1
|
Yan D, Wu X, Chen X, Wang J, Ge F, Wu M, Wu J, Zhang N, Xiao M, Wu X, Xue Q, Li X, Chen J, Wang P, Tang D, Wang X, Chen X, Liu J. Maternal linoleic acid-rich diet ameliorates bilirubin neurotoxicity in offspring mice. Cell Death Discov 2024; 10:329. [PMID: 39030174 PMCID: PMC11271588 DOI: 10.1038/s41420-024-02099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/21/2024] Open
Abstract
Hyperbilirubinaemia is a prevalent condition during the neonatal period, and if not promptly and effectively managed, it can lead to severe bilirubin-induced neurotoxicity. Sunflower seeds are a nutrient-rich food source, particularly abundant in linoleic acid. Here, we provide compelling evidence that lactating maternal mice fed a sunflower seed diet experience enhanced neurological outcomes and increased survival rates in hyperbilirubinemic offspring. We assessed histomorphological indices, including cerebellar Nissl staining, and Calbindin staining, and hippocampal hematoxylin and eosin staining. Furthermore, we observed the transmission of linoleic acid, enriched in sunflower seeds, to offspring through lactation. The oral administration of linoleic acid-rich sunflower seed oil by lactating mothers significantly prolonged the survival time of hyperbilirubinemic offspring mice. Mechanistically, linoleic acid counteracts the bilirubin-induced accumulation of ubiquitinated proteins and neuronal cell death by activating autophagy. Collectively, these findings elucidate the novel role of a maternal linoleic acid-supplemented diet in promoting child health.
Collapse
Affiliation(s)
- Ding Yan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - XinTian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xi Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jiangtuan Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Feifei Ge
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Meixuan Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jiawen Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Na Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Min Xiao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xueheng Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Qian Xue
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Xiaofen Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Jinghong Chen
- Central Laboratory, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Ping Wang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xin Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Xin Chen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China.
| |
Collapse
|
2
|
Pranty AI, Wruck W, Adjaye J. Free Bilirubin Induces Neuro-Inflammation in an Induced Pluripotent Stem Cell-Derived Cortical Organoid Model of Crigler-Najjar Syndrome. Cells 2023; 12:2277. [PMID: 37759499 PMCID: PMC10527749 DOI: 10.3390/cells12182277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Bilirubin-induced neurological damage (BIND), which might progress to kernicterus, occurs as a consequence of defects in the bilirubin conjugation machinery, thus enabling albumin-unbound free bilirubin (BF) to cross the blood-brain barrier and accumulate within. A defect in the UGT1A1 enzyme-encoding gene, which is directly responsible for bilirubin conjugation, can cause Crigler-Najjar syndrome (CNS) and Gilbert's syndrome. We used human-induced pluripotent stem cell (hiPSC)-derived 3D brain organoids to model BIND in vitro and unveil the molecular basis of the detrimental effects of BF in the developing human brain. Healthy and patient-derived iPSCs were differentiated into day-20 brain organoids, and then stimulated with 200 nM BF. Analyses at 24 and 72 h post-treatment point to BF-induced neuro-inflammation in both cell lines. Transcriptome, associated KEGG, and Gene Ontology analyses unveiled the activation of distinct inflammatory pathways, such as cytokine-cytokine receptor interaction, MAPK signaling, and NFκB activation. Furthermore, the mRNA expression and secretome analysis confirmed an upregulation of pro-inflammatory cytokines such as IL-6 and IL-8 upon BF stimulation. This novel study has provided insights into how a human iPSC-derived 3D brain organoid model can serve as a prospective platform for studying the etiology of BIND kernicterus.
Collapse
Affiliation(s)
- Abida Islam Pranty
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - Wasco Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
| | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Medical Faculty, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany; (A.I.P.); (W.W.)
- Zayed Centre for Research into Rare Diseases in Children (ZCR), University College London (UCL)—EGA Institute for Women’s Health, 20 Guilford Street, London WC1N 1DZ, UK
| |
Collapse
|
3
|
Sun S, Yu S, Yu H, Yao G, Guo X, Zhao F, Li J, Wang P. The pyroptosis mechanism of ototoxicity caused by unconjugated bilirubin in neonatal hyperbilirubinemia. Biomed Pharmacother 2023; 165:115162. [PMID: 37467648 DOI: 10.1016/j.biopha.2023.115162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
When activated by unconjugated bilirubin (UCB), inflammatory mediators such as IL - 18 and TNF contribute to the neurotoxicity and ototoxicity observed in severe neonatal hyperbilirubinemia. However, in cell and molecular level, the regulation and mechanism of UCB-induced ototoxicity are remained unclear. In this study, 7-day-old mammary rats were exposed to various concentrations of UCB to imitate the infant auditory damage. The auditory brainstem response result (ABR) indicated severe hearing loss, which occurred with increasing concentration. Morphological analysis of organotypic cochlear cultures treated with different concentrations of UCB indicated that auditory nerve fibers (ANF) were demyelinated and the density of spiral ganglion neurons (SGN) were decreased. In addition, HEI-OC1 cells treated with different concentrations of UCB showed severe necrosis by Flow Cytometry. The morphologic feature of pyroptosis has been observed by scanning electronic microscope. Cleaved Caspase-1, GSDMD and NLRP3 expression were significantly increased in cochlear explants with UCB-induced. To further clarify the molecular mechanism of UCB-induced inner ear cell pyroptosis, specific inhibitors of pyroptosis were applied, the protein associated with pyrotosis such as Cleaved Caspase-1, GSDMD, ASC, IL-18 and NLRP3 were significantly lower than the group with UCB alone. All the data above indicated that ERK /NLRP3/GSDMD signaling pathway involved in UCB-induced ototoxicity.
Collapse
Affiliation(s)
- Shihan Sun
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China; Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Shuyuan Yu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Hong Yu
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Gang Yao
- Department of Neurology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Xinyi Guo
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China
| | - Fengyang Zhao
- Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Bethune First Clinical Medical College, Jilin University, Changchun, Jilin, China
| | - Ping Wang
- Department of Otolaryngology-Head and Neck Surgery, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
4
|
Liu HW, Gong LN, Lai K, Yu XF, Liu ZQ, Li MX, Yin XL, Liang M, Shi HS, Jiang LH, Yang W, Shi HB, Wang LY, Yin SK. Bilirubin gates the TRPM2 channel as a direct agonist to exacerbate ischemic brain damage. Neuron 2023; 111:1609-1625.e6. [PMID: 36921602 DOI: 10.1016/j.neuron.2023.02.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Stroke prognosis is negatively associated with an elevation of serum bilirubin, but how bilirubin worsens outcomes remains mysterious. We report that post-, but not pre-, stroke bilirubin levels among inpatients scale with infarct volume. In mouse models, bilirubin increases neuronal excitability and ischemic infarct, whereas ischemic insults induce the release of endogenous bilirubin, all of which are attenuated by knockout of the TRPM2 channel or its antagonist A23. Independent of canonical TRPM2 intracellular agonists, bilirubin and its metabolic derivatives gate the channel opening, whereas A23 antagonizes it by binding to the same cavity. Knocking in a loss of binding point mutation for bilirubin, TRPM2-D1066A, effectively antagonizes ischemic neurotoxicity in mice. These findings suggest a vicious cycle of stroke injury in which initial ischemic insults trigger the release of endogenous bilirubin from injured cells, which potentially acts as a volume neurotransmitter to activate TRPM2 channels, aggravating Ca2+-dependent brain injury.
Collapse
Affiliation(s)
- Han-Wei Liu
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Li-Na Gong
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ke Lai
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Xia-Fei Yu
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhen-Qi Liu
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ming-Xian Li
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xin-Lu Yin
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Head & Neck Surgery, Renji Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Min Liang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Otorhinolaryngology Head & Neck Surgery, Xinhua Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hao-Song Shi
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Lin-Hua Jiang
- Department of Physiology and Pathophysiology, School of Basic Sciences, Xinxiang Medical University, Xinxiang, Henan Province 453003, China; School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Wei Yang
- Department of Biophysics, Institute of Neuroscience, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Lu-Yang Wang
- Program in Neuroscience and Mental Health, SickKids Research Institute, Toronto, ON M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Shan-Kai Yin
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital and Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
5
|
Lilimpakis K, Tsepelaki A, Kalaitzopoulou E, Zisimopoulos D, Papadea P, Skipitari M, Varemmenou A, Aggelis A, Vagianos C, Constantoyannis C, Georgiou CD. Time progression and regional expression of brain oxidative stress induced by obstructive jaundice in rats. Lab Anim Res 2022; 38:35. [PMID: 36434681 PMCID: PMC9701014 DOI: 10.1186/s42826-022-00146-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Obstructive jaundice induces oxidative changes in the brain parenchyma and plays significant role in clinical manifestations of hepatic encephalopathy. We aim to study the progression of the brain oxidative status over time and the differences of its pattern over the hemispheres, the brainstem and the cerebellum. We use an experimental model in rats and measuring the oxidative stress (OS) specific biomarkers protein malondialdehyde (PrMDA) and protein carbonyls (PrC = O). RESULTS Hyperbilirubinemia has been confirmed in all study groups as the result of common bile duct obstruction. We confirmed increase in both PrMDA and PrC = O biomarkers levels with different type of changes over time. We also confirmed that the oxidative process develops differently in each of the brain areas in study. CONCLUSIONS The present study confirms the progressive increase in OS in all brain areas studied using markers indicative of cumulative protein modification.
Collapse
Affiliation(s)
- Konstantinos Lilimpakis
- grid.11047.330000 0004 0576 5395Department of Medicine, Department of Neurosurgery, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece ,grid.416564.40000 0004 0622 585XDepartment of Neurosurgery, St. Savvas Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Aidona Tsepelaki
- grid.5216.00000 0001 2155 0800Department of Medicine, Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527 Athens, Goudi Greece
| | - Electra Kalaitzopoulou
- grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Dimitrios Zisimopoulos
- grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Polyxeni Papadea
- grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Marianna Skipitari
- grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Athina Varemmenou
- grid.11047.330000 0004 0576 5395Department of Medicine, Department of Neurosurgery, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Apostolos Aggelis
- grid.5216.00000 0001 2155 0800Department of Medicine, Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527 Athens, Goudi Greece
| | - Constantine Vagianos
- grid.5216.00000 0001 2155 0800Department of Medicine, Second Department of Propaedeutic Surgery, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527 Athens, Goudi Greece
| | - Constantine Constantoyannis
- grid.11047.330000 0004 0576 5395Department of Medicine, Department of Neurosurgery, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| | - Christos D. Georgiou
- grid.11047.330000 0004 0576 5395Department of Biology, University of Patras, University Campus, GR26504 Rion, Achaia Patras, Greece
| |
Collapse
|
6
|
Models of bilirubin neurological damage: lessons learned and new challenges. Pediatr Res 2022:10.1038/s41390-022-02351-x. [PMID: 36302856 DOI: 10.1038/s41390-022-02351-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Jaundice (icterus) is the visible manifestation of the accumulation of bilirubin in the tissue and is indicative of potential toxicity to the brain. Since its very first description more than 2000 years ago, many efforts have been undertaken to understand the molecular determinants of bilirubin toxicity to neuronal cells to reduce the risk of neurological sequelae through the use of available chemicals and in vitro, ex vivo, in vivo, and clinical models. Although several studies have been performed, important questions remain unanswered, such as the reasons for regional sensitivity and the interplay with brain development. The number of new molecular effects identified has increased further, which has added even more complexity to the understanding of the condition. As new research challenges emerged, so does the need to establish solid models of prematurity. METHODS This review critically summarizes the key mechanisms of severe neonatal hyperbilirubinemia and the use of the available models and technologies for translational research. IMPACT We critically review the conceptual dogmas and models used for studying bilirubin-induced neurotoxicity. We point out the pitfalls and translational gaps, and suggest new clinical research challenges. We hope to inform researchers on the pro and cons of the models used, and to help direct their experimental focus in a most translational research.
Collapse
|
7
|
Pranty AI, Shumka S, Adjaye J. Bilirubin-Induced Neurological Damage: Current and Emerging iPSC-Derived Brain Organoid Models. Cells 2022; 11:2647. [PMID: 36078055 PMCID: PMC9454749 DOI: 10.3390/cells11172647] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/04/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Bilirubin-induced neurological damage (BIND) has been a subject of studies for decades, yet the molecular mechanisms at the core of this damage remain largely unknown. Throughout the years, many in vivo chronic bilirubin encephalopathy models, such as the Gunn rat and transgenic mice, have further elucidated the molecular basis of bilirubin neurotoxicity as well as the correlations between high levels of unconjugated bilirubin (UCB) and brain damage. Regardless of being invaluable, these models cannot accurately recapitulate the human brain and liver system; therefore, establishing a physiologically recapitulating in vitro model has become a prerequisite to unveil the breadth of complexities that accompany the detrimental effects of UCB on the liver and developing human brain. Stem-cell-derived 3D brain organoid models offer a promising platform as they bear more resemblance to the human brain system compared to existing models. This review provides an explicit picture of the current state of the art, advancements, and challenges faced by the various models as well as the possibilities of using stem-cell-derived 3D organoids as an efficient tool to be included in research, drug screening, and therapeutic strategies for future clinical applications.
Collapse
Affiliation(s)
| | | | - James Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Faculty of Medicine, Heinrich-Heine University, Moorenstrasse 5, 40225 Dusseldorf, Germany
| |
Collapse
|
8
|
Wang ZX, Su R, Li H, Dang P, Zeng TA, Chen DM, Wu JG, Zhang DL, Ma HL. Changes in Hippocampus and Amygdala Volume with Hypoxic Stress Related to Cardiorespiratory Fitness under a High-Altitude Environment. Brain Sci 2022; 12:brainsci12030359. [PMID: 35326315 PMCID: PMC8946638 DOI: 10.3390/brainsci12030359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
The morphology of the hippocampus and amygdala can be significantly affected by a long-term hypoxia-induced inflammatory response. Cardiorespiratory fitness (CRF) has a significant effect on the neuroplasticity of the hippocampus and amygdala by countering inflammation. However, the role of CRF is still largely unclear at high altitudes. Here, we investigated brain limbic volumes in participants who had experienced long-term hypoxia exposure in Tibet (3680 m), utilizing high-resolution structural images to allow the segmentation of the hippocampus and amygdala into their constituent substructures. We recruited a total of 48 participants (48 males; aged = 20.92 ± 1.03 years) to undergo a structural 3T MRI, and the levels of maximal oxygen uptake (VO2max) were measured using a cardiorespiratory function test. Inflammatory biomarkers were also collected. The participants were divided into two groups according to the levels of median VO2max, and the analysis showed that the morphological indexes of subfields of the hippocampus and amygdala of the lower CRF group were decreased when compared with the higher CRF group. Furthermore, the multiple linear regression analysis showed that there was a higher association with inflammatory factors in the lower CRF group than that in the higher CRF group. This study suggested a significant association of CRF with hippocampus and amygdala volume, which may be related to hypoxic stress in high-altitude environments. A better CRF reduced physiological stress and a decrease in the inflammatory response was observed, which may be related to the increased oxygen transport capacity of the body.
Collapse
Affiliation(s)
- Zhi-Xin Wang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Rui Su
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Hao Li
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Peng Dang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Tong-Ao Zeng
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Dong-Mei Chen
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
| | - Jian-Guo Wu
- Management Department, Tibet Police College, Lhasa 850012, China;
| | - De-Long Zhang
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
- Key Laboratory of Brain, Cognition and Education Sciences, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Ministry of Education, School of Psychology, South China Normal University, Guangzhou 510631, China
- Correspondence: (D.-L.Z.); (H.-L.M.)
| | - Hai-Lin Ma
- Plateau Brain Science Research Center, Tibet University/South China Normal University, Lhasa 850012, China; (Z.-X.W.); (R.S.); (H.L.); (P.D.); (T.-A.Z.); (D.-M.C.)
- Correspondence: (D.-L.Z.); (H.-L.M.)
| |
Collapse
|
9
|
Amini N, Bakhshayesh Eghbali B, Ramezani S, Hosseinpour Sarmadi V, Brouki Milan P, Ashraf SS, Larijani G, Naderi Gharahgheshlagh S, Derakhshanmehr B, Mohebbi SL, Joghataei MT. Animal Kernicterus Models: Progress and Challenges. Brain Res 2021; 1770:147624. [PMID: 34419443 DOI: 10.1016/j.brainres.2021.147624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 02/03/2023]
Abstract
Kernicterus is a leading cause of neonatal death throughout the world, especially in low-middle-income countries. It is developed by an unconjugated hyperbilirubinemia in the blood and brain tissue, triggering pathological processes that spawn neurotoxicity and neurodegeneration. However, the biological mechanism (s) of bilirubin-induced neurotoxicity and Kernicterus development remain to be well elucidated. Likewise, a practical therapeutic approach for human Kernicterus has yet to be found. Undoubtedly, animal models of Kernicterus can be helpful in the identification of underlying biological processes of hyperbilirubinemia evolution to Kernicterus, as well as the evaluation of various treatments efficacy in preclinical studies. More importantly, establishing an animal model that can mimic the Kernicterus and its behavioral, neuro-histological, and hematological manifestations is a severe priority in preclinical studies. So far, several Kernicterus animal models have been established that could partially mimic one or more clinical and paraclinical signs of human Kernicterus. The present study aimed to review all methods modeling Kernicterus with a focus on their potentials and shortcomings and subsequently provide the optimal methods for an ideal Kernicterus animal model.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sara Ramezani
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran; Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Lena Mohebbi
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran; Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Cortesi V, Manzoni F, Raffaeli G, Cavallaro G, Fattizzo B, Amelio GS, Gulden S, Amodeo I, Giannotta JA, Mosca F, Ghirardello S. Severe Presentation of Congenital Hemolytic Anemias in the Neonatal Age: Diagnostic and Therapeutic Issues. Diagnostics (Basel) 2021; 11:diagnostics11091549. [PMID: 34573891 PMCID: PMC8467765 DOI: 10.3390/diagnostics11091549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Congenital hemolytic anemias (CHAs) are a group of diseases characterized by premature destruction of erythrocytes as a consequence of intrinsic red blood cells abnormalities. Suggestive features of CHAs are anemia and hemolysis, with high reticulocyte count, unconjugated hyperbilirubinemia, increased lactate dehydrogenase (LDH), and reduced haptoglobin. The peripheral blood smear can help the differential diagnosis. In this review, we discuss the clinical management of severe CHAs presenting early on in the neonatal period. Appropriate knowledge and a high index of suspicion are crucial for a timely differential diagnosis and management. Here, we provide an overview of the most common conditions, such as glucose-6-phosphate dehydrogenase deficiency, pyruvate kinase deficiency, and hereditary spherocytosis. Although rare, congenital dyserythropoietic anemias are included as they may be suspected in early life, while hemoglobinopathies will not be discussed, as they usually manifest at a later age, when fetal hemoglobin (HbF) is replaced by the adult form (HbA).
Collapse
Affiliation(s)
- Valeria Cortesi
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Francesca Manzoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Genny Raffaeli
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
- Correspondence: ; Tel.: +39-(25)-5032234; Fax: +39-(25)-503221
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Bruno Fattizzo
- UO Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.F.); (J.A.G.)
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy
| | - Giacomo Simeone Amelio
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Silvia Gulden
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Ilaria Amodeo
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Juri Alessandro Giannotta
- UO Ematologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (B.F.); (J.A.G.)
| | - Fabio Mosca
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (V.C.); (F.M.); (G.S.A.); (S.G.); (F.M.)
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (G.C.); (I.A.)
| | - Stefano Ghirardello
- Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| |
Collapse
|
11
|
Vaz AR, Falcão AS, Scarpa E, Semproni C, Brites D. Microglia Susceptibility to Free Bilirubin Is Age-Dependent. Front Pharmacol 2020; 11:1012. [PMID: 32765258 PMCID: PMC7381152 DOI: 10.3389/fphar.2020.01012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Increased concentrations of unconjugated bilirubin (UCB), namely its free fraction (Bf), in neonatal life may cause transient or definitive injury to neurons and glial cells. We demonstrated that UCB damages neurons and glial cells by compromising oligodendrocyte maturation and myelination, and by activating astrocytes and microglia. Immature neurons and astrocytes showed to be especially vulnerable. However, whether microglia susceptibility to UCB is also age-related was never investigated. We developed a microglia culture model in which cells at 2 days in vitro (2DIV) revealed to behave as the neonatal microglia (amoeboid/reactive cells), in contrast with those at 16DIV microglia that performed as aged cells (irresponsive/dormant cells). Here, we aimed to unveil whether UCB-induced toxicity diverged from the young to the long-cultured microglia. Cells were isolated from the cortical brain of 1- to 2-day-old CD1 mice and incubated for 24 h with 50/100 nM Bf levels, which were associated to moderate and severe neonatal hyperbilirubinemia, respectively. These concentrations of Bf induced early apoptosis and amoeboid shape in 2DIV microglia, while caused late apoptosis in 16DIV cells, without altering their morphology. CD11b staining increased in both, but more markedly in 2DIV cells. Likewise, the gene expression of HMGB1, a well-known alarmin, as well as HMGB1 and GLT-1–positive cells, were enhanced as compared to long-maturated microglia. The CX3CR1 reduction in 2DIV microglia was opposed to the 16DIV cells and suggests a preferential Bf-induced sickness response in younger cells. In conformity, increased mitochondrial mass and NO were enhanced in 2DIV cells, but unchanged or reduced, respectively, in the 16DIV microglia. However, 100 nM Bf caused iNOS gene overexpression in 2DIV and 16DIV cells. While only arginase 1/IL-1β gene expression levels increased upon 50/100 nM Bf treatment in long-maturated microglia, MHCII/arginase 1/TNF-α/IL-1β/IL-6 (>10-fold) were upregulated in the 2DIV microglia. Remarkably, enhanced inflammatory-associated microRNAs (miR-155/miR-125b/miR-21/miR-146a) and reduced anti-inflammatory miR-124 were found in young microglia by both Bf concentrations, while remained unchanged (miR/21/miR-125b) or decreased (miR-155/miR-146a/miR-124) in aged cells. Altogether, these findings support the neurodevelopmental susceptibilities to UCB-induced neurotoxicity, the most severe disabilities in premature babies, and the involvement of immune-inflammation neonatal microglia processes in poorer outcomes.
Collapse
Affiliation(s)
- Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Sofia Falcão
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Chronic Diseases Research Centre (CEDOC), Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Eleonora Scarpa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Carlotta Semproni
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
12
|
Chu S, Maples MM, Bryant SJ. Cell encapsulation spatially alters crosslink density of poly(ethylene glycol) hydrogels formed from free-radical polymerizations. Acta Biomater 2020; 109:37-50. [PMID: 32268243 PMCID: PMC7649065 DOI: 10.1016/j.actbio.2020.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 11/26/2022]
Abstract
Photopolymerizable poly(ethylene glycol) (PEG) hydrogels are a promising platform for chondrocyte encapsulation and cartilage tissue engineering. This study demonstrates that during the process of encapsulation, chondrocytes alter the formation of PEG hydrogels leading to a reduction in the bulk and local hydrogel crosslink density. Freshly isolated chondrocytes were shown to interact with hydrogel precursors, in part through thiol-mediated events between dithiol crosslinkers and cell surface free thiols, depleting crosslinker concentration and causing a reduction in the bulk hydrogel crosslink density. This effect was more pronounced with increasing cell density at the time of encapsulation. Encapsulation of chondrocytes in fluorescently labeled hydrogels exhibited a gradient in hydrogel density around the cell, which was abrogated by treatment of the cells with the antioxidant estradiol prior to encapsulation. This gradient led to spatial variations in the degradation behavior of a hydrolytically degradable PEG hydrogel, creating regions devoid of hydrogel surrounding cells. Collectively, findings from this study indicate that the antioxidant defense mechanisms in chondrocytes alter the resultant properties of PEG hydrogels formed by free-radical polymerizations. These interactions will have a significant impact on tissue engineering, affecting the local microenvironment around cells and how tissue grows within the hydrogels. STATEMENT OF SIGNIFICANCE: Cell encapsulations in synthetic hydrogels formed by free-radical polymerizations offer numerous benefits for tissue engineering. Herein, we studied cartilage cells and identified that during encapsulation, cells interfered with hydrogel formation through two distinct mechanisms. Thiol-mediated events between monomers led to monomer depletion and a lower crosslinked hydrogel. Cells' antioxidant defense mechanisms interfered with free-radicals and inhibited hydrogel formation near the cell. These cell-mediated effects led to softer hydrogels and created unique hydrogel degradations patterns causing rapid degradation around the cells. The latter has benefits for tissue engineering, where these regions provide space for tissue growth. Overall, this study demonstrates that cells play a key role in how the hydrogel structure forms when cells are present.
Collapse
Affiliation(s)
- Stanley Chu
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Mollie M Maples
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, United States; Materials Science and Engineering Program, University of Colorado, Boulder, CO, United States; Biofrontiers Institute, University of Colorado, Boulder, CO, United States.
| |
Collapse
|
13
|
Experimental models assessing bilirubin neurotoxicity. Pediatr Res 2020; 87:17-25. [PMID: 31493769 DOI: 10.1038/s41390-019-0570-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/29/2019] [Accepted: 08/16/2019] [Indexed: 02/08/2023]
Abstract
The molecular and cellular events leading to bilirubin-induced neurotoxicity, the mechanisms regulating liver and intestine expression in neonates, and alternative pathways of bilirubin catabolism remain incompletely defined. To answer these questions, researchers have developed a number of model systems to closely recapitulate the main characteristics of the disease, ranging from tissue cultures to engineered mouse models. In the present review we describe in vitro, ex vivo, and in vivo models developed to study bilirubin metabolism and neurotoxicity, with a special focus on the use of engineered animal models. In addition, we discussed the most recent studies related to potential therapeutic approaches to treat neonatal hyperbilirubinemia, ranging from anti-inflammatory drugs, activation of nuclear receptor pathways, blockade of bilirubin catabolism, and stimulation of alternative bilirubin-disposal pathways.
Collapse
|
14
|
Yan P, Zhang Z, Miao Y, Xu Y, Zhu J, Wan Q. Physiological serum total bilirubin concentrations were inversely associated with diabetic peripheral neuropathy in Chinese patients with type 2 diabetes: a cross-sectional study. Diabetol Metab Syndr 2019; 11:100. [PMID: 31827625 PMCID: PMC6889527 DOI: 10.1186/s13098-019-0498-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/21/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although bilirubin has been generally regarded as a waste with potential neurotoxicity at high levels, a few clinical studies suggest a potential protective role of physiological serum total bilirubin (TBIL) concentrations in diabetic peripheral neuropathy (DPN). However, the pathological mechanisms underlying the relationship remain poorly understood. The objective of this study was to explore the relationship between serum TBIL and DPN, and clinical and laboratory parameters. METHODS Serum TBIL was measured in 1342 patients with type 2 diabetes mellitus (T2DM). The relationship between TBIL and DPN and other parameters was analyzed. RESULTS Serum TBIL levels were significantly lower in T2DM patients with DPN, and were independently and negatively associated with vibration perception thresholds (VPT) (P < 0.01 or P < 0.05). Moreover, serum TBIL was negatively associated with neutrophil and white blood cell counts, fibrinogen, and the prevalence of hypertension, diabetic foot ulceration, peripheral arterial disease, diabetic nephropathy and diabetic retinopathy (P < 0.01 or P < 0.05). Additionally, serum TBIL was an independent decisive factor for the presence of DPN after multivariate adjustment. Compared to the highest quartile of TBIL, the lower quartiles were associated with a significantly increased risk of DPN (P < 0.01). Last but most importantly, the analysis of receiver operating characteristic curves revealed that the best cutoff value for serum TBIL to predict DPN was 10.75 μmol/L (sensitivity 54.6% and specificity 62.9%). CONCLUSIONS These findings suggest that lower physiological serum TBIL may be associated with the presence of DPN due to its decreased anti-inflammatory and vascular protective effects.
Collapse
Affiliation(s)
- Pijun Yan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Zhihong Zhang
- Department of General Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Ying Miao
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Yong Xu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Jianhua Zhu
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| | - Qin Wan
- Department of Endocrinology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan China
| |
Collapse
|
15
|
Ca 2+-dependent recruitment of voltage-gated sodium channels underlies bilirubin-induced overexcitation and neurotoxicity. Cell Death Dis 2019; 10:774. [PMID: 31601780 PMCID: PMC6787254 DOI: 10.1038/s41419-019-1979-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 02/08/2023]
Abstract
Neonatal jaundice is prevalent among newborns and can lead to severe neurological deficits, particularly sensorimotor dysfunction. Previous studies have shown that bilirubin (BIL) enhances the intrinsic excitability of central neurons and this can potentially contribute to their overexcitation, Ca2+ overload, and neurotoxicity. However, the cellular mechanisms underlying elevated neuronal excitability remain unknown. By performing patch-clamp recordings from neonatal neurons in the rat medial vestibular nucleus (MVN), a crucial relay station for locomotor and balance control, we found that BIL (3 μM) drastically increases the spontaneous firing rates by upregulating the current-mediated voltage-gated sodium channels (VGSCs), while shifting their voltage-dependent activation toward more hyperpolarized potentials. Immunofluorescence labeling and western immunoblotting with an anti-NaV1.1 antibody, revealed that BIL elevates the expression of VGSCs by promoting their recruitment to the membrane. Furthermore, we found that this VGSC-trafficking process is Ca2+ dependent because preloading MVN neurons with the Ca2+ buffer BAPTA-AM, or exocytosis inhibitor TAT-NSF700, prevents the effects of BIL, indicating the upregulated activity and density of functional VGSCs as the core mechanism accountable for the BIL-induced overexcitation of neonatal neurons. Most importantly, rectification of such overexcitation with a low dose of VGSC blocker lidocaine significantly attenuates BIL-induced cell death. We suggest that this enhancement of VGSC currents directly contributes to the vulnerability of neonatal brain to hyperbilirubinemia, implicating the activity and trafficking of NaV1.1 channels as a potential target for neuroprotection in cases of severe jaundice.
Collapse
|
16
|
Dani C, Pratesi S, Ilari A, Lana D, Giovannini MG, Nosi D, Buonvicino D, Landucci E, Bani D, Mannaioni G, Gerace E. Neurotoxicity of Unconjugated Bilirubin in Mature and Immature Rat Organotypic Hippocampal Slice Cultures. Neonatology 2019; 115:217-225. [PMID: 30645995 DOI: 10.1159/000494101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/27/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND The physiopathology of bilirubin-induced neurological disorders is not completely understood. OBJECTIVES The aim of our study was to assess the effect on bilirubin neurotoxicity of the maturity or immaturity of exposed cells, the influence of different unconjugated bilirubin (UCB) and human serum albumin (HSA) concentrations, and time of UCB exposure. METHODS Organotypic hippocampal slices were exposed for 48 h to different UCB and HSA concentrations after 14 (mature) or 7 (immature) days of in vitro culture. Immature slices were also exposed to UCB and HSA for 72 h. The different effects of exposure time to UCB on neurons and astrocytes were evaluated. RESULTS We found that 48 h of UCB exposure was neurotoxic for mature rat organotypic hippocampal slices while 72 h of exposure was neurotoxic for immature slices. Forty-eight-hour UCB exposure was toxic for astrocytes but not for neurons, while 72-h exposure was toxic for both astrocytes and neurons. HSA prevented UCB toxicity when the UCB:HSA molar ratio was ≤1 in both mature and immature slices. CONCLUSIONS We confirmed UCB neurotoxicity in mature and immature rat hippocampal slices, although immature ones were more resistant. HSA was effective in preventing UCB neurotoxicity in both mature and immature rat hippocampal slices.
Collapse
Affiliation(s)
- Carlo Dani
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy, .,Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy,
| | - Simone Pratesi
- Division of Neonatology, Careggi University Hospital of Florence, Florence, Italy
| | - Alice Ilari
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Daniele Buonvicino
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Daniele Bani
- Department of Clinical and Experimental Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Elisabetta Gerace
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| |
Collapse
|
17
|
Kuter N, Aysit-Altuncu N, Ozturk G, Ozek E. The Neuroprotective Effects of Hypothermia on Bilirubin-Induced Neurotoxicity in vitro. Neonatology 2018; 113:360-365. [PMID: 29510380 DOI: 10.1159/000487221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND In high-risk newborns indirect hyperbilirubinemia can lead to acute bilirubin encephalopathy and kernicterus. Despite the current therapeutic modalities, preventing or reversing the neurotoxicity cannot be achieved in all infants. OBJECTIVE To investigate the neuroprotective effects of hypothermia on bilirubin-induced toxicity in primary mouse neuronal cell cultures. METHODS Hippocampal cell cultures, isolated from newborn mouse brains, were incubated with unconjugated bilirubin (UCB) at 3 days in vitro (DIV) and immediately exposed to varying degrees of hypothermia. Neuronal viability and mitochondrial health were compared between the normothermia (37°C), mild (34°C), moderate (32°C) and severe (29°C) hypothermia groups. Confocal microscopy and fluorescent dyes (propidium iodide and JC-1) were used for cell evaluation. To determine the late effects of hypothermia, the cultures were also examined at 7 DIV after returning to normothermic conditions. RESULTS Induction of any degree of hypothermia increased the neuronal survival after 24 h of UCB treatment. Neuronal death rate and mitochondrial membrane potential loss were lowest in the neurons exposed to moderate hypothermia. We also observed that mild to moderate hypothermia had late protective effects on neuronal cell viability, whereas deep hypothermia did not improve neuronal survival. CONCLUSIONS We conclude that hypothermia reduces the cell death induced by bilirubin toxicity in neuronal cells. Although moderate hypothermia has a better outcome than mild hypothermia, deep hypothermia as low as 29°C has adverse effects on neuronal cell viability.
Collapse
Affiliation(s)
- Nazli Kuter
- Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nese Aysit-Altuncu
- Department of Physiology, School of Medicine, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey
| | - Gurkan Ozturk
- Regenerative and Restorative Medicine Research Center (REMER), Istanbul, Turkey.,Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Eren Ozek
- Division of Neonatology, Department of Pediatrics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
18
|
Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro AF. Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1 -/- mouse model. J Neuroinflammation 2017; 14:64. [PMID: 28340583 PMCID: PMC5366125 DOI: 10.1186/s12974-017-0838-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 03/12/2017] [Indexed: 12/14/2022] Open
Abstract
Background Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced neurological damage and eventually death by kernicterus. Bilirubin neurotoxicity is characterized by a wide array of neurological deficits, including irreversible abnormalities in motor, sensitive and cognitive functions, due to bilirubin accumulation in the brain. Despite the abundant literature documenting the in vitro and in vivo toxic effects of bilirubin, it is unclear which molecular and cellular events actually characterize bilirubin-induced neurodegeneration in vivo. Methods We used a mouse model of neonatal hyperbilirubinemia to temporally and spatially define the response of the developing cerebellum to the bilirubin insult. Results We showed that the exposure of developing cerebellum to sustained bilirubin levels induces the activation of oxidative stress, ER stress and inflammatory markers at the early stages of the disease onset. In particular, we identified TNFα and NFKβ as key mediators of bilirubin-induced inflammatory response. Moreover, we reported that M1 type microglia is increasingly activated during disease progression. Failure to counteract this overwhelming stress condition resulted in the induction of the apoptotic pathway and the generation of the glial scar. Finally, bilirubin induced the autophagy pathway in the stages preceding death of the animals. Conclusions This study demonstrates that inflammation is a key contributor to bilirubin damage that cooperates with ER stress in the onset of neurotoxicity. Pharmacological modulation of the inflammatory pathway may be a potential intervention target to ameliorate neonatal lethality in Ugt1-/- mice. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0838-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Vodret
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy
| | - Giulia Bortolussi
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy.
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic.,Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University, 120 00, Prague, Czech Republic
| | - Andrés F Muro
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149, Trieste, Italy.
| |
Collapse
|
19
|
Qaisiya M, Brischetto C, Jašprová J, Vitek L, Tiribelli C, Bellarosa C. Bilirubin-induced ER stress contributes to the inflammatory response and apoptosis in neuronal cells. Arch Toxicol 2016; 91:1847-1858. [PMID: 27578021 DOI: 10.1007/s00204-016-1835-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Unconjugated bilirubin (UCB) in newborns may lead to bilirubin neurotoxicity. Few studies investigated the activation of endoplasmic reticulum stress (ER stress) by UCB. We performed an in vitro comparative study using undifferentiated SH-SY5Y, differentiated GI-ME-N neuronal cells and human U87 astrocytoma cells. ER stress and its contribution to inflammation and apoptosis induced by UCB were analyzed. Cytotoxicity, ER stress and inflammation were observed only in neuronal cells, despite intracellular UCB accumulation in all three cell types. UCB toxicity was enhanced in undifferentiated SH-SY5Y cells and correlated with a higher mRNA expression of pro-apoptotic CHOP. Mouse embryonic fibroblast knockout for CHOP and CHOP siRNA-silenced SH-SY5Y increased cells viability upon UCB exposure. In SH-SY5Y, ER stress inhibition by 4-phenylbutyric acid reduced UCB-induced apoptosis and decreased the cleaved forms of caspase-3 and PARP proteins. Reporter gene assay and PERK siRNA showed that IL-8 induction by UCB is transcriptionally regulated by NFкB and PERK signaling. These data suggest that ER stress has an important role in the UCB-induced inflammation and apoptosis, and that targeting ER stress may represent a potential therapeutic approach to decrease UCB-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohammed Qaisiya
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.
| | - Cristina Brischetto
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Libor Vitek
- Institute of Medical Biochemistry and Laboratory Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic.,4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University in Prague, 12000, Prague, Czech Republic
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy.,Department of Medical Sciences, University of Trieste, 34149, Trieste, Italy
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, AREA Science Park Basovizza Bldg Q, 34149, Trieste, Italy
| |
Collapse
|
20
|
Cunningham AD, Hwang S, Mochly-Rosen D. Glucose-6-Phosphate Dehydrogenase Deficiency and the Need for a Novel Treatment to Prevent Kernicterus. Clin Perinatol 2016; 43:341-54. [PMID: 27235212 PMCID: PMC8265784 DOI: 10.1016/j.clp.2016.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hyperbilirubinemia occurs frequently in newborns, and in severe cases can progress to kernicterus and permanent developmental disorders. Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human enzymopathies, is a major risk factor for hyperbilirubinemia and greatly increases the risk of kernicterus even in the developed world. Therefore, a novel treatment for kernicterus is needed, especially for G6PD-deficient newborns. Oxidative stress is a hallmark of bilirubin toxicity in the brain. We propose that the activation of G6PD via a small molecule chaperone is a potential strategy to increase endogenous defense against bilirubin-induced oxidative stress and prevent kernicterus.
Collapse
Affiliation(s)
- Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Sunhee Hwang
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
21
|
Cakir M, Calikoglu C, Yılmaz A, Akpinar E, Bayraktutan Z, Topcu A. Serum nesfatin-1 levels: a potential new biomarker in patients with subarachnoid hemorrhage*. Int J Neurosci 2016; 127:154-160. [DOI: 10.3109/00207454.2016.1153473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Murteza Cakir
- Faculty of Medicine, Department of Neurosurgery, Ataturk University, Erzurum, Turkey
| | - Cagatay Calikoglu
- Faculty of Medicine, Department of Neurosurgery, Ataturk University, Erzurum, Turkey
| | - Atilla Yılmaz
- Faculty of Medicine, Department of Neurosurgery, Mustafa Kemal University, Hatay, Turkey
| | - Erol Akpinar
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| | - Zafer Bayraktutan
- Department of Biochemistry, Erzurum Region Education and Research Hospital, Erzurum, Turkey
| | - Atilla Topcu
- Faculty of Medicine, Department of Pharmacology, Ataturk University, Erzurum, Turkey
| |
Collapse
|
22
|
Zhou T, Zu G, Zhou L, Che N, Guo J, Liang Z. Ginsenoside Rg1 prevents cerebral and cerebellar injury induced by obstructive jaundice in rats via inducing expression of TIPE-2. Neurosci Lett 2016; 610:193-9. [PMID: 26592478 DOI: 10.1016/j.neulet.2015.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 10/22/2022]
Abstract
The aim of the study was to analyze the effect of Ginsenoside Rg1 (Rg1) on cerebral and cerebellar injury in experimental obstructive jaundice (OJ). OJ was done by ligature and section of extrahepatic biliary duct. Rg1 was injected intraperitoneally (10 mg kg(-1)d(-1) or 20 mg kg(-1) d(-1)). Comparison of serum total bile salts (TBA), total bilirubin (TBil), direct bilirubin (DBil), TNF-α, IL-6 and IL-1β among groups. Malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were determined, also apoptosis and mRNA and protein levels of TIPE2 (TNF-α-inducible protein 8-like 2) were tested in cerebrum and cerebellum. Our results showed that Rg1 reduced MDA and apoptosis in cerebrum and cerebellum induced by OJ, also GSH and antioxidant enzyme activity were raised obviously in rats treated with Rg1. Moreover, decreased mRNA and protein levels of TIPE2 in OJ rats and Rg1 could improve the decreased mRNA and protein levels of TIPE2 in OJ rats. In conclusion, Rg1 decreased oxidative stress and apoptosis, also recovered the antioxidant status and mRNA and protein levels of TIPE2 in the cerebrum and cerebellum of OJ rats.
Collapse
Affiliation(s)
- Tingting Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Guo Zu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Lu Zhou
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China
| | - Ningwei Che
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, PR China
| | - Jing Guo
- Department of Surgical Operation, Dalian Medical University, Dalian 116044, PR China
| | - Zhanhua Liang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, PR China.
| |
Collapse
|
23
|
Impairment of enzymatic antioxidant defenses is associated with bilirubin-induced neuronal cell death in the cerebellum of Ugt1 KO mice. Cell Death Dis 2015; 6:e1739. [PMID: 25950469 PMCID: PMC4669693 DOI: 10.1038/cddis.2015.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/14/2023]
Abstract
Severe hyperbilirubinemia is toxic during central nervous system development. Prolonged and uncontrolled high levels of unconjugated bilirubin lead to bilirubin-induced encephalopathy and eventually death by kernicterus. Despite extensive studies, the molecular and cellular mechanisms of bilirubin toxicity are still poorly defined. To fill this gap, we investigated the molecular processes underlying neuronal injury in a mouse model of severe neonatal jaundice, which develops hyperbilirubinemia as a consequence of a null mutation in the Ugt1 gene. These mutant mice show cerebellar abnormalities and hypoplasia, neuronal cell death and die shortly after birth because of bilirubin neurotoxicity. To identify protein changes associated with bilirubin-induced cell death, we performed proteomic analysis of cerebella from Ugt1 mutant and wild-type mice. Proteomic data pointed-out to oxidoreductase activities or antioxidant processes as important intracellular mechanisms altered during bilirubin-induced neurotoxicity. In particular, they revealed that down-representation of DJ-1, superoxide dismutase, peroxiredoxins 2 and 6 was associated with hyperbilirubinemia in the cerebellum of mutant mice. Interestingly, the reduction in protein levels seems to result from post-translational mechanisms because we did not detect significant quantitative differences in the corresponding mRNAs. We also observed an increase in neuro-specific enolase 2 both in the cerebellum and in the serum of mutant mice, supporting its potential use as a biomarker of bilirubin-induced neurological damage. In conclusion, our data show that different protective mechanisms fail to contrast oxidative burst in bilirubin-affected brain regions, ultimately leading to neurodegeneration.
Collapse
|
24
|
Cross-talk between neurons and astrocytes in response to bilirubin: adverse secondary impacts. Neurotox Res 2015; 26:1-15. [PMID: 24122290 DOI: 10.1007/s12640-013-9427-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/25/2022]
Abstract
Previous studies using monotypic nerve cell cultures have shown that bilirubin-induced neurological dysfunction (BIND) involves apoptosis and necrosis-like cell death, following neuritic atrophy and astrocyte activation,and that glycoursodeoxycholic acid (GUDCA) has therapeutic efficacy against BIND. Cross-talk between neurons and astrocytes may protect or aggravate neurotoxicity by unconjugated bilirubin (UCB). In a previous work we have shown that bidirectional signaling during astrocyte-neuron recognition attenuates neuronal damage by UCB. Here, we investigated whether the establishment of neuron-astrocyte homeostasis prior to cell exposure to UCB was instead associated with a lower resistance of neurons to UCB toxicity, and if the pro-survival properties of GUDCA were replicated in that experimental model. We have introduced a 24 h adaptation period for neuron-glia communication prior to the 48 h treatment with UCB. In such conditions, UCB induced glial activation, which aggravated neuronal damage, comprising increased apoptosis,cell demise and neuritic atrophy, which were completely prevented in the presence of GUDCA. Neuronal multidrug resistance-associated protein 1 expression and tumor necrosis factor-a secretion, although unchanged by UCB, increased in the presence of astrocytes. The rise in S100B and nitric oxide in the co-cultures medium may have contributed to UCB neurotoxicity. Since the levels of these diffusible molecules did not change by GUDCA we may assume that they are not directly involved in its beneficial effects. Data indicate that astrocytes, in an indirect neuron-astrocyte co-culture model and after homeostatic setting regulation of the system, are critically influencing neurodegeneration by UCB, and support GUDCA for the prevention of BIND.
Collapse
|
25
|
Hu W, Cheng X, Ye X, Zhao L, Huang Y, Zhu H, Yan Z, Wang X, Wang X, Bai G, Gao H. Ex vivo (1)H nuclear magnetic resonance spectroscopy reveals systematic alterations in cerebral metabolites as the key pathogenetic mechanism of bilirubin encephalopathy. Mol Brain 2014; 7:87. [PMID: 25424547 PMCID: PMC4252999 DOI: 10.1186/s13041-014-0087-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Bilirubin encephalopathy (BE) is a severe neurologic sequelae induced by hyperbilirubinemia in newborns. However, the pathogenetic mechanisms underlying the clinical syndromes of BE remain ambiguous. Ex vivo (1)H nuclear magnetic resonance (NMR) spectroscopy was used to measure changes in the concentrations of cerebral metabolites in various brain areas of newborn 9-day-old rats subjected to bilirubin to explore the related mechanisms of BE. RESULTS When measured 0.5 hr after injection of bilirubin, levels of the amino acid neurotransmitters glutamate (Glu), glutamine (Gln), and γ-aminobutyric acid (GABA) in hippocampus and occipital cortex significantly decreased, by contrast, levels of aspartate (Asp) considerably increased. In the cerebellum, Glu and Gln levels significantly decreased, while GABA, and Asp levels showed no significant differences. In BE 24 hr rats, all of the metabolic changes observed returned to normal in the hippocampus and occipital cortex; however, levels of Glu, Gln, GABA, and glycine significantly increased in the cerebellum. CONCLUSIONS These metabolic changes for the neurotransmitters are mostly likely the result of a shift in the steady-state equilibrium of the Gln-Glu-GABA metabolic cycle between astrocytes and neurons, in a region-specific manner. Changes in energy metabolism and the tricarboxylic acid cycle may also be involved in the pathogenesis of BE.
Collapse
Affiliation(s)
- Wenyi Hu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Cheng
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xinjian Ye
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Yanan Huang
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Huanle Zhu
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Zhihan Yan
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Xuebao Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Xiaojie Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guanghui Bai
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
26
|
Brito MA, Palmela I, Cardoso FL, Sá-Pereira I, Brites D. Blood–Brain Barrier and Bilirubin: Clinical Aspects and Experimental Data. Arch Med Res 2014; 45:660-76. [DOI: 10.1016/j.arcmed.2014.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023]
|
27
|
Qaisiya M, Coda Zabetta CD, Bellarosa C, Tiribelli C. Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway. Cell Signal 2014; 26:512-520. [PMID: 24308969 DOI: 10.1016/j.cellsig.2013.11.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/21/2013] [Accepted: 11/26/2013] [Indexed: 12/22/2022]
Abstract
Unconjugated bilirubin (UCB) is responsible for neonatal jaundice and high level of free bilirubin (Bf) can lead to kernicterus. Previous studies suggest that oxidative stress is a critical component of UCB-induced neurotoxicity. The Nrf2 pathway is a powerful sensor for cellular redox state and is activated directly by oxidative stress and/or indirectly by stress response protein kinases. Activated Nrf2 translocates to nucleus, binds to Antioxidant Response Element (ARE), and enhances the up-regulation of cytoprotective genes that mediate cell survival. The aim of the present study was to investigate the role of Nrf2 pathway in cell response to bilirubin mediated oxidative stress in the neuroblastoma SH-SY5Y cell line. Cells exposed to a toxic concentration of UCB (140 nM Bf) showed an increased intracellular ROS levels and enhanced nuclear accumulation of Nrf2 protein. UCB stimulated transcriptional induction of ARE-GFP reporter gene and induced mRNA expression of multiple antioxidant response genes as: xCT, Gly1, γGCL-m, γGCL-c, HO-1, NQO1, FTH, ME1, and ATF3. Nrf2 siRNA decreased UCB induced mRNA expression of HO1 (75%), NQO1 (54%), and FTH (40%). The Nrf2-related HO-1 induction was reduced to 60% in cells pre-treated with antioxidant (NAC) or specific signaling pathway inhibitors for PKC, P38α and MEK1/2 (80, 40 and 25%, respectively). In conclusion, we demonstrated that SH-SY5Y cells undergo an adaptive response against UCB-mediated oxidative stress by activation of multiple antioxidant response, in part through Nrf2 pathway.
Collapse
Affiliation(s)
- Mohammed Qaisiya
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Carlos Daniel Coda Zabetta
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Cristina Bellarosa
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy.
| | - Claudio Tiribelli
- Fondazione Italiana Fegato ONLUS, Italian Liver Foundation ONLUS, Bldg Q AREA Science Park - Basovizza Campus, 34149 Trieste, Italy; Department of Medical Sciences, University of Trieste, 34100 Trieste, Italy.
| |
Collapse
|
28
|
Lidong Z, Xiaoquan W, Tao C, Weiwei G, Chang L, Shiming Y. Hyperbilirubinemia and Auditory Neuropathy. J Otol 2013. [DOI: 10.1016/s1672-2930(13)50001-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
29
|
Kamp MA, Dibué M, Etminan N, Steiger HJ, Schneider T, Hänggi D. Evidence for direct impairment of neuronal function by subarachnoid metabolites following SAH. Acta Neurochir (Wien) 2013. [PMID: 23180171 DOI: 10.1007/s00701-012-1559-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Dysfunction of neuronal signal processing and transmission occurs after subarachnoid hemorrhage (SAH) and contributes to the high morbidity and mortality of this pathology. The underlying mechanisms include early brain injury due to elevation of the intracranial pressure, disruption of the blood-brain barrier, brain edema, reduction of cerebral blood flow, and neuronal cell death. Direct influence of subarachnoid blood metabolites on neuronal signaling should be considered. After SAH, some metabolites were shown to directly induce disruption of neuronal integrity and neuronal signaling, whereas the effects of other metabolites on neurotoxicity and neuronal signaling have not yet been investigated. Therefore, this mini-review will discuss recent evidence for a direct influence of subarachnoid blood and its metabolites on neuronal function.
Collapse
Affiliation(s)
- Marcel A Kamp
- Department of Neurosurgery, University Hospital, Heinrich-Heine-University, Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
30
|
Farnsworth NL, Antunez LR, Bryant SJ. Influence of chondrocyte maturation on acute response to impact injury in PEG hydrogels. J Biomech 2012; 45:2556-63. [DOI: 10.1016/j.jbiomech.2012.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022]
|
31
|
ER Stress, Mitochondrial Dysfunction and Calpain/JNK Activation are Involved in Oligodendrocyte Precursor Cell Death by Unconjugated Bilirubin. Neuromolecular Med 2012; 14:285-302. [DOI: 10.1007/s12017-012-8187-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 06/01/2012] [Indexed: 12/24/2022]
|
32
|
Brites D. The evolving landscape of neurotoxicity by unconjugated bilirubin: role of glial cells and inflammation. Front Pharmacol 2012; 3:88. [PMID: 22661946 PMCID: PMC3361682 DOI: 10.3389/fphar.2012.00088] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/23/2012] [Indexed: 12/13/2022] Open
Abstract
Unconjugated hyperbilirubinemia is a common condition in the first week of postnatal life. Although generally harmless, some neonates may develop very high levels of unconjugated bilirubin (UCB), which may surpass the protective mechanisms of the brain in preventing UCB accumulation. In this case, both short-term and long-term neurodevelopmental disabilities, such as acute and chronic UCB encephalopathy, known as kernicterus, or more subtle alterations defined as bilirubin-induced neurological dysfunction (BIND) may be produced. There is a tremendous variability in babies' vulnerability toward UCB for reasons not yet explained, but preterm birth, sepsis, hypoxia, and hemolytic disease are comprised as risk factors. Therefore, UCB levels and neurological abnormalities are not strictly correlated. Even nowadays, the mechanisms of UCB neurotoxicity are still unclear, as are specific biomarkers, and little is known about lasting sequelae attributable to hyperbilirubinemia. On autopsy, UCB was shown to be within neurons, neuronal processes, and microglia, and to produce loss of neurons, demyelination, and gliosis. In isolated cell cultures, UCB was shown to impair neuronal arborization and to induce the release of pro-inflammatory cytokines from microglia and astrocytes. However, cell dependent sensitivity to UCB toxicity and the role of each nerve cell type remains not fully understood. This review provides a comprehensive insight into cell susceptibilities and molecular targets of UCB in neurons, astrocytes, and oligodendrocytes, and on phenotypic and functional responses of microglia to UCB. Interplay among glia elements and cross-talk with neurons, with a special emphasis in the UCB-induced immunostimulation, and the role of sepsis in BIND pathogenesis are highlighted. New and interesting data on the anti-inflammatory and antioxidant activities of different pharmacological agents are also presented, as novel and promising additional therapeutic approaches to BIND.
Collapse
Affiliation(s)
- Dora Brites
- Neuron Glia Biology in Health and Disease Unit, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon Lisbon, Portugal
| |
Collapse
|
33
|
Gazzin S, Strazielle N, Tiribelli C, Ghersi-Egea JF. Transport and metabolism at blood-brain interfaces and in neural cells: relevance to bilirubin-induced encephalopathy. Front Pharmacol 2012; 3:89. [PMID: 22629246 PMCID: PMC3355510 DOI: 10.3389/fphar.2012.00089] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/25/2012] [Indexed: 01/16/2023] Open
Abstract
Bilirubin, the end-product of heme catabolism, circulates in non-pathological plasma mostly as a protein-bound species. When bilirubin concentration builds up, the free fraction of the molecule increases. Unbound bilirubin then diffuses across blood-brain interfaces (BBIs) into the brain, where it accumulates and exerts neurotoxic effects. In this classical view of bilirubin neurotoxicity, BBIs act merely as structural barriers impeding the penetration of the pigment-bound carrier protein, and neural cells are considered as passive targets of its toxicity. Yet, the role of BBIs in the occurrence of bilirubin encephalopathy appears more complex than being simple barriers to the diffusion of bilirubin, and neural cells such as astrocytes and neurons can play an active role in controlling the balance between the neuroprotective and neurotoxic effects of bilirubin. This article reviews the emerging in vivo and in vitro data showing that transport and metabolic detoxification mechanisms at the blood-brain and blood-cerebrospinal fluid barriers may modulate bilirubin flux across both cellular interfaces, and that these protective functions can be affected in chronic unconjugated hyperbilirubinemia. Then the in vivo and in vitro arguments in favor of the physiological antioxidant function of intracerebral bilirubin are presented, as well as the potential role of transporters such as ABCC1 and metabolizing enzymes such as cytochromes P-450 in setting the cerebral cell- and structure-specific toxicity of bilirubin following hyperbilirubinemia. The relevance of these data to the pathophysiology of bilirubin-induced neurological diseases is discussed.
Collapse
Affiliation(s)
- Silvia Gazzin
- Italian Liver Foundation, AREA Science Park Basovizza Trieste, Italy
| | | | | | | |
Collapse
|
34
|
Silva SL, Vaz AR, Diógenes MJ, van Rooijen N, Sebastião AM, Fernandes A, Silva RFM, Brites D. Neuritic growth impairment and cell death by unconjugated bilirubin is mediated by NO and glutamate, modulated by microglia, and prevented by glycoursodeoxycholic acid and interleukin-10. Neuropharmacology 2012; 62:2398-408. [PMID: 22361233 DOI: 10.1016/j.neuropharm.2012.02.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 02/01/2012] [Accepted: 02/07/2012] [Indexed: 12/28/2022]
Abstract
Neuronal oxidative damage and cell death by unconjugated bilirubin (UCB) showed to be mediated by overstimulation of glutamate receptors and nitric oxide (NO) production, which was abrogated by the bile acid glycoursodeoxycholic acid (GUDCA). Microglia, a crucial mediator of CNS inflammation, evidenced to react to UCB by releasing glutamate and NO before becoming senescent. Our studies demonstrated that neurite outgrowth deficits are produced in neurons exposed to UCB and that conditioned media from these UCB-treated neurons further stimulate NO production by microglia. Nevertheless, microglia protective and/or harmful effects in neonatal jaundice are poorly understood, or unrecognized. Here, we investigated the role of microglia, glutamate and NO in the impairment of neurite sprouting by UCB. Therapeutic potential of the anti-inflammatory cytokine interleukin (IL)-10 and GUDCA was also evaluated. By using MK-801 (a NMDA glutamate-subtype receptor antagonist) and L-NAME (a non-specific NO synthase inhibitor) we found that glutamate and NO are determinants in the early and enduring deficits in neurite extension and ramification induced by UCB. Both GUDCA and IL-10 prevented these effects and decreased the production of glutamate and NO. Only GUDCA was able to counteract neuronal death and synaptic changes. Data from organotypic-cultured hippocampal slices, depleted or non-depleted in microglia, supported that microglia participate in glutamate homeostasis and contribute to NO production and cell demise, which were again abrogated by GUDCA. Collectively our data suggest that microglia is a key player in UCB-induced neurotoxicity and that GUDCA might be a valuable preventive therapy in neonates at risk of UCB encephalopathy.
Collapse
Affiliation(s)
- Sandra L Silva
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculty of Pharmacy, University of Lisbon, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|