1
|
Luyben TT, Rai J, Zhou B, Li H, Okamoto K. Two-Photon FRET/FLIM Imaging of Cerebral Neurons. Methods Mol Biol 2024; 2794:33-43. [PMID: 38630218 DOI: 10.1007/978-1-0716-3810-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Two-photon FRET (Förster resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) enable the detection of FRET changes of fluorescence reporters in deep brain tissues, which provide a valuable approach for monitoring target molecular dynamics and functions. Here, we describe two-photon FRET and FLIM imaging techniques that allow us to visualize endogenous and optogenetically induced cAMP dynamics in living neurons with genetically engineered FRET-based cAMP reporters.
Collapse
Affiliation(s)
- Thomas T Luyben
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jayant Rai
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bingyue Zhou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hang Li
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Kenichi Okamoto
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
3
|
Adegbola A, Lutz R, Nikkola E, Strom SP, Picker J, Wynshaw-Boris A. Disruption of CTNND2, encoding delta-catenin, causes a penetrant attention deficit disorder and myopia. HGG ADVANCES 2020; 1:100007. [PMID: 33718894 PMCID: PMC7948131 DOI: 10.1016/j.xhgg.2020.100007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/24/2020] [Indexed: 11/21/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with poorly understood pathophysiology and genetic mechanisms. A balanced chromosomal translocation interrupts CTNND2 in several members of a family with profound attentional deficit and myopia, and disruption of the gene was found in a separate unrelated individual with ADHD and myopia. CTNND2 encodes a brain-specific member of the adherens junction complex essential for postsynaptic and dendritic development, a site of potential pathophysiology in attentional disorders. Therefore, we propose that the severe and highly penetrant nature of the ADHD phenotype in affected individuals identifies CTNND2 as a potential gateway to ADHD pathophysiology similar to the DISC1 translocation in psychosis or AUTS2 in autism.
Collapse
Affiliation(s)
- Abidemi Adegbola
- Department of Psychiatry, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| | - Richard Lutz
- Department of Genetic Medicine, Munroe Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | | - Jonathan Picker
- Division of Genetics and Genomics, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Child and Adolescent Psychiatry, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Anthony Wynshaw-Boris
- Department of Genetics and Genome Sciences and Center for Human Genetics, University Hospitals of Cleveland and Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Ryu T, Park HJ, Kim H, Cho YC, Kim BC, Jo J, Seo YW, Choi WS, Kim K. Improved memory and reduced anxiety in δ-catenin transgenic mice. Exp Neurol 2019; 318:22-31. [PMID: 30981806 DOI: 10.1016/j.expneurol.2019.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
δ-Catenin is abundant in the brain and affects its synaptic plasticity. Furthermore, loss of δ-catenin is related to the deficits of learning and memory, mental retardation (cri-du-chat syndrome), and autism. A few studies about δ-catenin deficiency mice were performed. However, the effect of δ-catenin overexpression in the brain has not been investigated as yet. Therefore we generated a δ-catenin overexpressing mouse model. To generate a transgenic mouse model overexpressing δ-catenin in the brain, δ-catenin plasmid having a Thy-1 promotor was microinjected in C57BL/6 mice. Our results showed δ-catenin transgenic mice expressed higher levels of N-cadherin, β-catenin, and p120-catenin than did wild type mice. Furthermore, δ-catenin transgenic mice exhibited better object recognition, better sociability, and lower anxiety than wild type mice. However, both mice groups showed a similar pattern in locomotion tests. Although δ-catenin transgenic mice show similar locomotion, they show improved sociability and reduced anxiety. These characteristics are opposite to the symptoms of autism or mental retardation, which are caused when δ-catenin is deficient. These results suggest that δ-catenin may alleviate symptoms of autism, Alzheimer's disease and mental retardation.
Collapse
Affiliation(s)
- Taeyong Ryu
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung Joon Park
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young-Chang Cho
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Jihoon Jo
- Department of Neurology, Chonnam National University Medical School, Gwnagju 61469, Republic of Korea
| | - Young-Woo Seo
- Korea Basic Science Institute, Gwangju Center, Gwangju 61186, Republic of Korea
| | - Won-Seok Choi
- School of Biological Sciences and Technology, College of Natural Sciences, College of Medicine, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kwonseop Kim
- College of Pharmacy and Research Institute for Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
Yuan L, Singh D, Buescher JL, Arikkath J. A role for proteolytic regulation of δ-catenin in remodeling a subpopulation of dendritic spines in the rodent brain. J Biol Chem 2018; 293:11625-11638. [PMID: 29875160 DOI: 10.1074/jbc.ra118.001966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/02/2018] [Indexed: 01/27/2023] Open
Abstract
Neural wiring and activity are essential for proper brain function and behavioral outputs and rely on mechanisms that guide the formation, elimination, and remodeling of synapses. During development, it is therefore vital that synaptic densities and architecture are tightly regulated to allow for appropriate neural circuit formation and function. δ-Catenin, a component of the cadherin-catenin cell adhesion complex, has been demonstrated to be a critical regulator of synaptic density and function in the developing central neurons. In this study, we identified forms of δ-catenin that include only the N-terminal (DcatNT) or the C-terminal (DcatCT) regions. We found that these δ-catenin forms are differentially expressed in different regions of the male mouse brain. Our results also indicated that in rat primary cortical culture, these forms are generated in an activity-dependent manner by Ca2+-dependent and calpain-mediated cleavage of δ-catenin or in an activity-independent but lysosome-dependent manner. Functionally, loss of the domain containing the calpain-cleavage sites allowing for generation of DcatCT and DcatNT perturbed the density of a subpopulation of dendritic protrusions in rat hippocampal neurons. This subpopulation likely included protrusions that are either in transition toward becoming mature mushroom spines or in the process of being eliminated. By influencing this subpopulation of spines, proteolytic processing of δ-catenin can likely regulate the balance between mature and immature dendritic protrusions in coordination with neural activity. We conclude that by undergoing cleavage, δ-catenin differentially regulates the densities of subpopulations of dendritic spines and contributes to proper neural circuit wiring in the developing brain.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Dipika Singh
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - James L Buescher
- Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Jyothi Arikkath
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198; Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198.
| |
Collapse
|
6
|
Yuan L, Arikkath J. Functional roles of p120ctn family of proteins in central neurons. Semin Cell Dev Biol 2017; 69:70-82. [PMID: 28603076 DOI: 10.1016/j.semcdb.2017.05.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
The cadherin-catenin complex in central neurons is associated with a variety of cytosolic partners, collectively called catenins. The p120ctn members are a family of catenins that are distinct from the more ubiquitously expressed α- and β-catenins. It is becoming increasingly clear that the functional roles of the p120ctn family of catenins in central neurons extend well beyond their functional roles in non-neuronal cells in partnering with cadherin to regulate adhesion. In this review, we will provide an overview of the p120ctn family in neurons and their varied functional roles in central neurons. Finally, we will examine the emerging roles of this family of proteins in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Li Yuan
- Department of Pharmacology and Experimental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE 68198, United States; Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| | - Jyothi Arikkath
- Developmental Neuroscience, Munroe-Meyer Institute, Durham Research Center II, Room 3031, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68198-5960, United States.
| |
Collapse
|
7
|
Hussein NA, Delaney TL, Tounsel BL, Liebl FLW. The Extracellular-Regulated Kinase Effector Lk6 is Required for Glutamate Receptor Localization at the Drosophila Neuromuscular Junction. J Exp Neurosci 2016; 10:77-91. [PMID: 27199570 PMCID: PMC4866800 DOI: 10.4137/jen.s32840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.
Collapse
Affiliation(s)
- Nizar A Hussein
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Brittany L Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
8
|
Abstract
Neurons are highly polarized specialized cells. Neuronal integrity and functional roles are critically dependent on dendritic architecture and synaptic structure, function and plasticity. The cadherins are glycosylated transmembrane proteins that form cell adhesion complexes in various tissues. They are associated with a group of cytosolic proteins, the catenins. While the functional roles of the complex have been extensively investigates in non-neuronal cells, it is becoming increasingly clear that components of the complex have critical roles in regulating dendritic and synaptic architecture, function and plasticity in neurons. Consistent with these functional roles, aberrations in components of the complex have been implicated in a variety of neurodevelopmental disorders. In this review, we discuss the roles of the classical cadherins and catenins in various aspects of dendrite and synapse architecture and function and their relevance to human neurological disorders. Cadherins are glycosylated transmembrane proteins that were initially identified as Ca(2+)-dependent cell adhesion molecules. They are present on plasma membrane of a variety of cell types from primitive metazoans to humans. In the past several years, it has become clear that in addition to providing mechanical adhesion between cells, cadherins play integral roles in tissue morphogenesis and homeostasis. The cadherin family is composed of more than 100 members and classified into several subfamilies, including classical cadherins and protocadherins. Several of these cadherin family members have been implicated in various aspects of neuronal development and function. (1-3) The classical cadherins are associated with a group of cytosolic proteins, collectively called the catenins. While the functional roles of the cadherin-catenin cell adhesion complex have been extensively investigated in epithelial cells, it is now clear that components of the complex are well expressed in central neurons at different stages during development. (4,5) Recent exciting studies have shed some light on the functional roles of cadherins and catenins in central neurons. In this review, we will provide a brief overview of the cadherin superfamily, describe cadherin family members expressed in central neurons, cadherin-catenin complexes in central neurons and then focus on role of the cadherin-catenin complex in dendrite morphogenesis and synapse morphogenesis, function and plasticity. The final section is dedicated to discussion of the emerging list of neural disorders linked to cadherins and catenins. While the roles of cadherins and catenins have been examined in several different types of neurons, the focus of this review is their role in mammalian central neurons, particularly those of the cortex and hippocampus. Accompanying this review is a series of excellent reviews targeting the roles of cadherins and protocadherins in other aspects of neural development.
Collapse
Affiliation(s)
- Eunju Seong
- a Developmental Neuroscience; Munroe-Meyer Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | |
Collapse
|
9
|
Palmitoylation of δ-catenin by DHHC5 mediates activity-induced synapse plasticity. Nat Neurosci 2014; 17:522-32. [PMID: 24562000 PMCID: PMC5025286 DOI: 10.1038/nn.3657] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023]
Abstract
Synaptic cadherin adhesion complexes are known to be key regulators of synapse plasticity. However, the molecular mechanisms that coordinate activity-induced modifications in cadherin localization and adhesion and subsequent changes in synapse morphology and efficacy, remain unanswered. We demonstrate that the intracellular cadherin binding protein, δ-catenin, is transiently palmitoylated by DHHC5 following enhanced synaptic activity, and that palmitoylation increases δ-catenin/cadherin interactions at synapses. Both the palmitoylation of δ-catenin and its binding to cadherin are required for activity-induced stabilization of N-cadherin at synapses, the enlargement of postsynaptic spines, as well as insertion of GluA1 and GluA2 subunits into the synaptic membrane and the concomitant increase in mEPSC amplitude. Importantly, context-dependent fear conditioning in mice results in increased δ-catenin palmitoylation as well as increased δ-catenin/cadherin associations at hippocampal synapses. Together, this suggests a role for palmitoylated δ-catenin in coordinating activity-dependent changes in synaptic adhesion molecules, synapse structure, and receptor localization that are involved in memory formation.
Collapse
|
10
|
Sanhueza M, Lisman J. The CaMKII/NMDAR complex as a molecular memory. Mol Brain 2013; 6:10. [PMID: 23410178 PMCID: PMC3582596 DOI: 10.1186/1756-6606-6-10] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/17/2013] [Indexed: 01/16/2023] Open
Abstract
CaMKII is a major synaptic protein that is activated during the induction of long-term potentiation (LTP) by the Ca2+ influx through NMDARs. This activation is required for LTP induction, but the role of the kinase in the maintenance of LTP is less clear. Elucidating the mechanisms of maintenance may provide insights into the molecular processes that underlie the stability of stored memories. In this brief review, we will outline the criteria for evaluating an LTP maintenance mechanism. The specific hypothesis evaluated is that LTP is maintained by the complex of activated CaMKII with the NMDAR. The evidence in support of this hypothesis is substantial, but further experiments are required, notably to determine the time course and persistence of complex after LTP induction. Additional work is also required to elucidate how the CaMKII/NMDAR complex produces the structural growth of the synapse that underlies late LTP. It has been proposed by Frey and Morris that late LTP involves the setting of a molecular tag during LTP induction, which subsequently allows the activated synapse to capture the proteins responsible for late LTP. However, the molecular processes by which this leads to the structural growth that underlies late LTP are completely unclear. Based on known binding reactions, we suggest the first molecularly specific version of tag/capture hypothesis: that the CaMKII/NMDAR complex, once formed, serves as a tag, which then leads to a binding cascade involving densin, delta-catenin, and N-cadherin (some of which are newly synthesized). Delta-catenin binds AMPA-binding protein (ABP), leading to the LTP-induced increase in AMPA channel content. The addition of postsynaptic N-cadherin, and the complementary increase on the presynaptic side, leads to a trans-synaptically coordinated increase in synapse size (and more release sites). It is suggested that synaptic strength is stored stably through the combined actions of the CaMKII/NMDAR complex and N-cadherin dimers. These N-cadherin pairs have redundant storage that could provide informational stability in a manner analogous to the base-pairing in DNA.
Collapse
Affiliation(s)
- Magdalena Sanhueza
- Department of Biology, Faculty of Sciences, University of Chile, Las Palmeras 3425, Santiago 7800024, Chile
| | | |
Collapse
|
11
|
Fang Y, Li Z, Wang X, Zhang S. Expression and biological role of δ-catenin in human ovarian cancer. J Cancer Res Clin Oncol 2012; 138:1769-76. [PMID: 22699932 DOI: 10.1007/s00432-012-1257-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 05/23/2012] [Indexed: 11/25/2022]
Abstract
OBJECTIVE δ-Catenin is found to be involved in the progression of several human cancers. However, its expression pattern and biological roles in human ovarian cancers are not clear. In this study, we examined the expression pattern of δ-catenin in 149 ovarian cancer specimens. We also depleted and overexpressed δ-catenin expression in ovarian cancer cell lines and investigated its role in cell proliferation and invasion. METHODS δ-Catenin expression was analyzed in 149 archived ovarian cancer specimens using immunohistochemistry. siRNA knockdown and plasmid transfection were performed in SKOV3, SW626, and OVCAR3 cell lines. MTT, colony formation assay, soft agar colony assay, and matrigel invasion assay were carried out to assess the role of δ-catenin in cell proliferation and invasion. We also performed cell cycle analysis in δ-catenin depleted and overexpressed cells. In addition, we examined the level of several cell cycle-related molecules using Western blot. RESULTS Of the 149 patients in the study, 104 (69.7 %) showed δ-catenin overexpression. δ-catenin overexpression positively correlated with advanced FIGO stage. δ-Catenin depletion in ovarian cancer cell lines inhibited ovarian cancer cell proliferation and invasion. Depletion of δ-catenin also blocked cell cycle progression and downregulated cyclin D1 expression in ovarian cancer cells. Overexpression of δ-catenin enhanced cell proliferation, invasion, and upregulated cyclinD1 expression. CONCLUSIONS δ-Catenin is overexpressed in ovarian cancers and associated with advanced stage. Our data provide evidence that δ-catenin regulates the ovarian cancer cell proliferation, invasion, and cell cycle. δ-Catenin thus has potential as a therapeutic target.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Gynaecology and Obstetrics, Shengjing Hospital of China Medical University, [corrected] 36 Sanhao Street, Shenyang, 110004 Liaoning, People's Republic of China.
| | | | | | | |
Collapse
|
12
|
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion molecules that play critical roles in animal morphogenesis. Various cadherin-related molecules have also been identified, which show diverse functions, not only for the regulation of cell adhesion but also for that of cell proliferation and planar cell polarity. During the past decade, understanding of the roles of these molecules in the nervous system has significantly progressed. They are important not only for the development of the nervous system but also for its functions and, in turn, for neural disorders. In this review, we discuss the roles of cadherins and related molecules in neural development and function in the vertebrate brain.
Collapse
Affiliation(s)
- Shinji Hirano
- Department of Neurobiology and Anatomy, Kochi Medical School, Okoh-cho Kohasu, Nankoku-City 783–8505, Japan.
| | | |
Collapse
|
13
|
Wang M, Dong Q, Zhang D, Wang Y. Expression of delta-catenin is associated with progression of human astrocytoma. BMC Cancer 2011; 11:514. [PMID: 22151302 PMCID: PMC3262777 DOI: 10.1186/1471-2407-11-514] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2011] [Accepted: 12/12/2011] [Indexed: 11/11/2022] Open
Abstract
Background δ-Catenin (CTNND2), which encodes a scaffold protein in humans, has been found in a few malignancies. However, the expression pattern and contribution of δ-catenin to astrocytoma progression are unclear. Methods We investigated δ-catenin expression in human astrocytoma samples and its function in astrocytoma cell lines using immunohistochemistry, siRNA knockdown, transfection, MTT, transwell migration and Rac1 pulldown techniques. Results δ-Catenin protein expression was detected in cytoplasm of astrocytoma cells by immunohistochemistry. Analysis showed that grade I astrocytoma (0%, 0/11) and glial cells from normal brain tissue exhibited negative staining. δ-Catenin expression was significantly higher in grade III-IV (35%, 29/84) compared to grade II astrocytoma cells (18%, 11/61); p < 0.01). In addition, CTNND2 overexpression promoted proliferation, invasion and Rac1 activity of U251 astrocytoma cells. Treatment of δ-catenin-transfected cells with a Rac1 inhibitor decreased Rac1 activity and invasion. δ-Catenin knockdown in U87 glioblastoma cell decreased cell proliferation, invasion and Rac1 activity. Conclusion The results suggest that δ-catenin expression is associated with the malignant progression of astrocytoma and promotes astrocytoma cell invasion through upregulation of Rac1 activity. δ-Catenin expression levels may serve as a useful marker of the biological behavior of astrocytoma cells.
Collapse
Affiliation(s)
- MingHao Wang
- Department of Neurosurgery, First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | | | | | | |
Collapse
|
14
|
Zhang JY, Wang Y, Zhang D, Yang ZQ, Dong XJ, Jiang GY, Zhang PX, Dai SD, Dong QZ, Han Y, Zhang S, Cui QZ, Wang EH. delta-Catenin promotes malignant phenotype of non-small cell lung cancer by non-competitive binding to E-cadherin with p120ctn in cytoplasm. J Pathol 2010; 222:76-88. [PMID: 20593408 DOI: 10.1002/path.2742] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a member of the catenin family, little is known about the clinical significance and possible mechanism of delta-catenin expression in numerous tumours. We examined the expression of delta-catenin by immunohistochemistry in 115 cases of non-small cell lung cancer (NSCLC) (including 65 cases with follow-up records and 50 cases with paired lymph node metastasis lesions). The mRNA and protein expression of delta-catenin was also detected in 30 cases of paired lung cancer tissues and normal lung tissues by RT-PCR and western blotting, respectively. Co-immunoprecipitation was used to examine whether delta-catenin competitively bound to E-cadherin with p120ctn in lung cancer cells or not. The effects of delta-catenin on the activity of small GTPases and the biological behaviour of lung cancer cells were explored by pull-down assay, flow cytometry, MTT, and Matrigel invasive assay. The results showed that the mRNA and protein expression of delta-catenin was increased in lung cancer tissues; the positive expression rate of delta-catenin was significantly increased in adenocarcinoma, stage III-IV, paired lymph node metastasis lesions, and primary tumours with lymph node metastasis (all p < 0.05); and the postoperative survival period of patients with delta-catenin-positive expression was shorter than that of patients with delta-catenin-negative expression (p < 0.05). No competition between delta-catenin and p120ctn for binding to E-cadherin in cytoplasm was found in two lung cancer cell lines. By regulating the activity of small GTPases and changing the cell cycle, delta-catenin could promote the proliferation and invasion of lung cancer cells. We conclude that delta-catenin is an oncoprotein overexpressed in NSCLC and that increased delta-catenin expression is critical for maintenance of the malignant phenotype of lung cancer.
Collapse
Affiliation(s)
- Jun-Yi Zhang
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Cdk5-mediated phosphorylation of delta-catenin regulates its localization and GluR2-mediated synaptic activity. J Neurosci 2010; 30:8457-67. [PMID: 20573893 DOI: 10.1523/jneurosci.6062-09.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5)-mediated phosphorylation plays an important role in proper synaptic function and transmission. Loss of Cdk5 activity results in abnormal development of the nervous system accompanied by massive disruptions in cortical migration and lamination, therefore impacting synaptic activity. The Cdk5 activator p35 associates with delta-catenin, the synaptic adherens junction protein that serves as part of the anchorage complex of AMPA receptor at the postsynaptic membrane. However, the implications of Cdk5-mediated phosphorylation of delta-catenin have not been fully elucidated. Here we show that Cdk5-mediated phosphorylation of delta-catenin regulates its subcellular localization accompanied by changes in dendritic morphogenesis and synaptic activity. We identified two Cdk5 phosphorylation sites in mouse delta-catenin, serines 300 and 357, and report that loss of Cdk5 phosphorylation of delta-catenin increased its localization to the membrane. Furthermore, mutations of the serines 300 and 357 to alanines to mimic nonphosphorylated delta-catenin resulted in increased dendritic protrusions accompanied by increased AMPA receptor subunit GluR2 localization at the membrane. Consistent with these observations, loss of Cdk5 phosphorylation of delta-catenin increased the AMPA/NMDA ratio. This study reveals how Cdk5 phosphorylation of the synaptic mediator protein delta-catenin can alter its localization at the synapse to impact neuronal synaptic activity.
Collapse
|
16
|
Misra C, Restituito S, Ferreira J, Rameau GA, Fu J, Ziff EB. Regulation of synaptic structure and function by palmitoylated AMPA receptor binding protein. Mol Cell Neurosci 2010; 43:341-52. [PMID: 20083202 DOI: 10.1016/j.mcn.2010.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 12/22/2009] [Accepted: 01/07/2010] [Indexed: 01/03/2023] Open
Abstract
AMPA receptor binding protein (ABP) is a multi-PDZ domain scaffold that binds and stabilizes AMPA receptor (AMPAR) GluR2/3 subunits at synapses. A palmitoylated N-terminal splice variant (pABP-L) concentrates in spine heads, whereas a non-palmitoylated form (ABP-L) is intracellular. We show that postsynaptic Sindbis viral expression of pABP-L increased AMPAR mediated mEPSC amplitude and frequency and elevated surface levels of GluR1 and GluR2, suggesting an increase in AMPA receptors at individual synapses. Spines were enlarged and more numerous and nerve terminals contacting these cells displayed enlarged synaptophysin puncta. A non-palmitoylated pABP-L mutant (C11A) did not change spine density or size. Exogenous pABP-L and endogenous GRIP, a related scaffold, colocalized with NPRAP (delta-catenin), to which ABP and GRIP bind, and with cadherins, which bind NPRAP. Thus postsynaptic pABP-L induces pre and postsynaptic changes that are dependent on palmitoylation and likely achieved through ABP association with a multi-molecular cell surface signaling complex.
Collapse
Affiliation(s)
- Charu Misra
- Department of Biochemistry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | |
Collapse
|
17
|
Robertson HR, Gibson ES, Benke TA, Dell'Acqua ML. Regulation of postsynaptic structure and function by an A-kinase anchoring protein-membrane-associated guanylate kinase scaffolding complex. J Neurosci 2009; 29:7929-43. [PMID: 19535604 PMCID: PMC2716089 DOI: 10.1523/jneurosci.6093-08.2009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 04/29/2009] [Accepted: 05/19/2009] [Indexed: 01/08/2023] Open
Abstract
A-kinase anchoring protein (AKAP) 79/150 is a scaffold protein found in dendritic spines that recruits the cAMP-dependent protein kinase (PKA) and protein phosphatase 2B-calcineurin (CaN) to membrane-associated guanylate kinase (MAGUK)-linked AMPA receptors (AMPARs) to control receptor phosphorylation and synaptic plasticity. However, AKAP79/150 may also coordinate regulation of AMPAR activity with spine structure directly through MAGUK binding and membrane-cytoskeletal interactions of its N-terminal targeting domain. In cultured hippocampal neurons, we observed that rat AKAP150 expression was low early in development but then increased coincident with spine formation and maturation. Overexpression of human AKAP79 in immature or mature neurons increased the number of dendritic filopodia and spines and enlarged spine area. However, RNA interference knockdown of AKAP150 decreased dendritic spine area only in mature neurons. Importantly, AKAP79 overexpression in immature neurons increased AMPAR postsynaptic localization and activity. Neither the AKAP79 PKA nor CaN anchoring domain was required for increasing dendritic protrusion numbers, spine area, or AMPAR synaptic localization; however, an internal region identified as the MAGUK binding domain was found to be essential as shown by expression of a MAGUK binding mutant that formed mainly filopodia and decreased AMPAR synaptic localization and activity. Expression of the AKAP79 N-terminal targeting domain alone also increased filopodia numbers but not spine area. Overall, these results demonstrate a novel structural role for AKAP79/150 in which the N-terminal targeting domain induces dendritic filopodia and binding to MAGUKs promotes spine enlargement and AMPAR recruitment.
Collapse
Affiliation(s)
| | | | - Timothy A. Benke
- Departments of Pharmacology
- Pediatrics, and
- Neurology and
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| | - Mark L. Dell'Acqua
- Departments of Pharmacology
- Program in Neuroscience, School of Medicine, University of Colorado Denver, Aurora, Colorado 80045
| |
Collapse
|
18
|
Abstract
Rho GTPases activated by GDP/GTP exchange factors (GEFs) play key roles in the developing and adult nervous system. Kalirin-7 (Kal7), the predominant adult splice form of the multifunctional Kalirin RhoGEF, includes a PDZ [postsynaptic density-95 (PSD-95)/Discs large (Dlg)/zona occludens-1 (ZO-1)] binding domain and localizes to the postsynaptic side of excitatory synapses. In vitro studies demonstrated that overexpression of Kal7 increased dendritic spine density, whereas reduced expression of endogenous Kal7 decreased spine density. To evaluate the role of Kal7 in vivo, mice lacking the terminal exon unique to Kal7 were created. Mice lacking both copies of the Kal7 exon (Kal7(KO)) grew and reproduced normally. Golgi impregnation and electron microscopy revealed decreased hippocampal spine density in Kal7(KO) mice. Behaviorally, Kal7(KO) mice showed decreased anxiety-like behavior in the elevated zero maze and impaired acquisition of a passive avoidance task, but normal behavior in open field, object recognition, and radial arm maze tasks. Kal7(KO) mice were deficient in hippocampal long-term potentiation. Western blot analysis confirmed the absence of Kal7 and revealed compensatory increases in larger Kalirin isoforms. PSDs purified from the cortices of Kal7(KO) mice showed a deficit in Cdk5, a kinase known to phosphorylate Kal7 and play an essential role in synaptic function. The early stages of excitatory synaptic development proceeded normally in cortical neurons prepared from Kal7(KO) mice, with decreased excitatory synapses apparent only after 21 d in vitro. Expression of exogenous Kal7 in Kal7(KO) neurons rescued this deficit. Kal7 plays an essential role in synaptic structure and function, affecting a subset of cognitive processes.
Collapse
|
19
|
Arikkath J. Regulation of dendrite and spine morphogenesis and plasticity by catenins. Mol Neurobiol 2009; 40:46-54. [PMID: 19401831 DOI: 10.1007/s12035-009-8068-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 04/03/2009] [Indexed: 10/20/2022]
Abstract
The appropriate regulation of dendrite, spine, and synapse morphogenesis in neurons both during and after development is critical for the formation and maintenance of neural circuits. It is becomingly increasingly clear that the cadherin-catenin cell adhesion complex, a complex that has been widely studied in epithelia, regulates neuronal morphogenesis. More interestingly, the catenins, cytosolic proteins that bind to cadherins, regulate multiple aspects of neuronal morphogenesis including dendrite, spine, and synapse morphogenesis and plasticity, both independent of and dependent on their ability to bind cadherins. In this review, we examine some of the more recent and exciting studies that implicate individual catenins in various aspects of neuronal morphogenesis and plasticity.
Collapse
Affiliation(s)
- Jyothi Arikkath
- University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Arikkath J, Peng IF, Gie Ng Y, Israely I, Liu X, Ullian EM, Reichardt LF. Delta-catenin regulates spine and synapse morphogenesis and function in hippocampal neurons during development. J Neurosci 2009; 29:5435-42. [PMID: 19403811 PMCID: PMC2763482 DOI: 10.1523/jneurosci.0835-09.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 03/11/2009] [Accepted: 03/23/2009] [Indexed: 11/21/2022] Open
Abstract
The maintenance of spine and synapse number during development is critical for neuronal circuit formation and function. Here we show that delta-catenin, a component of the cadherin-catenin cell adhesion complex, regulates spine and synapse morphogenesis during development. Genetic ablation or acute knockdown of delta-catenin leads to increases in spine and synapse density, accompanied by a decrease in tetrodotoxin induced spine plasticity. Our results indicate that delta-catenin may mediate conversion of activity-dependent signals to morphological spine plasticity. The functional role of delta-catenin in regulating spine density does not require binding to cadherins, but does require interactions with PDZ domain-containing proteins. We propose that the perturbations in spine and synaptic structure and function observed after depletion of delta-catenin during development may contribute to functional alterations in neural circuitry, the cognitive deficits observed in mutant mice, and the mental retardation pathology of Cri-du-chat syndrome.
Collapse
Affiliation(s)
| | - I-Feng Peng
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | | - Inbal Israely
- Departments of Molecular and Medical Pharmacology and
| | - Xin Liu
- Departments of Molecular and Medical Pharmacology and
- Pathology and Laboratory Medicine and
- Brain Research Institute, University of California, Los Angeles, Los Angeles, California 90095
| | - Erik M. Ullian
- Ophthalmology, Beckman Vision Center, University of California, San Francisco, San Francisco, California 94143, and
| | | |
Collapse
|