated repeat on actin (Tara), an actin-bundling protein, to regulate cell movement. In vitro wound healing and Boyden chamber assays revealed that Ndel1- or Tara-deficient cells were defective in cell migration. Moreover, Tara overexpression induced the accumulation of Ndel1 at the cell periphery and resulted in prominent co-localization with F-actin. This redistribution of Ndel1 was abolished by deletion of the Ndel1-interacting domain of Tara, suggesting that the altered peripheral localization of Ndel1 requires a physical interaction with Tara. Furthermore, co-expression of Ndel1 and Tara in SH-SY5Y cells caused a synergistic increase in F-actin levels and filopodia formation, suggesting that Tara facilitates cell movement by sequestering Ndel1 at peripheral structures to regulate actin remodeling. Thus, we demonstrated that Ndel1 interacts with Tara to regulate cell movement. These findings reveal a novel role of the Ndel1-Tara complex in actin reorganization during cell movement.
Collapse
Affiliation(s)
- Ji-Ho Hong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yongdo Kwak
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Youngsik Woo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Cana Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Seol-Ae Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Haeryun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Sung Jin Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Yeongjun Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bo Kyoung Suh
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Bon Seong Goo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Dong Jin Mun
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Kamon Sanada
- Molecular Genetics Research Laboratory, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minh Dang Nguyen
- Hotchkiss Brain Institute, Departments of Clinical Neurosciences, Cell Biology and Anatomy, and Biochemistry and Molecular Biology, University of Calgary, Calgary T2N 4N1, Canada
| | - Sang Ki Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| |
Collapse
|
26
|
Wang S, Liang Q, Qiao H, Li H, Shen T, Ji F, Jiao J. DISC1 regulates astrogenesis in the embryonic brain via modulation of RAS/MEK/ERK signaling through RASSF7. Development 2016; 143:2732-40. [PMID: 27287808 DOI: 10.1242/dev.133066] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 05/26/2016] [Indexed: 01/13/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is known as a high susceptibility gene for schizophrenia. Recent studies have indicated that schizophrenia might be caused by glia defects and dysfunction. However, there is no direct evidence of a link between the schizophrenia gene DISC1 and gliogenesis defects. Thus, an investigation into the involvement of DISC1 (a ubiquitously expressed brain protein) in astrogenesis during the late stage of mouse embryonic brain development is warranted. Here, we show that suppression of DISC1 expression represses astrogenesis in vitro and in vivo, and that DISC1 overexpression substantially enhances the process. Furthermore, mouse and human DISC1 overexpression rescued the astrogenesis defects caused by DISC1 knockdown. Mechanistically, DISC1 activates the RAS/MEK/ERK signaling pathway via direct association with RASSF7. Also, the pERK complex undergoes nuclear translocation and influences the expression of genes related to astrogenesis. In summary, our results demonstrate that DISC1 regulates astrogenesis by modulating RAS/MEK/ERK signaling via RASSF7 and provide a framework for understanding how DISC1 dysfunction might lead to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shukun Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China The State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qingli Liang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Qiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Li
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianjin Shen
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Ji
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwei Jiao
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
27
|
Ogawa F, Murphy LC, Malavasi ELV, O’Sullivan ST, Torrance HS, Porteous DJ, Millar JK. NDE1 and GSK3β Associate with TRAK1 and Regulate Axonal Mitochondrial Motility: Identification of Cyclic AMP as a Novel Modulator of Axonal Mitochondrial Trafficking. ACS Chem Neurosci 2016; 7:553-64. [PMID: 26815013 DOI: 10.1021/acschemneuro.5b00255] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondria are essential for neuronal function, providing the energy required to power neurotransmission, and fulfilling many important additional roles. In neurons, mitochondria must be efficiently transported to sites, including synapses, where their functions are required. Neurons, with their highly elongated morphology, are consequently extremely sensitive to defective mitochondrial trafficking which can lead to neuronal ill-health/death. We recently demonstrated that DISC1 associates with mitochondrial trafficking complexes where it associates with the core kinesin and dynein adaptor molecule TRAK1. We now show that the DISC1 interactors NDE1 and GSK3β also associate robustly with TRAK1 and demonstrate that NDE1 promotes retrograde axonal mitochondrial movement. GSK3β is known to modulate axonal mitochondrial motility, although reports of its actual effect are conflicting. We show that, in our system, GSK3β promotes anterograde mitochondrial transport. Finally, we investigated the influence of cAMP elevation upon mitochondrial motility, and found a striking increase in mitochondrial motility and retrograde movement. DISC1, NDE1, and GSK3β are implicated as risk factors for major mental illness. Our demonstration that they function together within mitochondrial trafficking complexes suggests that defective mitochondrial transport may be a contributory disease mechanism in some cases of psychiatric disorder.
Collapse
Affiliation(s)
- Fumiaki Ogawa
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Laura C. Murphy
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Elise L. V. Malavasi
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Shane T. O’Sullivan
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - Helen S. Torrance
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - David J. Porteous
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| | - J. Kirsty Millar
- University
of Edinburgh Centre
for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh, EH4 2XU, United Kingdom
| |
Collapse
|
28
|
Gadelha A, Coleman J, Breen G, Mazzoti DR, Yonamine CM, Pellegrino R, Ota VK, Belangero SI, Glessner J, Sleiman P, Hakonarson H, Hayashi MAF, Bressan RA. Genome-wide investigation of schizophrenia associated plasma Ndel1 enzyme activity. Schizophr Res 2016; 172:60-7. [PMID: 26851141 DOI: 10.1016/j.schres.2016.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 10/22/2022]
Abstract
Ndel1 is a DISC1-interacting oligopeptidase that cleaves in vitro neuropeptides as neurotensin and bradykinin, and which has been associated with both neuronal migration and neurite outgrowth. We previously reported that plasma Ndel1 enzyme activity is lower in patients with schizophrenia (SCZ) compared to healthy controls (HCs). To our knowledge, no previous study has investigated the genetic factors associated with the plasma Ndel1 enzyme activity. In the current analyses, samples from 83 SCZ patients and 92 control subjects that were assayed for plasma Ndel1 enzyme activity were genotyped on Illumina Omni Express arrays. A genetic relationship matrix using genome-wide information was then used for ancestry correction, and association statistics were calculated genome-wide. Ndel1 enzyme activity was significantly lower in patients with SCZ (t=4.9; p<0.001) and was found to be associated with CAMK1D, MAGI2, CCDC25, and GABGR3, at a level of suggestive significance (p<10(-6)), independent of the clinical status. Then, we performed a model to investigate the observed differences for case/control measures. 2 SNPs at region 1p22.2 reached the p<10(-7) level. ZFPM2 and MAD1L1 were the only two genes with more than one hit at 10(-6) order of p value. Therefore, Ndel1 enzyme activity is a complex trait influenced by many different genetic variants that may contribute to SCZ physiopathology.
Collapse
Affiliation(s)
- Ary Gadelha
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil.
| | - Jonathan Coleman
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Gerome Breen
- Medical Research Council Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, United Kingdom; National Institute of Health Research Biomedical Research Centre for Mental Health, Maudsley Hospital and Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | | | - Camila M Yonamine
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Pharmacology, UNIFESP/EPM, São Paulo, Brazil
| | - Renata Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Vanessa Kiyomi Ota
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Morphology and Genetics, UNIFESP/EPM, São Paulo, Brazil
| | - Sintia Iole Belangero
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil; Department of Morphology and Genetics, UNIFESP/EPM, São Paulo, Brazil
| | - Joseph Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States
| | - Patrick Sleiman
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, United States; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | | | - Rodrigo A Bressan
- Department of Psychiatry, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| |
Collapse
|
29
|
Johnstone M, Maclean A, Heyrman L, Lenaerts AS, Nordin A, Nilsson LG, De Rijk P, Goossens D, Adolfsson R, St Clair DM, Hall J, Lawrie SM, McIntosh AM, Del-Favero J, Blackwood DHR, Pickard BS. Copy Number Variations in DISC1 and DISC1-Interacting Partners in Major Mental Illness. MOLECULAR NEUROPSYCHIATRY 2015; 1:175-190. [PMID: 27239468 PMCID: PMC4872463 DOI: 10.1159/000438788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 07/13/2015] [Indexed: 01/15/2023]
Abstract
Robust statistical, genetic and functional evidence supports a role for DISC1 in the aetiology of major mental illness. Furthermore, many of its protein-binding partners show evidence for involvement in the pathophysiology of a range of neurodevelopmental and psychiatric disorders. Copy number variants (CNVs) are suspected to play an important causal role in these disorders. In this study, CNV analysis of DISC1 and its binding partners PAFAH1B1, NDE1, NDEL1, FEZ1, MAP1A, CIT and PDE4B in Scottish and Northern Swedish population-based samples was carried out using multiplex amplicon quantification. Here, we report the finding of rare CNVs in DISC1, NDE1 (together with adjacent genes within the 16p13.11 duplication), NDEL1 (including the overlapping MYH10 gene) and CIT. Our findings provide further evidence for involvement of DISC1 and its interaction partners in neuropsychiatric disorders and also for a role of structural variants in the aetiology of these devastating diseases.
Collapse
Affiliation(s)
- Mandy Johnstone
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Alan Maclean
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Lien Heyrman
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - An-Sofie Lenaerts
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Annelie Nordin
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | | | - Peter De Rijk
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Dirk Goossens
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University, Umeå, Sweden
| | - David M St Clair
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jeremy Hall
- Neurosciences & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | - Jurgen Del-Favero
- Applied Molecular Genomics Group, Department of Molecular Genetics, VIB, Antwerp, Belgium; University of Antwerp, Antwerp, Belgium
| | - Douglas H R Blackwood
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK; Medical Genetics, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Benjamin S Pickard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
30
|
Rodríguez-Seoane C, Ramos A, Korth C, Requena JR. DISC1 regulates expression of the neurotrophin VGF through the PI3K/AKT/CREB pathway. J Neurochem 2015. [DOI: 10.1111/jnc.13258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Carmen Rodríguez-Seoane
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
| | - Adriana Ramos
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
- Department of Psychiatry and Behavioral Sciences; The Johns Hopkins University School of Medicine; Baltimore Maryland USA
| | - Carsten Korth
- Department of Neuropathology; Heinrich Heine University; Medical School; Düsseldorf Germany
| | - Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medicine; University of Santiago de Compostela-IDIS; Santiago de Compostela Spain
| |
Collapse
|
31
|
Greenhill SD, Juczewski K, de Haan AM, Seaton G, Fox K, Hardingham NR. NEURODEVELOPMENT. Adult cortical plasticity depends on an early postnatal critical period. Science 2015; 349:424-7. [PMID: 26206934 DOI: 10.1126/science.aaa8481] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Development of the cerebral cortex is influenced by sensory experience during distinct phases of postnatal development known as critical periods. Disruption of experience during a critical period produces neurons that lack specificity for particular stimulus features, such as location in the somatosensory system. Synaptic plasticity is the agent by which sensory experience affects cortical development. Here, we describe, in mice, a developmental critical period that affects plasticity itself. Transient neonatal disruption of signaling via the C-terminal domain of "disrupted in schizophrenia 1" (DISC1)—a molecule implicated in psychiatric disorders—resulted in a lack of long-term potentiation (LTP) (persistent strengthening of synapses) and experience-dependent potentiation in adulthood. Long-term depression (LTD) (selective weakening of specific sets of synapses) and reversal of LTD were present, although impaired, in adolescence and absent in adulthood. These changes may form the basis for the cognitive deficits associated with mutations in DISC1 and the delayed onset of a range of psychiatric symptoms in late adolescence.
Collapse
Affiliation(s)
| | - Konrad Juczewski
- National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD 20852, USA
| | | | - Gillian Seaton
- School of Biosciences, Cardiff University, Cardiff, CF23 3AX, UK
| | - Kevin Fox
- School of Biosciences, Cardiff University, Cardiff, CF23 3AX, UK
| | | |
Collapse
|
32
|
Tohyama M, Miyata S, Hattori T, Shimizu S, Matsuzaki S. Molecular basis of major psychiatric diseases such as schizophrenia and depression. Anat Sci Int 2015; 90:137-43. [PMID: 25595671 DOI: 10.1007/s12565-014-0269-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 12/29/2022]
Abstract
Recently several potential susceptibility genes for major psychiatric disorders (schizophrenia and major depression) such as disrupted-in-schizophrenia 1(DISC1), dysbindin and pituitary adenylate cyclase-activating polypeptide (PACAP) have been reported. DISC1 is involved in neural development directly via adhesion molecules or via its binding partners of DISC1 such as elongation protein ζ-1 (FEZ1), DISC1-binding zinc-finger protein (DBZ) and kendrin. PACAP also regulates neural development via stathmin 1 or via regulation of the DISC1-DBZ binding. Dysbindin is also involved in neural development by regulating centrosomal microtubule network formation. All such molecules examined to date are involved in neural development. Thus, these findings provide new molecular insights into the mechanisms of neural development and neuropsychiatric disorders. On the other hand, in addition to neurons, both DISC and DBZ have been detected in oligodendrocytes and implicated in regulating oligodendrocyte differentiation. DISC1 inhibits the differentiation of oligodendrocyte precursor cells into oligodendrocytes, while DBZ has a positive regulatory role in oligodendrocyte differentiation. Evidence suggesting that disturbance of oligodendrocyte development causes major depression is also described.
Collapse
Affiliation(s)
- Masaya Tohyama
- Osaka Prefectural Hospital Organization, Osaka, 558-8558, Japan,
| | | | | | | | | |
Collapse
|
33
|
Randall AD, Kurihara M, Brandon NJ, Brown JT. Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system. Eur J Neurosci 2014; 39:1068-73. [PMID: 24712987 PMCID: PMC4232872 DOI: 10.1111/ejn.12500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 11/28/2022]
Abstract
The disrupted in schizophrenia 1 (DISC1) gene is found at the breakpoint of an inherited chromosomal translocation, and segregates with major mental illnesses. Its potential role in central nervous system (CNS) malfunction has triggered intensive investigation of the biological roles played by DISC1, with the hope that this may shed new light on the pathobiology of psychiatric disease. Such work has ranged from investigations of animal behavior to detailed molecular-level analysis of the assemblies that DISC1 forms with other proteins. Here, we discuss the evidence for a role of DISC1 in synaptic function in the mammalian CNS.
Collapse
Affiliation(s)
- Andrew D Randall
- School of Physiology and Pharmacology, School of Medical Sciences, University of Bristol, Bristol, UK; Institute of Biomedical and Clinical Sciences, University of Exeter, The Hatherley Building, Prince of Wales Road, Exeter, EX4 4PS, UK
| | | | | | | |
Collapse
|
34
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Dwyer DS, Weeks K, Aamodt EJ. Drug discovery based on genetic and metabolic findings in schizophrenia. Expert Rev Clin Pharmacol 2014; 1:773-89. [PMID: 24410607 DOI: 10.1586/17512433.1.6.773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent progress in the genetics of schizophrenia provides the rationale for re-evaluating causative factors and therapeutic strategies for this disease. Here, we review the major candidate susceptibility genes and relate the aberrant function of these genes to defective regulation of energy metabolism in the schizophrenic brain. Disturbances in energy metabolism potentially lead to neurodevelopmental deficits, impaired function of the mature nervous system and failure to maintain neurites/dendrites and synaptic connections. Current antipsychotic drugs do not specifically address these underlying deficits; therefore, a new generation of more effective medications is urgently needed. Novel targets for future drug discovery are identified in this review. The coordinated application of structure-based drug design, systems biology and research on model organisms may greatly facilitate the search for next-generation antipsychotic drugs.
Collapse
Affiliation(s)
- Donard S Dwyer
- Professor and Director of Basic Research, Departments of Psychiatry and Pharmacology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| | | | | |
Collapse
|
36
|
Bradshaw NJ, Hennah W, Soares DC. NDE1 and NDEL1: twin neurodevelopmental proteins with similar 'nature' but different 'nurture'. Biomol Concepts 2013; 4:447-64. [PMID: 24093049 PMCID: PMC3787581 DOI: 10.1515/bmc-2013-0023] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Nuclear distribution element 1 (NDE1, also known as NudE) and NDE-like 1 (NDEL1, also known as Nudel) are paralogous proteins essential for mitosis and neurodevelopment that have been implicated in psychiatric and neurodevelopmental disorders. The two proteins possess high sequence similarity and have been shown to physically interact with one another. Numerous lines of experimental evidence in vivo and in cell culture have demonstrated that these proteins share common functions, although instances of differing functions between the two have recently emerged. We review the key aspects of NDE1 and NDEL1 in terms of recent advances in structure elucidation and cellular function, with an emphasis on their differing mechanisms of post-translational modification. Based on a review of the literature and bioinformatics assessment, we advance the concept that the twin proteins NDE1 and NDEL1, while sharing a similar 'nature' in terms of their structure and basic functions, appear to be different in their 'nurture', the manner in which they are regulated both in terms of expression and of post-translational modification within the cell. These differences are likely to be of significant importance in understanding the specific roles of NDE1 and NDEL1 in neurodevelopment and disease.
Collapse
Affiliation(s)
- Nicholas J. Bradshaw
- Department of Neuropathology, Heinrich Heine University, Düsseldorf, University Medical School, Moorenstrasse 5, D-40225, Düsseldorf, Germany
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland; and National Institute for, Health and Welfare, Department of Mental Health and Substance, Abuse Services, Helsinki, Finland
| | - Dinesh C. Soares
- MRC Institute of Genetics and Molecular Medicine (MRC IGMM), University of Edinburgh, Western General, Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| |
Collapse
|
37
|
Gadelha A, Machado MFM, Yonamine CM, Sato JR, Juliano MA, Oliveira V, Bressan RA, Hayashi MAF. Plasma Ndel1 enzyme activity is reduced in patients with schizophrenia--a potential biomarker? J Psychiatr Res 2013; 47:657-63. [PMID: 23388542 DOI: 10.1016/j.jpsychires.2013.01.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/30/2012] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED Ndel1 oligopeptidase interacts with schizophrenia (SCZ) risk gene product DISC1 and mediates several functions related to neurite outgrowth and neuronal migration. Ndel1 also hydrolyzes neuropeptides previously implicated in SCZ, namely neurotensin and bradykinin. Herein, we compared the plasma Ndel1 enzyme activity of 92 SCZ patients and 96 healthy controls (HCs). Ndel1 enzyme activity was determined by fluorimetric measurements of the FRET peptide substrate Abz-GFSPFRQ-EDDnp hydrolysis rate. A 31% lower mean value for Ndel1 activity was observed in SCZ patients compared to HCs (Student's t = 4.36; p < 0.001; Cohen's d = 0.64). The area under the curve (AUC) for the Receiver Operating Characteristic (ROC) curve for Ndel1 enzyme activity and SCZ/HCs status as outcome was 0.70. Treatment-resistant (TR) SCZ patients were shown to present a significantly lower Ndel1 activity compared to non-TR (NTR) patients by t-test analysis (t = 2.25; p = 0.027). A lower enzymatic activity was significantly associated with both NTR (p = 0.002; B = 1.19; OR = 3.29; CI 95% 1.57-6.88) and TR patients (p < 0.001; B = 2.27; OR = 9.64; CI 95% 4.12-22.54). No correlation between Ndel1 enzyme activity and antipsychotic dose, nicotine dependence, and body mass index was observed. This study is the first to show differences in Ndel1 activity in SCZ patients compared to HCs, besides with a significant lower activity for TR patients compared to NTR patients. Our findings support the Ndel1 enzyme activity implications to clinical practice in terms of diagnosis and drug treatment of SCZ. OBJECTIVE OF THE STUDY To compare the Ndel1 enzyme activity levels of schizophrenia (SCZ) patients and healthy controls (HCs) and to correlate these values with the clinical profile and response to treatment by measuring the Ndel1 enzyme activity in human plasma.
Collapse
Affiliation(s)
- Ary Gadelha
- Departamento de Psiquiatria, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Thomson PA, Malavasi ELV, Grünewald E, Soares DC, Borkowska M, Millar JK. DISC1 genetics, biology and psychiatric illness. FRONTIERS IN BIOLOGY 2013; 8:1-31. [PMID: 23550053 PMCID: PMC3580875 DOI: 10.1007/s11515-012-1254-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Psychiatric disorders are highly heritable, and in many individuals likely arise from the combined effects of genes and the environment. A substantial body of evidence points towards DISC1 being one of the genes that influence risk of schizophrenia, bipolar disorder and depression, and functional studies of DISC1 consequently have the potential to reveal much about the pathways that lead to major mental illness. Here, we review the evidence that DISC1 influences disease risk through effects upon multiple critical pathways in the developing and adult brain.
Collapse
Affiliation(s)
- Pippa A Thomson
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
39
|
Gottschalk MG, Sarnyai Z, Guest PC, Harris LW, Bahn S. Estudos traducionais de neuropsiquiatria e esquizofrenia: modelos animais genéticos e de neurodesenvolvimento. ACTA ACUST UNITED AC 2012. [DOI: 10.1590/s0101-60832012005000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sintomas psiquiátricos são subjetivos por natureza e tendem a se sobrepor entre diferentes desordens. Sendo assim, a criação de modelos de uma desordem neuropsiquiátrica encontra desafios pela falta de conhecimento dos fundamentos da fisiopatologia e diagnósticos precisos. Modelos animais são usados para testar hipóteses de etiologia e para representar a condição humana tão próximo quanto possível para aumentar nosso entendimento da doença e avaliar novos alvos para a descoberta de drogas. Nesta revisão, modelos animais genéticos e de neurodesenvolvimento de esquizofrenia são discutidos com respeito a achados comportamentais e neurofisiológicos e sua associação com a condição clínica. Somente modelos animais específicos de esquizofrenia podem, em último caso, levar a novas abordagens diagnósticas e descoberta de drogas. Argumentamos que biomarcadores moleculares são importantes para aumentar a tradução de animais a humanos, já que faltam a especificidade e a fidelidade necessárias às leituras comportamentais para avaliar sintomas psiquiátricos humanos.
Collapse
Affiliation(s)
| | | | | | | | - Sabine Bahn
- Universidade de Cambridge; Centro Médico Erasmus
| |
Collapse
|
40
|
Bader V, Tomppo L, Trossbach SV, Bradshaw NJ, Prikulis I, Leliveld SR, Lin CY, Ishizuka K, Sawa A, Ramos A, Rosa I, García Á, Requena JR, Hipolito M, Rai N, Nwulia E, Henning U, Ferrea S, Luckhaus C, Ekelund J, Veijola J, Järvelin MR, Hennah W, Korth C. Proteomic, genomic and translational approaches identify CRMP1 for a role in schizophrenia and its underlying traits. Hum Mol Genet 2012; 21:4406-18. [PMID: 22798627 PMCID: PMC3529585 DOI: 10.1093/hmg/dds273] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/07/2012] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia is a chronic illness of heterogenous biological origin. We hypothesized that, similar to chronic progressive brain conditions, persistent functional disturbances of neurons would result in disturbed proteostasis in the brains of schizophrenia patients, leading to increased abundance of specific misfolded, insoluble proteins. Identification of such proteins would facilitate the elucidation of molecular processes underlying these devastating conditions. We therefore generated antibodies against pooled insoluble proteome of post-mortem brains from schizophrenia patients in order to identify unique, disease-specific epitopes. We successfully identified such an epitope to be present on collapsin-response mediator protein 1 (CRMP1) in biochemically purified, insoluble brain fractions. A genetic association analysis for the CRMP1 gene in a large Finnish population cohort (n = 4651) corroborated the association of physical and social anhedonia with the CRMP1 locus in a DISC1 (Disrupted-in-schizophrenia 1)-dependent manner. Physical and social anhedonia are heritable traits, present as chronic, negative symptoms of schizophrenia and severe major depression, thus constituting serious vulnerability factors for mental disease. Strikingly, lymphoblastoid cell lines derived from schizophrenia patients mirrored aberrant CRMP1 immunoreactivity by showing an increase of CRMP1 expression, suggesting its potential role as a blood-based diagnostic marker. CRMP1 is a novel candidate protein for schizophrenia traits at the intersection of the reelin and DISC1 pathways that directly and functionally interacts with DISC1. We demonstrate the impact of an interdisciplinary approach where the identification of a disease-associated epitope in post-mortem brains, powered by a genetic association study, is rapidly translated into a potential blood-based diagnostic marker.
Collapse
Affiliation(s)
- Verian Bader
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - Liisa Tomppo
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
| | | | | | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - S. Rutger Leliveld
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| | - Chi-Ying Lin
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Koko Ishizuka
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Akira Sawa
- Department of Psychiatry, Johns Hopkins University Medical School, Baltimore, MD, USA
| | - Adriana Ramos
- Department of Medicine and
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Isaac Rosa
- Department of Pharmacology, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Ángel García
- Department of Pharmacology, University of Santiago de Compostela, Santiago de Compostela, Spain
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Jesús R. Requena
- Department of Medicine and
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| | - Maria Hipolito
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Narayan Rai
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Evaristus Nwulia
- Department of Psychiatry, Howard University, Washington, DC, USA
| | - Uwe Henning
- Department of Psychiatry, Heinrich Heine University Düsseldorf, Germany
| | - Stefano Ferrea
- Department of Psychiatry, Heinrich Heine University Düsseldorf, Germany
| | | | - Jesper Ekelund
- National Institute for Health and Welfare, Helsinki, Finland
- Department of Psychiatry, University of Helsinki, Helsinki, Finland
- Vaasa Hospital District, Vaasa, Finland
| | - Juha Veijola
- Department of Psychiatry, University of Oulu Central Hospital, Oulu, Finland
| | - Marjo-Riitta Järvelin
- School of Public Health and MRC Health Protection Agency, Centre for Environment and Health, Imperial College London, London, UK
- Institute of Health Sciences and Biocenter Oulu, University of Oulu, Oulu, Finland and
| | - William Hennah
- Institute for Molecular Medicine Finland FIMM, University of Helsinki, Helsinki, Finland
- National Institute for Health and Welfare, Helsinki, Finland
- Medical Genetics Section, University of Edinburgh, Edinburgh, UK
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|
41
|
Rao S, Ge S, Shelly M. Centrosome positioning and primary cilia assembly orchestrate neuronal development. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Abstract
The genetic basis for bipolar disorder (BPD) is complex with the involvement of multiple genes. As it is well established that cyclic adenosine monophosphate (cAMP) signaling regulates behavior, we tested variants in 29 genes that encode components of this signaling pathway for associations with BPD type I (BPD I) and BPD type II (BPD II). A total of 1172 individuals with BPD I, 516 individuals with BPD II and 1728 controls were analyzed. Single SNP (single-nucleotide polymorphism), haplotype and SNP × SNP interactions were examined for association with BPD. Several statistically significant single-SNP associations were observed between BPD I and variants in the PDE10A gene and between BPD II and variants in the DISC1 and GNAS genes. Haplotype analysis supported the conclusion that variation in these genes is associated with BPD. We followed-up PDE10A's association with BPD I by sequencing a 23-kb region in 30 subjects homozygous for seven minor allele risk SNPs and discovered eight additional rare variants (minor allele frequency < 1%). These single-nucleotide variants were genotyped in 999 BPD cases and 801 controls. We obtained a significant association for these variants in the combined sample using multiple methods for rare variant analysis. After using newly developed methods to account for potential bias from sequencing BPD cases only, the results remained significant. In addition, SNP × SNP interaction studies suggested that variants in several cAMP signaling pathway genes interact to increase the risk of BPD. This report is among the first to use multiple rare variant analysis methods following common tagSNPs associations with BPD.
Collapse
|
43
|
Soares DC, Bradshaw NJ, Zou J, Kennaway CK, Hamilton RS, Chen ZA, Wear MA, Blackburn EA, Bramham J, Böttcher B, Millar JK, Barlow PN, Walkinshaw MD, Rappsilber J, Porteous DJ. The mitosis and neurodevelopment proteins NDE1 and NDEL1 form dimers, tetramers, and polymers with a folded back structure in solution. J Biol Chem 2012; 287:32381-93. [PMID: 22843697 PMCID: PMC3463352 DOI: 10.1074/jbc.m112.393439] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8-167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.
Collapse
Affiliation(s)
- Dinesh C. Soares
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Nicholas J. Bradshaw
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- the Institut für Neuropathologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Juan Zou
- the Wellcome Trust Centre for Cell Biology and
| | - Christopher K. Kennaway
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Russell S. Hamilton
- the Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | - Martin A. Wear
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Elizabeth A. Blackburn
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Janice Bramham
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Bettina Böttcher
- the School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - J. Kirsty Millar
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Paul N. Barlow
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Centre for Translational and Chemical Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom, and
| | - Juri Rappsilber
- the Wellcome Trust Centre for Cell Biology and
- the Department of Biotechnology, Technische Universität Berlin, 13353 Berlin, Germany
| | - David J. Porteous
- From the Medical Genetics Section, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| |
Collapse
|
44
|
Rizig MA, McQuillin A, Ng A, Robinson M, Harrison A, Zvelebil M, Hunt SP, Gurling HM. A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. J Psychopharmacol 2012; 26:1218-30. [PMID: 22767372 DOI: 10.1177/0269881112450780] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clozapine has markedly superior clinical properties compared to other antipsychotic drugs but the side effects of agranulocytosis, weight gain and diabetes limit its use. The reason why clozapine is more effective is not well understood. We studied messenger RNA (mRNA) gene expression in the mouse brain to identify pathways changed by clozapine compared to those changed by haloperidol so that we could identify which changes were specific to clozapine. Data interpretation was performed using an over-representation analysis (ORA) of gene ontology (GO), pathways and gene-by-gene differences. Clozapine significantly changed gene expression in pathways related to neuronal growth and differentiation to a greater extent than haloperidol; including the microtubule-associated protein kinase (MAPK) signalling and GO terms related to axonogenesis and neuroblast proliferation. Several genes implicated genetically or functionally in schizophrenia such as frizzled homolog 3 (FZD3), U2AF homology motif kinase 1 (UHMK1), pericentriolar material 1 (PCM1) and brain-derived neurotrophic factor (BDNF) were changed by clozapine but not by haloperidol. Furthermore, when compared to untreated controls clozapine specifically regulated transcripts related to the glutamate system, microtubule function, presynaptic proteins and pathways associated with synaptic transmission such as clathrin cage assembly. Compared to untreated controls haloperidol modulated expression of neurotoxic and apoptotic responses such as NF-kappa B and caspase pathways, whilst clozapine did not. Pathways involving lipid and carbohydrate metabolism and appetite regulation were also more affected by clozapine than by haloperidol.
Collapse
Affiliation(s)
- Mie A Rizig
- Molecular Psychiatry Laboratory, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
45
|
GABA through the ages: regulation of cortical function and plasticity by inhibitory interneurons. Neural Plast 2012; 2012:892784. [PMID: 22792496 PMCID: PMC3390141 DOI: 10.1155/2012/892784] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 11/17/2022] Open
Abstract
Inhibitory interneurons comprise only about 20% of cortical neurons and thus constitute a clear minority compared to the vast number of excitatory projection neurons. They are, however, an influential minority with important roles in cortical maturation, function, and plasticity. In this paper, we will highlight the functional importance of cortical inhibition throughout brain development, starting with the embryonal formation of the cortex, proceeding by the regulation of sensory cortical plasticity in adulthood, and finishing with the GABA involvement in sensory information processing in old age.
Collapse
|
46
|
Mathieson I, Munafò MR, Flint J. Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. Mol Psychiatry 2012; 17:634-41. [PMID: 21483435 PMCID: PMC3359642 DOI: 10.1038/mp.2011.41] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 12/12/2022]
Abstract
Several polymorphisms in the Disrupted-in-Schizophrenia-1 (DISC1) gene are reported to be associated with schizophrenia. However, to date, there has been little effort to evaluate the evidence for association systematically. We carried out an imputation-driven meta-analysis, the most comprehensive to date, using data collected from 10 candidate gene studies and three genome-wide association studies containing a total of 11 626 cases and 15 237 controls. We tested 1241 single-nucleotide polymorphisms in total, and estimated that our power to detect an effect from a variant with minor allele frequency >5% was 99% for an odds ratio of 1.5 and 51% for an odds ratio of 1.1. We find no evidence that common variants at the DISC1 locus are associated with schizophrenia.
Collapse
Affiliation(s)
- I Mathieson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - M R Munafò
- School of Experimental Psychology, University of Bristol, Bristol, UK
| | - J Flint
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
47
|
Poulos M, Felekis T, Evangelou A. Is it possible to extract a fingerprint for early breast cancer via EEG analysis? Med Hypotheses 2012; 78:711-6. [DOI: 10.1016/j.mehy.2012.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/24/2012] [Accepted: 02/10/2012] [Indexed: 12/27/2022]
|
48
|
Cheah PS, Ramshaw HS, Thomas PQ, Toyo-Oka K, Xu X, Martin S, Coyle P, Guthridge MA, Stomski F, van den Buuse M, Wynshaw-Boris A, Lopez AF, Schwarz QP. Neurodevelopmental and neuropsychiatric behaviour defects arise from 14-3-3ζ deficiency. Mol Psychiatry 2012; 17:451-66. [PMID: 22124272 DOI: 10.1038/mp.2011.158] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Complex neuropsychiatric disorders are believed to arise from multiple synergistic deficiencies within connected biological networks controlling neuronal migration, axonal pathfinding and synapse formation. Here, we show that deletion of 14-3-3ζ causes neurodevelopmental anomalies similar to those seen in neuropsychiatric disorders such as schizophrenia, autism spectrum disorder and bipolar disorder. 14-3-3ζ-deficient mice displayed striking behavioural and cognitive deficiencies including a reduced capacity to learn and remember, hyperactivity and disrupted sensorimotor gating. These deficits are accompanied by subtle developmental abnormalities of the hippocampus that are underpinned by aberrant neuronal migration. Significantly, 14-3-3ζ-deficient mice exhibited abnormal mossy fibre navigation and glutamatergic synapse formation. The molecular basis of these defects involves the schizophrenia risk factor, DISC1, which interacts isoform specifically with 14-3-3ζ. Our data provide the first evidence of a direct role for 14-3-3ζ deficiency in the aetiology of neurodevelopmental disorders and identifies 14-3-3ζ as a central risk factor in the schizophrenia protein interaction network.
Collapse
Affiliation(s)
- P S Cheah
- Department of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Chronic mental diseases (CMD) like the schizophrenias are progressive diseases of heterogenous but poorly understood biological origin. An imbalance in proteostasis is a hallmark of dysfunctional neurons, leading to impaired clearance and abnormal deposition of protein aggregates. Thus, it can be hypothesized that unbalanced proteostasis in such neurons may also lead to protein aggregates in schizophrenia. These protein aggregates, however, would be more subtle then in the classical neurodegenerative diseases and as such have not yet been detected. The DISC1 (Disrupted-in-schizophrenia 1) gene is considered among the most promising candidate genes for CMD having been identified as linked to CMD in a Scottish pedigree and having since been found to associate to various phenotypes of CMD. We have recently demonstrated increased insoluble DISC1 protein in the cingular cortex in approximately 20% of cases of CMD within the widely used Stanley Medical Research Institute Consortium Collection. Surprisingly, in vitro, DISC1 aggregates were cell-invasive, i.e., purified aggresomes or recombinant DISC1 fragments where internalized at an efficiency comparable to that of α-synuclein. Intracellular DISC1 aggresomes acquired gain-of-function properties in recruiting otherwise soluble proteins such as the candidate schizophrenia protein dysbindin. Disease-associated DISC1 polymorphism S704C led to a higher oligomerization tendency of DISC1. These findings justify classification of DISC1-dependent brain disorders as protein conformational disorders which we have tentatively termed DISC1opathies. The notion of disturbed proteostasis and protein aggregation as a mechanism of mental diseases is thus emerging. The yet unidentified form of neuronal impairment in CMD is more subtle than in the classical neurodegenerative diseases without leading to massive cell death and as such present a different kind of neuronal dysfunctionality, eventually confined to highly selective CNS subpopulations.
Collapse
Affiliation(s)
- Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
50
|
Malavasi ELV, Ogawa F, Porteous DJ, Millar JK. DISC1 variants 37W and 607F disrupt its nuclear targeting and regulatory role in ATF4-mediated transcription. Hum Mol Genet 2012; 21:2779-92. [PMID: 22422769 PMCID: PMC3363331 DOI: 10.1093/hmg/dds106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1), a strong genetic candidate for psychiatric illness, encodes a multicompartmentalized molecular scaffold that regulates interacting proteins with key roles in neurodevelopment and plasticity. Missense DISC1 variants are associated with the risk of mental illness and with brain abnormalities in healthy carriers, but the underlying mechanisms are unclear. We examined the effect of rare and common DISC1 amino acid substitutions on subcellular targeting. We report that both the rare putatively causal variant 37W and the common variant 607F independently disrupt DISC1 nuclear targeting in a dominant-negative fashion, predicting that DISC1 nuclear expression is impaired in 37W and 607F carriers. In the nucleus, DISC1 interacts with the transcription factor Activating Transcription Factor 4 (ATF4), which is involved in the regulation of cellular stress responses, emotional behaviour and memory consolidation. At basal cAMP levels, wild-type DISC1 inhibits the transcriptional activity of ATF4, an effect that is weakened by both 37W and 607F independently, most likely as a consequence of their defective nuclear targeting. The common variant 607F additionally reduces DISC1/ATF4 interaction, which likely contributes to its weakened inhibitory effect. We also demonstrate that DISC1 modulates transcriptional responses to endoplasmic reticulum stress, and that this modulatory effect is ablated by 37W and 607F. By showing that DISC1 amino acid substitutions associated with psychiatric illness affect its regulatory function in ATF4-mediated transcription, our study highlights a potential mechanism by which these variants may impact on transcriptional events mediating cognition, emotional reactivity and stress responses, all processes of direct relevance to psychiatric illness.
Collapse
Affiliation(s)
- Elise L V Malavasi
- The Centre for Molecular Medicine at the Medical Research Council Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|