1
|
Whately KM, Sengottuvel N, Edatt L, Srivastava S, Woods AT, Tsai YS, Porrello A, Zimmerman MP, Chack AC, Jefferys SR, Yacovone G, Kim DJ, Dudley AC, Amelio AL, Pecot CV. Spon1+ inflammatory monocytes promote collagen remodeling and lung cancer metastasis through lipoprotein receptor 8 signaling. JCI Insight 2024; 9:e168792. [PMID: 38716730 PMCID: PMC11141919 DOI: 10.1172/jci.insight.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths in the world, and non-small cell lung cancer (NSCLC) is the most common subset. We previously found that infiltration of tumor inflammatory monocytes (TIMs) into lung squamous carcinoma (LUSC) tumors is associated with increased metastases and poor survival. To further understand how TIMs promote metastases, we compared RNA-Seq profiles of TIMs from several LUSC metastatic models with inflammatory monocytes (IMs) of non-tumor-bearing controls. We identified Spon1 as upregulated in TIMs and found that Spon1 expression in LUSC tumors corresponded with poor survival and enrichment of collagen extracellular matrix signatures. We observed SPON1+ TIMs mediate their effects directly through LRP8 on NSCLC cells, which resulted in TGF-β1 activation and robust production of fibrillar collagens. Using several orthogonal approaches, we demonstrated that SPON1+ TIMs were sufficient to promote NSCLC metastases. Additionally, we found that Spon1 loss in the host, or Lrp8 loss in cancer cells, resulted in a significant decrease of both high-density collagen matrices and metastases. Finally, we confirmed the relevance of the SPON1/LRP8/TGF-β1 axis with collagen production and survival in patients with NSCLC. Taken together, our study describes how SPON1+ TIMs promote collagen remodeling and NSCLC metastases through an LRP8/TGF-β1 signaling axis.
Collapse
Affiliation(s)
| | - Nisitha Sengottuvel
- UNC Lineberger Comprehensive Cancer Center and
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lincy Edatt
- UNC Lineberger Comprehensive Cancer Center and
| | - Sonal Srivastava
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Allison T. Woods
- UNC Lineberger Comprehensive Cancer Center and
- Department of Cell Biology and Physiology and
| | - Yihsuan S. Tsai
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Matthew P. Zimmerman
- UNC Lineberger Comprehensive Cancer Center and
- Department of Cell Biology and Physiology and
| | - Aaron C. Chack
- UNC Lineberger Comprehensive Cancer Center and
- Department of Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | - Dae Joong Kim
- Department of Microbiology, Immunology, and Cancer Biology and
| | - Andrew C. Dudley
- Department of Microbiology, Immunology, and Cancer Biology and
- UVA Comprehensive Cancer Center, The University of Virginia, Charlottesville, Virginia, USA
| | - Antonio L. Amelio
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Chad V. Pecot
- UNC Lineberger Comprehensive Cancer Center and
- Division of Oncology and
- RNA Discovery Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Pereiro X, Ruzafa N, Azkargorta M, Elortza F, Acera A, Ambrósio AF, Santiago AR, Vecino E. Müller glial cells located in the peripheral retina are more susceptible to high pressure: implications for glaucoma. Cell Biosci 2024; 14:5. [PMID: 38183095 PMCID: PMC10770903 DOI: 10.1186/s13578-023-01186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Glaucoma, a progressive neurodegenerative disease, is a leading cause of irreversible vision loss worldwide. This study aims to elucidate the critical role of Müller glia (MG) in the context of retinal ganglion cell (RGC) death, particularly focusing on the influence of peripheral MG sensitivity to high pressure (HP). METHODS Co-cultures of porcine RGCs with MG were isolated from both the central and peripheral regions of pig retinas and subjected to both normal and HP conditions. Mass spectrometry analysis of the MG-conditioned medium was conducted to identify the proteins released by MG under all conditions. RESULTS Peripheral MG were found to secrete a higher quantity of neuroprotective factors, effectively promoting RGC survival under normal physiological conditions. However, under HP conditions, co-cultures with peripheral MG exhibited impaired RGC survival. Moreover, under HP conditions, peripheral MG significantly upregulated the secretion of proteins associated with apoptosis, oxidative stress, and inflammation. CONCLUSIONS This study provides robust evidence suggesting the involvement of MG in RGC death in glaucoma, thus paving the way for future therapeutic investigations.
Collapse
Affiliation(s)
- Xandra Pereiro
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal.
| | - Noelia Ruzafa
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Félix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehdProteoRed-ISCIII, Bizkaia Science and Technology Park, 48160, Derio, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, Portugal
| | - Elena Vecino
- Experimental Ophthalmo-Biology Group, Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940, Leioa, Spain.
| |
Collapse
|
3
|
SPON1 Can Reduce Amyloid Beta and Reverse Cognitive Impairment and Memory Dysfunction in Alzheimer's Disease Mouse Model. Cells 2020; 9:cells9051275. [PMID: 32455709 PMCID: PMC7290723 DOI: 10.3390/cells9051275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/08/2020] [Accepted: 05/18/2020] [Indexed: 01/07/2023] Open
Abstract
Alzheimer’s disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aβ) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aβ, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aβ reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aβ when co-cultured with Aβ-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aβ in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aβ and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.
Collapse
|
4
|
Meseke M, Neumüller F, Brunne B, Li X, Anstötz M, Pohlkamp T, Rogalla MM, Herz J, Rune GM, Bender RA. Distal Dendritic Enrichment of HCN1 Channels in Hippocampal CA1 Is Promoted by Estrogen, but Does Not Require Reelin. eNeuro 2018; 5:ENEURO.0258-18.2018. [PMID: 30406178 PMCID: PMC6220572 DOI: 10.1523/eneuro.0258-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 08/20/2018] [Accepted: 08/26/2018] [Indexed: 12/28/2022] Open
Abstract
HCN1 compartmentalization in CA1 pyramidal cells, essential for hippocampal information processing, is believed to be controlled by the extracellular matrix protein Reelin. Expression of Reelin, in turn, is stimulated by 17β-estradiol (E2). In this study, we therefore tested whether E2 regulates the compartmentalization of HCN1 in CA1 via Reelin. In organotypic entorhino-hippocampal cultures, we found that E2 promotes HCN1 distal dendritic enrichment via the G protein-coupled estrogen receptor GPER1, but apparently independent of Reelin, because GST-RAP, known to reduce Reelin signaling, did not prevent E2-induced HCN1 enrichment in distal CA1. We therefore re-examined the role of Reelin for the regulation of HCN1 compartmentalization and could not detect effects of reduced Reelin signaling on HCN1 distribution in CA1, either in the (developmental) slice culture model or in tamoxifen-inducible conditional reelin knockout mice during adulthood. We conclude that for HCN1 channel compartmentalization in CA1 pyramidal cells, Reelin is not as essential as previously proposed, and E2 effects on HCN1 distribution in CA1 are mediated by mechanisms that do not involve Reelin. Because HCN1 localization was not altered at different phases of the estrous cycle, gonadally derived estradiol is unlikely to regulate HCN1 channel compartmentalization, while the pattern of immunoreactivity of aromatase, the final enzyme of estradiol synthesis, argues for a role of local hippocampal E2 synthesis.
Collapse
Affiliation(s)
- Maurice Meseke
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Florian Neumüller
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Bianka Brunne
- Institute of Structural Neurobiology, Center of Molecular Neurobiology, Hamburg 20246, Germany
| | - Xiaoyu Li
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Max Anstötz
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Theresa Pohlkamp
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Meike M. Rogalla
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Gabriele M. Rune
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| | - Roland A. Bender
- Institute of Neuroanatomy, University Medical Center, Hamburg 20246, Germany
| |
Collapse
|
5
|
Bock HH, May P. Canonical and Non-canonical Reelin Signaling. Front Cell Neurosci 2016; 10:166. [PMID: 27445693 PMCID: PMC4928174 DOI: 10.3389/fncel.2016.00166] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022] Open
Abstract
Reelin is a large secreted glycoprotein that is essential for correct neuronal positioning during neurodevelopment and is important for synaptic plasticity in the mature brain. Moreover, Reelin is expressed in many extraneuronal tissues; yet the roles of peripheral Reelin are largely unknown. In the brain, many of Reelin's functions are mediated by a molecular signaling cascade that involves two lipoprotein receptors, apolipoprotein E receptor-2 (Apoer2) and very low density-lipoprotein receptor (Vldlr), the neuronal phosphoprotein Disabled-1 (Dab1), and members of the Src family of protein tyrosine kinases as crucial elements. This core signaling pathway in turn modulates the activity of adaptor proteins and downstream protein kinase cascades, many of which target the neuronal cytoskeleton. However, additional Reelin-binding receptors have been postulated or described, either as coreceptors that are essential for the activation of the "canonical" Reelin signaling cascade involving Apoer2/Vldlr and Dab1, or as receptors that activate alternative or additional signaling pathways. Here we will give an overview of canonical and alternative Reelin signaling pathways, molecular mechanisms involved, and their potential physiological roles in the context of different biological settings.
Collapse
Affiliation(s)
- Hans H Bock
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| | - Petra May
- Clinic of Gastroenterology and Hepatology, Heinrich-Heine-University Düsseldorf Düsseldorf, Germany
| |
Collapse
|
6
|
Scherf JM, Hu XS, Tepp WH, Ichtchenko K, Johnson EA, Pellett S. Analysis of gene expression in induced pluripotent stem cell-derived human neurons exposed to botulinum neurotoxin A subtype 1 and a type A atoxic derivative. PLoS One 2014; 9:e111238. [PMID: 25337697 PMCID: PMC4206481 DOI: 10.1371/journal.pone.0111238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/19/2014] [Indexed: 11/18/2022] Open
Abstract
Botulinum neurotoxin type A1 (BoNT/A1) is a potent protein toxin responsible for the potentially fatal human illness botulism. Notwithstanding, the long-lasting flaccid muscle paralysis caused by BoNT/A has led to its utility as a powerful and versatile bio-pharmaceutical. The flaccid paralysis is due to specific cleavage of neuronal SNAREs by BoNTs. However, actions of BoNTs on intoxicated neurons besides the cleavage of SNAREs have not been studied in detail. In this study we investigated by microarray analysis the effects of BoNT/A and a catalytically inactive derivative (BoNT/A ad) on the transcriptome of human induced pluripotent stem cell (hiPSC)-derived neurons at 2 days and 2 weeks after exposure. While there were only minor changes in expression levels at 2 days post exposure, at 2 weeks post exposure 492 genes were differentially expressed more than 2-fold in BoNT/A1-exposed cells when compared to non-exposed populations, and 682 genes were differentially expressed in BoNT/A ad-exposed cells. The vast majority of genes were similarly regulated in BoNT/A1 and BoNT/A ad-exposed neurons, and the few genes differentially regulated between BoNT/A1 and BoNT/A ad-exposed neurons were differentially expressed less than 3.5 fold. These data indicate a similar response of neurons to BoNT/A1 and BoNT/A ad exposure. The most highly regulated genes in cells exposed to either BoNT/A1 or BoNT/A ad are involved in neurite outgrowth and calcium channel sensitization.
Collapse
Affiliation(s)
- Jacob M. Scherf
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Xiaoyang Serene Hu
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Konstantin Ichtchenko
- Department of Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
7
|
Diaz-Mendoza MJ, Lorda-Diez CI, Montero JA, Garcia-Porrero JA, Hurle JM. Reelin/DAB-1 Signaling in the Embryonic Limb Regulates the Chondrogenic Differentiation of Digit Mesodermal Progenitors. J Cell Physiol 2014; 229:1397-404. [DOI: 10.1002/jcp.24576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 02/05/2014] [Indexed: 12/26/2022]
Affiliation(s)
| | | | | | | | - Juan M. Hurle
- Departamento de Anatomía y Biología Celular and IFIMAV; Universidad de Cantabria; Santander Spain
| |
Collapse
|
8
|
Palmer GD, Attur MG, Yang Q, Liu J, Moon P, Beier F, Abramson SB. F-spondin deficient mice have a high bone mass phenotype. PLoS One 2014; 9:e98388. [PMID: 24875054 PMCID: PMC4038615 DOI: 10.1371/journal.pone.0098388] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/02/2014] [Indexed: 01/30/2023] Open
Abstract
F-spondin is a pericellular matrix protein upregulated in developing growth plate cartilage and articular cartilage during osteoarthritis. To address its function in bone and cartilage in vivo, we generated mice that were deficient for the F-spondin gene, Spon1. Spon1−/− mice were viable and developed normally to adulthood with no major skeletal abnormalities. At 6 months, femurs and tibiae of Spon1−/− mice exhibited increased bone mass, evidenced by histological staining and micro CT analyses, which persisted up to 12 months. In contrast, no major abnormalities were observed in articular cartilage at any age group. Immunohistochemical staining of femurs and tibiae revealed increased levels of periostin, alkaline phosphate and tartrate resistant acid phosphatase (TRAP) activity in the growth plate region of Spon1−/− mice, suggesting elevated bone synthesis and turnover. However, there were no differences in serum levels of TRAP, the bone resorption marker, CTX-1, or osteoclast differentiation potential between genotypes. Knockout mice also exhibited reduced levels of TGF-β1 in serum and cultured costal chondrocytes relative to wild type. This was accompanied by increased levels of the BMP-regulatory SMADs, P-SMAD1/5 in tibiae and chondrocytes. Our findings indicate a previously unrecognized role for Spon1 as a negative regulator of bone mass. We speculate that Spon1 deletion leads to a local and systemic reduction of TGF-β levels resulting in increased BMP signaling and increased bone deposition in adult mice.
Collapse
Affiliation(s)
- Glyn D Palmer
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Mukundan G Attur
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Qing Yang
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - James Liu
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| | - Paxton Moon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Frank Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Steven B Abramson
- Division of Rheumatology, New York University School of Medicine and NYU Hospital for Joint Diseases, New York, New York, United States of America
| |
Collapse
|
9
|
Interdigital cell death in the embryonic limb is associated with depletion of Reelin in the extracellular matrix. Cell Death Dis 2013; 4:e800. [PMID: 24030152 PMCID: PMC3789180 DOI: 10.1038/cddis.2013.322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/08/2013] [Accepted: 07/30/2013] [Indexed: 01/01/2023]
Abstract
Interdigital cell death is a physiological regression process responsible for sculpturing the digits in the embryonic vertebrate limb. Changes in the intensity of this degenerative process account for the different patterns of interdigital webbing among vertebrate species. Here, we show that Reelin is present in the extracellular matrix of the interdigital mesoderm of chick and mouse embryos during the developmental stages of digit formation. Reelin is a large extracellular glycoprotein which has important functions in the developing nervous system, including neuronal survival; however, the significance of Reelin in other systems has received very little attention. We show that reelin expression becomes intensely downregulated in both the chick and mouse interdigits preceding the establishment of the areas of interdigital cell death. Furthermore, fibroblast growth factors, which are cell survival signals for the interdigital mesoderm, intensely upregulated reelin expression, while BMPs, which are proapototic signals, downregulate its expression in the interdigit. Gene silencing experiments of reelin gene or its intracellular effector Dab-1 confirmed the implication of Reelin signaling as a survival factor for the limb undifferentiated mesoderm. We found that Reelin activates canonical survival pathways in the limb mesoderm involving protein kinase B and focal adhesion kinase. Our findings support that Reelin plays a role in interdigital cell death, and suggests that anoikis (apoptosis secondary to loss of cell adhesion) may be involved in this process.
Collapse
|
10
|
Akle V, Guelin E, Yu L, Brassard-Giordano H, Slack BE, Zhdanova IV. F-spondin/spon1b expression patterns in developing and adult zebrafish. PLoS One 2012; 7:e37593. [PMID: 22768035 PMCID: PMC3387172 DOI: 10.1371/journal.pone.0037593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 04/26/2012] [Indexed: 01/24/2023] Open
Abstract
F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate.
Collapse
Affiliation(s)
- Veronica Akle
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Emmanuel Guelin
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Lili Yu
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Helena Brassard-Giordano
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Barbara E. Slack
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Irina V. Zhdanova
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cheng YC, Chen TA, Chen CY, Liang CM, Liang SM. 3'poly-G-tailed ODNs inhibit F-spondin to induce cell death and neurite retraction in rat embryonic neurons. Mol Neurobiol 2012; 45:536-49. [PMID: 22592270 DOI: 10.1007/s12035-012-8275-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
Abstract
The effects and mechanism of action of oligodeoxyribonucleotides containing CpG motif (CpG-ODNs) on neuron cells are largely unexamined. Here, we found that CpG-A ODNs but not other types of CpG-ODNs induced neurite retraction and cell apoptosis of rat embryonic neurons in a TLR9-independent manner. These effects of CpG-A ODNs were primarily due to the poly-guanosine at the 3' terminus (3'G-ODNs). Pull-down analysis showed that 3'G-ODNs associated with transcription factor Y-BOX1 (YB-1) to facilitate the translocation of YB-1 into the nucleus via the nuclear localizing sequence of YB-1. YB-1 then interacted with the promoter of F-spondin directly at -45 and -1,375 sites as demonstrated by chromatin immunoprecipitation (ChIP) analysis. Binding of YB-1 to F-spondin promoter resulted in downregulation of F-spondin expression. Overexpression of F-spondin rescued the cell death and neurite retraction induced by 3'G-ODNs in embryonic neuron cells. Taken together, these findings suggest that 3'G-ODNs enhance nucleus YB-1 to inhibit F-spondin leading to cell death and neurite retraction of embryonic neuron cells.
Collapse
Affiliation(s)
- Yung-Chih Cheng
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
12
|
Peterziel H, Müller J, Danner A, Barbus S, Liu HK, Radlwimmer B, Pietsch T, Lichter P, Schütz G, Hess J, Angel P. Expression of podoplanin in human astrocytic brain tumors is controlled by the PI3K-AKT-AP-1 signaling pathway and promoter methylation. Neuro Oncol 2012; 14:426-39. [PMID: 22394497 DOI: 10.1093/neuonc/nos055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recently, we found strong overexpression of the mucin-type glycoprotein podoplanin (PDPN) in human astrocytic brain tumors, specifically in primary glioblastoma multiforme (GB). In the current study, we show an inverse correlation between PDPN expression and PTEN levels in primary human GB and glioma cell lines, and we report elevated PDPN protein levels in the subventricular zone of brain tissue sections of PTEN-deficient mice. In human glioma cells lacking functional PTEN, reintroduction of wild-type PTEN, inhibition of the PTEN downstream target protein kinase B/AKT, or interference with transcription factor AP-1 function resulted in efficient downregulation of PDPN expression. In addition, we observed hypoxia-dependent PDPN transcriptional control and demonstrated that PDPN expression is subject to negative transcriptional regulation by promoter methylation in human GB and in glioma cell lines. Treatment of PTEN-negative glioma cells with demethylating agents induced expression of PDPN. Together, our findings show that increased PDPN expression in human GB is caused by loss of PTEN function and activation of the PI3K-AKT-AP-1 signaling pathway, accompanied by epigenetic regulation of PDPN promoter activity. Silencing of PDPN expression leads to reduced proliferation and migration of glioma cells, suggesting a functional role of PDPN in glioma progression and malignancy. Thus, specific targeting of PDPN expression and/or function could be a promising strategy for the treatment of patients with primary GB.
Collapse
Affiliation(s)
- Heike Peterziel
- Divisions of Signal Transduction and Growth Control, DKFZ/ZMBH Alliance, Heidelberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Minami SS, Hoe HS, Rebeck GW. Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergent-resistant membranes. J Neurochem 2011; 118:879-90. [PMID: 21534960 DOI: 10.1111/j.1471-4159.2011.07296.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adaptor protein Disabled1 (Dab1) interacts with amyloid precursor protein (APP) and decreases its pathological processing, an effect mediated by Fyn tyrosine kinase. Fyn is highly enriched in lipid rafts, a major site of pathological APP processing. To investigate the role of Fyn in the localization and phosphorylation of APP and Dab1 in lipid rafts, we isolated detergent-resistant membrane (DRM) fractions from wild-type and Fyn knock-out mice. In wild-type mice, all of the Fyn kinase, 17% of total APP, and 33% of total Dab1 were found in DRMs. Nearly all of the tyrosine phosphorylated forms of APP and Dab1 were in DRMs. APP and Dab1 co-precipitated both in and out of DRM fractions, indicating an association that is independent of subcellular localization. Fyn knock-out mice had decreased APP, Dab1, and tyrosine-phosphorylated Dab1 in DRMs but increased co-immunoprecipitation of DRM APP and Dab1. Expression of phosphorylation deficient APP or Dab1 constructs revealed that phosphorylation of APP increases, whereas phosphorylation of Dab1 decreases, the interaction between APP and Dab1. Consistent with these observations, Reelin treatment led to increased Dab1 phosphorylation and decreased association between APP and Dab1. Reelin also caused increased localization of APP and Dab1 to DRMs, an effect that was not seen in Fyn knock-out neurons. These findings suggest that Reelin treatment promotes the localization of APP and Dab1 to DRMs, and affects their phosphorylation by Fyn, thus regulating their interaction.
Collapse
Affiliation(s)
- S Sakura Minami
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia 20057-1464, USA
| | | | | |
Collapse
|
14
|
Reddy SS, Connor TE, Weeber EJ, Rebeck W. Similarities and differences in structure, expression, and functions of VLDLR and ApoER2. Mol Neurodegener 2011; 6:30. [PMID: 21554715 PMCID: PMC3113299 DOI: 10.1186/1750-1326-6-30] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 05/09/2011] [Indexed: 11/29/2022] Open
Abstract
Very Low Density Lipoprotein Receptor (VLDLR) and Apolipoprotein E Receptor 2 (ApoER2) are important receptors in the brain for mediating the signaling effects of the extracellular matrix protein Reelin, affecting neuronal function in development and in the adult brain. VLDLR and ApoER2 are members of the low density lipoprotein family, which also mediates the effects of numerous other extracellular ligands, including apolipoprotein E. Although VLDLR and ApoER2 are highly homologous, they differ in a number of ways, including structural differences, expression patterns, alternative splicing, and binding of extracellular and intracellular proteins. This review aims to summarize important aspects of VLDLR and ApoER2 that may account for interesting recent findings that highlight the unique functions of each receptor.
Collapse
Affiliation(s)
- Sunil S Reddy
- Department of Neuroscience; Georgetown University Medical Center, 3970 Reservoir Rd, NW, Washington, DC, 20007, USA.
| | | | | | | |
Collapse
|