1
|
Ashitomi H, Nakagawa T, Nakagawa M, Hosoi T. Cullin-RING Ubiquitin Ligases in Neurodevelopment and Neurodevelopmental Disorders. Biomedicines 2025; 13:810. [PMID: 40299365 PMCID: PMC12024872 DOI: 10.3390/biomedicines13040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Ubiquitination is a dynamic and tightly regulated post-translational modification essential for modulating protein stability, trafficking, and function to preserve cellular homeostasis. This process is orchestrated through a hierarchical enzymatic cascade involving three key enzymes: the E1 ubiquitin-activating enzyme, the E2 ubiquitin-conjugating enzyme, and the E3 ubiquitin ligase. The final step of ubiquitination is catalyzed by the E3 ubiquitin ligase, which facilitates the transfer of ubiquitin from the E2 enzyme to the substrate, thereby dictating which proteins undergo ubiquitination. Emerging evidence underscores the critical roles of ubiquitin ligases in neurodevelopment, regulating fundamental processes such as neuronal polarization, axonal outgrowth, synaptogenesis, and synaptic function. Mutations in genes encoding ubiquitin ligases and the consequent dysregulation of these pathways have been increasingly implicated in a spectrum of neurodevelopmental disorders, including autism spectrum disorder, intellectual disability, and attention-deficit/hyperactivity disorder. This review synthesizes current knowledge on the molecular mechanisms underlying neurodevelopment regulated by Cullin-RING ubiquitin ligases-the largest subclass of ubiquitin ligases-and their involvement in the pathophysiology of neurodevelopmental disorders. A deeper understanding of these mechanisms holds significant promise for informing novel therapeutic strategies, ultimately advancing clinical outcomes for individuals affected by neurodevelopmental disorders.
Collapse
Affiliation(s)
- Honoka Ashitomi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| | - Tadashi Nakagawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
- Division of Cell Proliferation, United Centers for Advanced Research and Translational Medicine, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Makiko Nakagawa
- Institute of Gene Research, Yamaguchi University Science Research Center, Ube 755-8505, Japan
- Advanced Technology Institute, Life Science Division, Yamaguchi University, Ube 755-8611, Japan
| | - Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda 756-0084, Japan; (H.A.)
| |
Collapse
|
2
|
Yang X, Liu T, Cheng H. PTEN: a new dawn in Parkinson's disease treatment. Front Cell Neurosci 2025; 19:1497555. [PMID: 40129459 PMCID: PMC11931041 DOI: 10.3389/fncel.2025.1497555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025] Open
Abstract
In recent years, the study of phosphatase and tension homolog (PTEN) has gradually become a research hotspot. As an important oncogene, the role of PTEN in cancer has long been widely recognized and intensively studied, but it has been relatively less studied in other diseases. Parkinson's disease (PD) is a neurodegenerative refractory disease commonly observed in middle-aged and elderly individuals. The etiology and pathogenesis of PD are numerous, complex, and incompletely understood. With the continuous deepening of research, numerous studies have proven that PTEN is related to the occurrence of PD. In this review, we discuss the relationship between PTEN and PD through the phosphorylation and ubiquitination of PTEN and other possible regulatory mechanisms, including the role of RNA molecules, exosomes, transcriptional regulation, chemical modification, and subtype variation, with the aim of clarifying the regulatory role of PTEN in PD and better elucidating its pathogenesis. Finally, we summarize the shortcomings of PTEN in PD research and highlight the great potential of its future application in PD clinical treatment. These findings provide research ideas and new perspectives for the possible use of PTEN as a PD therapeutic target for targeted drug development and clinical application in the future.
Collapse
Affiliation(s)
| | - Tianqi Liu
- Medical College, Yangzhou University, Yangzhou, China
| | - Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University Medical College, Institute of Translational Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
3
|
Fimiani C, Pereira JA, Gerber J, Berg I, DeGeer J, Bachofner S, Fischer JS, Kauffmann M, Suter U. The E3 ubiquitin ligase Nedd4 fosters developmental myelination in the mouse central and peripheral nervous system. Glia 2025; 73:422-444. [PMID: 39511974 DOI: 10.1002/glia.24642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/15/2024]
Abstract
Ubiquitination is a major post-translational regulatory mechanism that tunes numerous aspects of ubiquitinated target proteins, including localization, stability, and function. During differentiation and myelination, Oligodendrocytes (OLs) in the central nervous system and Schwann cells (SCs) in the peripheral nervous system undergo major cellular changes, including the tightly controlled production of large and accurate amounts of proteins and lipids. Such processes have been implied to depend on regulatory aspects of ubiquitination, with E3 ubiquitin ligases being generally involved in the selection of specific ubiquitination substrates by ligating ubiquitin to targets and granting target selectivity. In this study, we have used multiple transgenic mouse lines to investigate the functional impact of the E3 ubiquitin ligase Nedd4 in the OL- and SC-lineages. Our findings in the developing spinal cord indicate that Nedd4 is required for the correct accumulation of differentiated OLs and ensures proper myelination, supporting and further expanding previously suggested conceptual models. In sciatic nerves, we found that Nedd4 is required for timely radial sorting of axons by SCs as a pre-requirement for correct onset of myelination. Moreover, Nedd4 ensures correct myelin thickness in both SCs and spinal cord OLs.
Collapse
Affiliation(s)
- Cristina Fimiani
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Berg
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Sven Bachofner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonas S Fischer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manuel Kauffmann
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Wei M, Hong T, Liu Y, Luo H. Inhibition of SENP5 reduces brain injury in TBI rats by regulating NEDD4L/TCF3 axis. Int J Neurosci 2024:1-10. [PMID: 38712596 DOI: 10.1080/00207454.2024.2350669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The underlying mechanism of SENP5 influences neuronal regeneration and apoptosis in the context of TBI remains largely unexplored. METHODS In the present study, PC12 cells treated with scratch for 24 h were regarded as a TBI cell model. The expression of SENP5 in PC12 cells was measured via Quantitative Real-Time PCR (qRT-PCR) and western blot assays. Cell Counting Kit 8 (CCK-8) and Flow cytometry assays were used to evaluate the activity of TBI cells. In addition, we assessed the effect of inhibiting SENP5 in vivo on neurological function deficits and apoptosis in the hippocampal tissues of TBI rats. The relationship between SENP5 and NEDD4L/TCF3 axis was proved via immunoprecipitation (IP) and double luciferase assays. RESULTS Following TBI cell modeling, an increase in SENP5 expression has been found. Moreover, TBI modeling resulted in reduced cell viability and increased apoptosis, which was rescue by inhibition of SENP5. In vivo experiments demonstrated that SENP5 inhibition could mitigate TBI-induced brain injury in rats. Specifically, this inhibition led to lower neurological impairment scores, improved neuronal morphology and structure, and decreased neuronal apoptosis. In addition, NEDD4L has been proved to be relevant to the enhanced stability of the transcription factor TCF3, which in turn promoted the expression of SENP5. CONCLUSIONS This study reveals that inhibiting SENP5 can alleviate brain injury following TBI. NEDD4L/TCF3 axis can regulate the expression of SENP5 to affect the development of TBI. However, SENP5 regulates downstream targets of TBI and important mechanisms need to be further explored.
Collapse
Affiliation(s)
- Minjun Wei
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ying Liu
- Department of Nephrology, Jiangxi Cancer Hospital, Nanchang, China
| | - Hai Luo
- Department of Neurosurgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Kristian T, Russell JW. NAD + Precursors Reverse Experimental Diabetic Neuropathy in Mice. Int J Mol Sci 2024; 25:1102. [PMID: 38256175 PMCID: PMC10816262 DOI: 10.3390/ijms25021102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Abnormal NAD+ signaling has been implicated in axonal degeneration in diabetic peripheral neuropathy (DPN). We hypothesized that supplementing NAD+ precursors could alleviate DPN symptoms through increasing the NAD+ levels and activating the sirtuin-1 (SIRT1) protein. To test this, we exposed cultured Dorsal Root Ganglion neurons (DRGs) to Nicotinamide Riboside (NR) or Nicotinamide Mononucleotide (NMN), which increased the levels of NAD+, the SIRT1 protein, and the deacetylation activity that is associated with increased neurite growth. A SIRT1 inhibitor blocked the neurite growth induced via NR or NMN. We then induced neuropathy in C57BL6 mice with streptozotocin (STZ) or a high fat diet (HFD) and administered NR or NMN for two months. Both the STZ and HFD mice developed neuropathy, which was reversed through the NR or NMN administration: sensory function improved, nerve conduction velocities normalized, and intraepidermal nerve fibers were restored. The NAD+ levels and SIRT1 activity were reduced in the DRGs from diabetic mice but were preserved with the NR or NMN treatment. We also tested the effect of NR or NMN administration in mice that overexpress the SIRT1 protein in neurons (nSIRT1 OE) and found no additional benefit from the addition of the drug. These findings suggest that supplementing with NAD+ precursors or activating SIRT1 may be a promising treatment for DPN.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (S.Y.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
6
|
Cheah M, Cheng Y, Petrova V, Cimpean A, Jendelova P, Swarup V, Woolf CJ, Geschwind DH, Fawcett JW. Integrin-Driven Axon Regeneration in the Spinal Cord Activates a Distinctive CNS Regeneration Program. J Neurosci 2023; 43:4775-4794. [PMID: 37277179 PMCID: PMC10312060 DOI: 10.1523/jneurosci.2076-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023] Open
Abstract
The peripheral branch of sensory dorsal root ganglion (DRG) neurons regenerates readily after injury unlike their central branch in the spinal cord. However, extensive regeneration and reconnection of sensory axons in the spinal cord can be driven by the expression of α9 integrin and its activator kindlin-1 (α9k1), which enable axons to interact with tenascin-C. To elucidate the mechanisms and downstream pathways affected by activated integrin expression and central regeneration, we conducted transcriptomic analyses of adult male rat DRG sensory neurons transduced with α9k1, and controls, with and without axotomy of the central branch. Expression of α9k1 without the central axotomy led to upregulation of a known PNS regeneration program, including many genes associated with peripheral nerve regeneration. Coupling α9k1 treatment with dorsal root axotomy led to extensive central axonal regeneration. In addition to the program upregulated by α9k1 expression, regeneration in the spinal cord led to expression of a distinctive CNS regeneration program, including genes associated with ubiquitination, autophagy, endoplasmic reticulum (ER), trafficking, and signaling. Pharmacological inhibition of these processes blocked the regeneration of axons from DRGs and human iPSC-derived sensory neurons, validating their causal contributions to sensory regeneration. This CNS regeneration-associated program showed little correlation with either embryonic development or PNS regeneration programs. Potential transcriptional drivers of this CNS program coupled to regeneration include Mef2a, Runx3, E2f4, and Yy1. Signaling from integrins primes sensory neurons for regeneration, but their axon growth in the CNS is associated with an additional distinctive program that differs from that involved in PNS regeneration.SIGNIFICANCE STATEMENT Restoration of neurologic function after spinal cord injury has yet to be achieved in human patients. To accomplish this, severed nerve fibers must be made to regenerate. Reconstruction of nerve pathways has not been possible, but recently, a method for stimulating long-distance axon regeneration of sensory fibers in rodents has been developed. This research uses profiling of messenger RNAs in the regenerating sensory neurons to discover which mechanisms are activated. This study shows that the regenerating neurons initiate a novel CNS regeneration program which includes molecular transport, autophagy, ubiquitination, and modulation of the endoplasmic reticulum (ER). The study identifies mechanisms that neurons need to activate to regenerate their nerve fibers.
Collapse
Affiliation(s)
- Menghon Cheah
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
| | - Yuyan Cheng
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Veselina Petrova
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Anda Cimpean
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Pavla Jendelova
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| | - Vivek Swarup
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0PY, United Kingdom
- Centre for Reconstructive Neuroscience, Institute of Experimental Medicine Czech Academy of Science, Prague, Czech Republic
| |
Collapse
|
7
|
Zochodne DW. Growth factors and molecular-driven plasticity in neurological systems. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:569-598. [PMID: 37620091 DOI: 10.1016/b978-0-323-98817-9.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
It has been almost 70 years since the discovery of nerve growth factor (NGF), a period of a dramatic evolution in our understanding of dynamic growth, regeneration, and rewiring of the nervous system. In 1953, the extraordinary finding that a protein found in mouse submandibular glands generated a halo of outgrowing axons has now redefined our concept of the nervous system connectome. Central and peripheral neurons and their axons or dendrites are no longer considered fixed or static "wiring." Exploiting this molecular-driven plasticity as a therapeutic approach has arrived in the clinic with a slate of new trials and ideas. Neural growth factors (GFs), soluble proteins that alter the behavior of neurons, have expanded in numbers and our understanding of the complexity of their signaling and interactions with other proteins has intensified. However, beyond these "extrinsic" determinants of neuron growth and function are the downstream pathways that impact neurons, ripe for translational development and potentially more important than individual growth factors that may trigger them. Persistent and ongoing nuances in clinical trial design in some of the most intractable and irreversible neurological conditions give hope for connecting new biological ideas with clinical benefits. This review is a targeted update on neural GFs, their signals, and new therapeutic ideas, selected from an expansive literature.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
8
|
Comparative Proteomics Analysis of Growth-Primed Adult Dorsal Root Ganglia Reveals Key Molecular Mediators for Peripheral Nerve Regeneration. eNeuro 2023; 10:ENEURO.0168-22.2022. [PMID: 36526365 PMCID: PMC9829101 DOI: 10.1523/eneuro.0168-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Injuries to peripheral nerves are frequent, yet no drug therapies are available for effective nerve repair. The slow growth rate of axons and inadequate access to growth factors challenge natural repair of nerves. A better understanding of the molecules that can promote the rate of axon growth may reveal therapeutic opportunities. Molecular profiling of injured neurons at early intervals of injury, when regeneration is at the maximum, has been the gold standard for exploring growth promoters. A complementary in vitro regenerative priming model was recently shown to induce enhanced outgrowth in adult sensory neurons. In this work, we exploited the in vitro priming model to reveal novel candidates for adult nerve regeneration. We performed a whole-tissue proteomics analysis of the in vitro primed dorsal root ganglia (DRGs) from adult SD rats and compared their molecular profile with that of the in vivo primed, and control DRGs. The proteomics data generated are available via ProteomeXchange with identifier PXD031927. From the follow-up analysis, Bioinformatics interventions, and literature curation, we identified several molecules that were differentially expressed in the primed DRGs with a potential to modulate adult nerve regrowth. We then validated the growth promoting roles of mesencephalic astrocyte-derived neurotrophic factor (MANF), one of the hits we identified, in adult rat sensory neurons. Overall, in this study, we explored two growth priming paradigm and shortlisted several candidates, and validated MANF, as potential targets for adult nerve regeneration. We also demonstrate that the in vitro priming model is a valid tool for adult nerve regeneration studies.
Collapse
|
9
|
Poitras T, Zochodne DW. Unleashing Intrinsic Growth Pathways in Regenerating Peripheral Neurons. Int J Mol Sci 2022; 23:13566. [PMID: 36362354 PMCID: PMC9654452 DOI: 10.3390/ijms232113566] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 10/17/2023] Open
Abstract
Common mechanisms of peripheral axon regeneration are recruited following diverse forms of damage to peripheral nerve axons. Whether the injury is traumatic or disease related neuropathy, reconnection of axons to their targets is required to restore function. Supporting peripheral axon regrowth, while not yet available in clinics, might be accomplished from several directions focusing on one or more of the complex stages of regrowth. Direct axon support, with follow on participation of supporting Schwann cells is one approach, emphasized in this review. However alternative approaches might include direct support of Schwann cells that instruct axons to regrow, manipulation of the inflammatory milieu to prevent ongoing bystander axon damage, or use of inflammatory cytokines as growth factors. Axons may be supported by a growing list of growth factors, extending well beyond the classical neurotrophin family. The understanding of growth factor roles continues to expand but their impact experimentally and in humans has faced serious limitations. The downstream signaling pathways that impact neuron growth have been exploited less frequently in regeneration models and rarely in human work, despite their promise and potency. Here we review the major regenerative signaling cascades that are known to influence adult peripheral axon regeneration. Within these pathways there are major checkpoints or roadblocks that normally check unwanted growth, but are an impediment to robust growth after injury. Several molecular roadblocks, overlapping with tumour suppressor systems in oncology, operate at the level of the perikarya. They have impacts on overall neuron plasticity and growth. A second approach targets proteins that largely operate at growth cones. Addressing both sites might offer synergistic benefits to regrowing neurons. This review emphasizes intrinsic aspects of adult peripheral axon regeneration, emphasizing several molecular barriers to regrowth that have been studied in our laboratory.
Collapse
Affiliation(s)
| | - Douglas W. Zochodne
- Neuroscience and Mental Health Institute, Division of Neurology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
10
|
Hausott B, Glueckert R, Schrott-Fischer A, Klimaschewski L. Signal Transduction Regulators in Axonal Regeneration. Cells 2022; 11:cells11091537. [PMID: 35563843 PMCID: PMC9104247 DOI: 10.3390/cells11091537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Intracellular signal transduction in response to growth factor receptor activation is a fundamental process during the regeneration of the nervous system. In this context, intracellular inhibitors of neuronal growth factor signaling have become of great interest in the recent years. Among them are the prominent signal transduction regulators Sprouty (SPRY) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), which interfere with major signaling pathways such as extracellular signal-regulated kinase (ERK) or phosphoinositide 3-kinase (PI3K)/Akt in neurons and glial cells. Furthermore, SPRY and PTEN are themselves tightly regulated by ubiquitin ligases such as c-casitas b-lineage lymphoma (c-CBL) or neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4) and by different microRNAs (miRs) including miR-21 and miR-222. SPRY, PTEN and their intracellular regulators play an important role in the developing and the lesioned adult central and peripheral nervous system. This review will focus on the effects of SPRY and PTEN as well as their regulators in various experimental models of axonal regeneration in vitro and in vivo. Targeting these signal transduction regulators in the nervous system holds great promise for the treatment of neurological injuries in the future.
Collapse
Affiliation(s)
- Barbara Hausott
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
- Correspondence:
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University Innsbruck, 6020 Innsbruck, Austria; (R.G.); (A.S.-F.)
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
11
|
Wang K, Liu J, Li YL, Li JP, Zhang R. Ubiquitination/de-ubiquitination: A promising therapeutic target for PTEN reactivation in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188723. [DOI: 10.1016/j.bbcan.2022.188723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023]
|
12
|
Ubiquitin Proteasome System and Microtubules Are Master Regulators of Central and Peripheral Nervous System Axon Degeneration. Cells 2022; 11:cells11081358. [PMID: 35456037 PMCID: PMC9033047 DOI: 10.3390/cells11081358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal degeneration is an active process that differs from neuronal death, and it is the hallmark of many disorders affecting the central and peripheral nervous system. Starting from the analyses of Wallerian degeneration, the simplest experimental model, here we describe how the long projecting neuronal populations affected in Parkinson’s disease and chemotherapy-induced peripheral neuropathies share commonalities in the mechanisms and molecular players driving the earliest phase of axon degeneration. Indeed, both dopaminergic and sensory neurons are particularly susceptible to alterations of microtubules and axonal transport as well as to dysfunctions of the ubiquitin proteasome system and protein quality control. Finally, we report an updated review on current knowledge of key molecules able to modulate these targets, blocking the on-going axonal degeneration and inducing neuronal regeneration. These molecules might represent good candidates for disease-modifying treatment, which might expand the window of intervention improving patients’ quality of life.
Collapse
|
13
|
Poitras TM, Munchrath E, Zochodne DW. Neurobiological Opportunities in Diabetic Polyneuropathy. Neurotherapeutics 2021; 18:2303-2323. [PMID: 34935118 PMCID: PMC8804062 DOI: 10.1007/s13311-021-01138-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 12/29/2022] Open
Abstract
This review highlights a selection of potential translational directions for the treatment of diabetic polyneuropathy (DPN) currently irreversible and without approved interventions beyond pain management. The list does not include all diabetic targets that have been generated over several decades of research but focuses on newer work. The emphasis is firstly on approaches that support the viability and growth of peripheral neurons and their ability to withstand a barrage of diabetic alterations. We include a section describing Schwann cell targets and finally how mitochondrial damage has been a common element in discussing neuropathic damage. Most of the molecules and pathways described here have not yet reached clinical trials, but many trials have been negative to date. Nonetheless, these failures clear the pathway for new thoughts over reversing DPN.
Collapse
Affiliation(s)
- Trevor M Poitras
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Easton Munchrath
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, 7-132A Clinical Sciences Building, 11350-83 Ave, Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
14
|
Pinto MJ, Tomé D, Almeida RD. The Ubiquitinated Axon: Local Control of Axon Development and Function by Ubiquitin. J Neurosci 2021; 41:2796-2813. [PMID: 33789876 PMCID: PMC8018891 DOI: 10.1523/jneurosci.2251-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 02/01/2023] Open
Abstract
Ubiquitin tagging sets protein fate. With a wide range of possible patterns and reversibility, ubiquitination can assume many shapes to meet specific demands of a particular cell across time and space. In neurons, unique cells with functionally distinct axons and dendrites harboring dynamic synapses, the ubiquitin code is exploited at the height of its power. Indeed, wide expression of ubiquitination and proteasome machinery at synapses, a diverse brain ubiquitome, and the existence of ubiquitin-related neurodevelopmental diseases support a fundamental role of ubiquitin signaling in the developing and mature brain. While special attention has been given to dendritic ubiquitin-dependent control, how axonal biology is governed by this small but versatile molecule has been considerably less discussed. Herein, we set out to explore the ubiquitin-mediated spatiotemporal control of an axon's lifetime: from its differentiation and growth through presynaptic formation, function, and pruning.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
| | - Diogo Tomé
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, 3004-504, Portugal
- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
15
|
Wang S, Qi S, Kogure Y, Kanda H, Tian L, Yamamoto S, Noguchi K, Dai Y. The ubiquitin E3 ligase Nedd4-2 relieves mechanical allodynia through the ubiquitination of TRPA1 channel in db/db mice. Eur J Neurosci 2020; 53:1691-1704. [PMID: 33236491 DOI: 10.1111/ejn.15062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 01/25/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated protein 4-2 (Nedd4-2) is a member of the E3 ubiquitin ligase family that is highly expressed in sensory neurons and involved in pain modulation via downregulation of ion channels in excitable membranes. Ubiquitination involving Nedd4-2 is regulated by adenosine monophosphate-activated protein kinase (AMPK), which is impaired in the dorsal root ganglion (DRG) neurons of db/db mice. AMPK negatively regulates the expression of transient receptor potential ankyrin 1 (TRPA1), a recognised pain sensor expressed on the membrane of DRG neurons, consequently relieving mechanical allodynia in db/db mice. Herein, we studied the involvement of Nedd4-2 in painful diabetic neuropathy and observed that Nedd4-2 negatively regulated diabetic mechanical allodynia. Nedd4-2 was co-expressed with TRPA1 in mouse DRG neurons. Nedd4-2 was involved in TRPA1 ubiquitination, this ubiquitination, as well as Nedd4-2-TRPA1 interaction, was decreased in db/db mice. Moreover, Nedd4-2 levels were decreased in db/db mice, while an abnormal intracellular distribution was observed in short-term high glucose-cultured DRG neurons. AMPK activators not only restored Nedd4-2 distribution but also increased Nedd4-2 expression. These findings demonstrate that Nedd4-2 is a potent regulator of TRPA1 and that the abnormal expression of Nedd4-2 in DRG neurons contributes to diabetic neuropathic pain.
Collapse
Affiliation(s)
- Shenglan Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China.,Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Simin Qi
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Yoko Kogure
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Hirosato Kanda
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Kobe, Hyogo, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Lin Tian
- Department of Gerontology, Guang'anmen Hospital, China Academy of Chinese Medical Science, Beijing, China
| | - Satoshi Yamamoto
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan
| | - Koichi Noguchi
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yi Dai
- Department of Pharmacy, School of Pharmacy, Hyogo University of Health Sciences, Kobe, Hyogo, Japan.,Traditional Medicine Research Center, Chinese Medicine Confucius Institute at Hyogo College of Medicine, Kobe, Hyogo, Japan.,Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
16
|
Ding X, Jo J, Wang CY, Cristobal CD, Zuo Z, Ye Q, Wirianto M, Lindeke-Myers A, Choi JM, Mohila CA, Kawabe H, Jung SY, Bellen HJ, Yoo SH, Lee HK. The Daam2-VHL-Nedd4 axis governs developmental and regenerative oligodendrocyte differentiation. Genes Dev 2020; 34:1177-1189. [PMID: 32792353 PMCID: PMC7462057 DOI: 10.1101/gad.338046.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Dysregulation of the ubiquitin-proteasomal system (UPS) enables pathogenic accumulation of disease-driving proteins in neurons across a host of neurological disorders. However, whether and how the UPS contributes to oligodendrocyte dysfunction and repair after white matter injury (WMI) remains undefined. Here we show that the E3 ligase VHL interacts with Daam2 and their mutual antagonism regulates oligodendrocyte differentiation during development. Using proteomic analysis of the Daam2-VHL complex coupled with conditional genetic knockout mouse models, we further discovered that the E3 ubiquitin ligase Nedd4 is required for developmental myelination through stabilization of VHL via K63-linked ubiquitination. Furthermore, studies in mouse demyelination models and white matter lesions from patients with multiple sclerosis corroborate the function of this pathway during remyelination after WMI. Overall, these studies provide evidence that a signaling axis involving key UPS components contributes to oligodendrocyte development and repair and reveal a new role for Nedd4 in glial biology.
Collapse
Affiliation(s)
- Xiaoyun Ding
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juyeon Jo
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chih-Yen Wang
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carlo D Cristobal
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Qi Ye
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Aaron Lindeke-Myers
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jong Min Choi
- Center for Molecular Discovery, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carrie A Mohila
- Department of Pathology, Texas Children's Hospital, Houston, Texas 77030, USA
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | - Sung Yun Jung
- Center for Molecular Discovery, Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center, Houston, Texas 77030, USA
| | - Hyun Kyoung Lee
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA
- Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, Texas 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Jamsuwan S, Klimaschewski L, Hausott B. Simultaneous Knockdown of Sprouty2 and PTEN Promotes Axon Elongation of Adult Sensory Neurons. Front Cell Neurosci 2020; 13:583. [PMID: 32038175 PMCID: PMC6985068 DOI: 10.3389/fncel.2019.00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/20/2019] [Indexed: 01/10/2023] Open
Abstract
Sprouty2 (Spry2) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) are both well-established regulators of receptor tyrosine kinase (RTK) signaling, and knockdown of Spry2 or PTEN enhances axon regeneration of dorsal root ganglia (DRG) neurons. The major role of Spry2 is the inhibition of the rat sarcoma RAS/extracellular signal-regulated kinase (ERK) pathway, whereas PTEN acts mainly as an inhibitor of the phosphoinositide 3-kinase (PI3K)/Akt pathway. In non-neuronal cells, Spry2 increases the expression and activity of PTEN, and PTEN enhances the amount of Spry2 by the inhibition of the microRNA-21 (miR-21) that downregulates Spry2. Applying dissociated DRG neuron cultures from wild-type (WT) or Spry2 deficient mice, we demonstrate that PTEN protein was reduced after 72 h during rapid axonal outgrowth on the laminin substrate. Furthermore, PTEN protein was decreased in DRG cultures obtained from homozygous Spry2−/− knockout mice. Vice versa, Spry2 protein was reduced by PTEN siRNA in WT and heterozygous Spry2+/− neurons. Knockdown of PTEN in DRG cultures obtained from homozygous Spry2−/− knockout mice promoted axon elongation without increasing axonal branching. Activation of Akt, but not ERK, was stronger in response to PTEN knockdown in homozygous Spry2−/− DRG neurons than in WT neurons. Together, our study confirms the important role of the signaling modulators Spry2 and PTEN in axon growth of adult DRG neurons. Both function as endogenous inhibitors of neuronal growth factor signaling and their simultaneous knockdown promotes axon elongation more efficiently than the single knockdown of each inhibitor. Furthermore, Spry2 and PTEN are reciprocally downregulated in adult DRG neuron cultures. Axon growth is influenced by multiple factors and our results demonstrate that the endogenous inhibitors of axon growth, Spry2 and PTEN, are co-regulated in adult DRG neuron cultures. Together, our data demonstrate that combined approaches may be more useful to improve nerve regeneration than targeting one single inhibitor of axon growth.
Collapse
Affiliation(s)
- Sataporn Jamsuwan
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| | - Barbara Hausott
- Institute of Neuroanatomy, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
18
|
Chandrasekaran K, Salimian M, Konduru SR, Choi J, Kumar P, Long A, Klimova N, Ho CY, Kristian T, Russell JW. Overexpression of Sirtuin 1 protein in neurons prevents and reverses experimental diabetic neuropathy. Brain 2019; 142:3737-3752. [PMID: 31754701 PMCID: PMC6885680 DOI: 10.1093/brain/awz324] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 08/26/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023] Open
Abstract
In diabetic neuropathy, there is activation of axonal and sensory neuronal degeneration pathways leading to distal axonopathy. The nicotinamide-adenine dinucleotide (NAD+)-dependent deacetylase enzyme, Sirtuin 1 (SIRT1), can prevent activation of these pathways and promote axonal regeneration. In this study, we tested whether increased expression of SIRT1 protein in sensory neurons prevents and reverses experimental diabetic neuropathy induced by a high fat diet (HFD). We generated a transgenic mouse that is inducible and overexpresses SIRT1 protein in neurons (nSIRT1OE Tg). Higher levels of SIRT1 protein were localized to cortical and hippocampal neuronal nuclei in the brain and in nuclei and cytoplasm of small to medium sized neurons in dorsal root ganglia. Wild-type and nSIRT1OE Tg mice were fed with either control diet (6.2% fat) or a HFD (36% fat) for 2 months. HFD-fed wild-type mice developed neuropathy as determined by abnormal motor and sensory nerve conduction velocity, mechanical allodynia, and loss of intraepidermal nerve fibres. In contrast, nSIRT1OE prevented a HFD-induced neuropathy despite the animals remaining hyperglycaemic. To test if nSIRT1OE would reverse HFD-induced neuropathy, nSIRT1OE was activated after mice developed peripheral neuropathy on a HFD. Two months after nSIRT1OE, we observed reversal of neuropathy and an increase in intraepidermal nerve fibre. Cultured adult dorsal root ganglion neurons from nSIRT1OE mice, maintained at high (30 mM) total glucose, showed higher basal and maximal respiratory capacity when compared to adult dorsal root ganglion neurons from wild-type mice. In dorsal root ganglion protein extracts from nSIRT1OE mice, the NAD+-consuming enzyme PARP1 was deactivated and the major deacetylated protein was identified to be an E3 protein ligase, NEDD4-1, a protein required for axonal growth, regeneration and proteostasis in neurodegenerative diseases. Our results indicate that nSIRT1OE prevents and reverses neuropathy. Increased mitochondrial respiratory capacity and NEDD4 activation was associated with increased axonal growth driven by neuronal overexpression of SIRT1. Therapies that regulate NAD+ and thereby target sirtuins may be beneficial in human diabetic sensory polyneuropathy.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sruthi R Konduru
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Joungil Choi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Pranith Kumar
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Aaron Long
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nina Klimova
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Cheng-Ying Ho
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - James W Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence to: James W. Russell, MBChB, MS Professor, Department of Neurology, Anatomy and Neurobiology University of Maryland School of Medicine 3S-129, 110 South Paca Street, Baltimore, MD 21201-1642, USA E-mail:
| |
Collapse
|
19
|
Rademacher S, Eickholt BJ. PTEN in Autism and Neurodevelopmental Disorders. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036780. [PMID: 31427284 DOI: 10.1101/cshperspect.a036780] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is a classical tumor suppressor that antagonizes phosphatidylinositol 3-phosphate kinase (PI3K)/AKT signaling. Although there is a strong association of PTEN germline mutations with cancer syndromes, they have also been described in a subset of patients with autism spectrum disorders with macrocephaly characterized by impairments in social interactions and communication, repetitive behavior and, occasionally, epilepsy. To investigate PTEN's role during neurodevelopment and its implication for autism, several conditional Pten knockout mouse models have been generated. These models are valuable tools to understand PTEN's spatiotemporal roles during neurodevelopment. In this review, we will highlight the anatomical and phenotypic results from animal studies and link them to cellular and molecular findings.
Collapse
Affiliation(s)
- Sebastian Rademacher
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Britta J Eickholt
- Institute of Biochemistry, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Kiem LM, Dietmann P, Linnemann A, Schmeisser MJ, Kühl SJ. The Nedd4 binding protein 3 is required for anterior neural development in Xenopus laevis. Dev Biol 2017; 423:66-76. [DOI: 10.1016/j.ydbio.2017.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
|
21
|
Zhu Y, Wu Y, Shi W, Wang J, Yan X, Wang Q, Liu Y, Yang L, Gao L, Li M. Inhibition of ubiquitin proteasome function prevents monocrotaline-induced pulmonary arterial remodeling. Life Sci 2017; 173:36-42. [PMID: 28212825 DOI: 10.1016/j.lfs.2017.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022]
Abstract
AIMS Previous study has indicated that inhibition of proteasome function ameliorates the development of pulmonary arterial hypertension (PAH), while its underlying mechanisms are still unclear. This study was performed to address these issues. MATERIAL AND METHODS Male Sprague-Dawley (SD) rats were divided into five groups: control group, PAH group, vehicle treated PAH group, MG-132 treated PAH group and bortezomib treated PAH group. PAH model was established by a single intraperitoneal injection of monocrotaline (MCT). MG-132 and bortezomib were administered to inhibit proteasome function. The right ventricular systolic pressure (RVSP), the right ventricle hypertrophy index (RVHI) and the percentage of medial wall thickness (%MT) were used to evaluate the development of PAH. Hematoxylin and eosin staining was performed to measure vascular remodeling. Immunoblotting was used to determine Akt phosphorylation, expression of PTEN and NEDD4, and the level of ubiquitinated-PTEN protein. KEY FINDINGS MCT increased RVSP, RVHI and %MT in rats, while these changes were suppressed by treatment of PAH rats with MG-132 or bortezomib. In PAH model, expression of PTEN was decreased and phosphorylation of Akt was increased, these were accompanied by an elevation of NEDD4 protein level. Treatment of PAH model with MG-132 or bortezomib increased PTEN expression and accumulation of ubiquitinated-PTEN protein and decreased Akt phosphorylation, while didn't change NEDD4 expression. SIGNIFICANCE Inhibition of proteasome function ameliorates pulmonary arterial remodeling by suppressing UPS-mediated PTEN degradation and subsequent inhibition of PI3K/Akt pathway, indicating that UPS might be a novel target for prevention of PAH.
Collapse
Affiliation(s)
- Yanting Zhu
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yinxia Wu
- Wuhan University of Science and Technology, Wuhan, Hubei 430081, People's Republic of China
| | - Wenhua Shi
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Jian Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xin Yan
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Qingting Wang
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Ya Liu
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Lan Yang
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | - Manxiang Li
- Department of Respiratory Medicine, First Affiliated Hospital of Xi'an JiaoTong University, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
22
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
23
|
Martinez JA, Kobayashi M, Krishnan A, Webber C, Christie K, Guo G, Singh V, Zochodne DW. Intrinsic facilitation of adult peripheral nerve regeneration by the Sonic hedgehog morphogen. Exp Neurol 2015. [DOI: 10.1016/j.expneurol.2015.07.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Krishnan A, Duraikannu A, Zochodne DW. Releasing 'brakes' to nerve regeneration: intrinsic molecular targets. Eur J Neurosci 2015; 43:297-308. [PMID: 26174154 DOI: 10.1111/ejn.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
Restoring critical neuronal architecture after peripheral nerve injury is challenging. Although immediate regenerative responses to peripheral axon injury involve the synthesis of regeneration-associated proteins in neurons and Schwann cells, an unfavorable balance between growth facilitatory and growth inhibitory signaling impairs the growth continuum of injured peripheral nerves. Molecules involved with the signaling network of tumor suppressors play crucial roles in shifting the balance between growth and restraint during axon regeneration. An understanding of the molecular framework of tumor suppressor molecules in injured neurons and its impact on stage-specific regeneration events may expose therapeutic intervention points. In this review we discuss how signaling networks of the specific tumor suppressors PTEN, Rb1, p53, p27 and p21 are altered in injured peripheral nerves and how this impacts peripheral nerve regeneration. Insights into the roles and importance of these pathways may open new avenues for improving the neurological deficits associated with nerve injury.
Collapse
Affiliation(s)
- Anand Krishnan
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Arul Duraikannu
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| | - Douglas W Zochodne
- Division of Neurology & Neuroscience and Mental Health Institute, Department of Medicine, University of Alberta, 7-123A Clinical Sciences Building, Edmonton, AB, T6G 2G3, Canada
| |
Collapse
|
25
|
Ambrozkiewicz MC, Kawabe H. HECT-type E3 ubiquitin ligases in nerve cell development and synapse physiology. FEBS Lett 2015; 589:1635-43. [PMID: 25979171 DOI: 10.1016/j.febslet.2015.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/03/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
The development of neurons is precisely controlled. Nerve cells are born from progenitor cells, migrate to their future target sites, extend dendrites and an axon to form synapses, and thus establish neural networks. All these processes are governed by multiple intracellular signaling cascades, among which ubiquitylation has emerged as a potent regulatory principle that determines protein function and turnover. Dysfunctions of E3 ubiquitin ligases or aberrant ubiquitin signaling contribute to a variety of brain disorders like X-linked mental retardation, schizophrenia, autism or Parkinson's disease. In this review, we summarize recent findings about molecular pathways that involve E3 ligases of the Homologous to E6-AP C-terminus (HECT) family and that control neuritogenesis, neuronal polarity formation, and synaptic transmission.
Collapse
Affiliation(s)
- Mateusz Cyryl Ambrozkiewicz
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany.
| | - Hiroshi Kawabe
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Hermann-Rein-Straße 3, D-37075 Göttingen, Germany.
| |
Collapse
|
26
|
Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin-protein ligases. Gene 2014; 557:113-22. [PMID: 25527121 DOI: 10.1016/j.gene.2014.12.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/01/2014] [Accepted: 12/10/2014] [Indexed: 01/31/2023]
Abstract
Ubiquitination plays a crucial role in regulating proteins post-translationally. The focus of this review is on NEDD4, the founding member of the NEDD4 family of ubiquitin ligases that is evolutionarily conserved in eukaryotes. Many potential substrates of NEDD4 have been identified and NEDD4 has been shown to play a critical role in the regulation of a number of membrane receptors, endocytic machinery components and the tumour suppressor PTEN. In this review we will discuss the diverse pathways in which NEDD4 is involved, and the patho-physiological significance of this important ubiquitin ligase.
Collapse
Affiliation(s)
- Natasha Anne Boase
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
27
|
Ubiquitin E3 ligase Nedd4-1 acts as a downstream target of PI3K/PTEN-mTORC1 signaling to promote neurite growth. Proc Natl Acad Sci U S A 2014; 111:13205-10. [PMID: 25157163 DOI: 10.1073/pnas.1400737111] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein ubiquitination is a core regulatory determinant of neural development. Previous studies have indicated that the Nedd4-family E3 ubiquitin ligases Nedd4-1 and Nedd4-2 may ubiquitinate phosphatase and tensin homolog (PTEN) and thereby regulate axonal growth in neurons. Using conditional knockout mice, we show here that Nedd4-1 and Nedd4-2 are indeed required for axonal growth in murine central nervous system neurons. However, in contrast to previously published data, we demonstrate that PTEN is not a substrate of Nedd4-1 and Nedd4-2, and that aberrant PTEN ubiquitination is not involved in the impaired axon growth upon deletion of Nedd4-1 and Nedd4-2. Rather, PTEN limits Nedd4-1 protein levels by modulating the activity of mTORC1, a protein complex that controls protein synthesis and cell growth. Our data demonstrate that Nedd4-family E3 ligases promote axonal growth and branching in the developing mammalian brain, where PTEN is not a relevant substrate. Instead, PTEN controls neurite growth by regulating Nedd4-1 expression.
Collapse
|
28
|
Veleva-Rotse BO, Barnes AP. Brain patterning perturbations following PTEN loss. Front Mol Neurosci 2014; 7:35. [PMID: 24860420 PMCID: PMC4030135 DOI: 10.3389/fnmol.2014.00035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/15/2014] [Indexed: 12/23/2022] Open
Abstract
This review will consider the impact of compromised PTEN signaling in brain patterning. We approach understanding the contribution of PTEN to nervous system development by surveying the findings from the numerous genetic loss-of-function models that have been generated as well as other forms of PTEN inactivation. By exploring the developmental programs influenced by this central transduction molecule, we can begin to understand the molecular mechanisms that shape the developing brain. A wealth of data indicates that PTEN plays critical roles in a variety of stages during brain development. Many of them are considered here including: stem cell proliferation, fate determination, polarity, migration, process outgrowth, myelination and somatic hypertrophy. In many of these contexts, it is clear that PTEN phosphatase activity contributes to the observed effects of genetic deletion or depletion, however recent studies have also ascribed non-catalytic functions to PTEN in regulating cell function. We also explore the potential impact this alternative pool of PTEN may have on the developing brain. Together, these elements begin to form a clearer picture of how PTEN contributes to the emergence of brain structure and binds form and function in the nervous system.
Collapse
Affiliation(s)
- Biliana O Veleva-Rotse
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA
| | - Anthony P Barnes
- Neuroscience Graduate Program, Oregon Health and Science University Portland, OR, USA ; Department of Pediatrics, Oregon Health and Science University Portland, OR, USA ; Department of Cell and Developmental Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
29
|
Shi Y, Wang J, Chandarlapaty S, Cross J, Thompson C, Rosen N, Jiang X. PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol 2014; 21:522-7. [PMID: 24814346 DOI: 10.1038/nsmb.2828] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/12/2014] [Indexed: 02/05/2023]
Abstract
The biological function of the PTEN tumor suppressor is mainly attributed to its lipid phosphatase activity. This study demonstrates that mammalian PTEN is a protein tyrosine phosphatase that selectively dephosphorylates insulin receptor substrate-1 (IRS1), a mediator of insulin and IGF signals. IGF signaling was defective in cells lacking NEDD4, a PTEN ubiquitin ligase, whereas AKT activation triggered by EGF or serum was unimpaired. Defective IGF signaling caused by NEDD4 deletion, including phosphorylation of IRS1 and AKT, was rescued by PTEN ablation. We demonstrate the nature of PTEN as an IRS1 phosphatase by direct biochemical analysis and cellular reconstitution, showing that NEDD4 supports insulin-mediated glucose metabolism and is required for the proliferation of IGF1 receptor-dependent but not EGF receptor-dependent tumor cells. Thus, PTEN is a protein phosphatase for IRS1, and its antagonism by NEDD4 promotes signaling by IGF and insulin.
Collapse
Affiliation(s)
- Yuji Shi
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Junru Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Justin Cross
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Craig Thompson
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
30
|
Lu Y, Belin S, He Z. Signaling regulations of neuronal regenerative ability. Curr Opin Neurobiol 2014; 27:135-42. [PMID: 24727245 DOI: 10.1016/j.conb.2014.03.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Different from physiological axon growth during development, a major limiting factor for successful axon regeneration is the poor intrinsic regenerative capacity in mature neurons in the adult mammalian central nervous system (CNS). Recent studies identified several molecular pathways, including PTEN/mTOR, Jak/STAT, DLK/JNK, providing important probes in investigating the mechanisms by which the regenerative ability is regulated. This review will summarize these recent findings and speculate their implications.
Collapse
Affiliation(s)
- Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Stéphane Belin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Wiszniak S, Kabbara S, Lumb R, Scherer M, Secker G, Harvey N, Kumar S, Schwarz Q. The ubiquitin ligase Nedd4 regulates craniofacial development by promoting cranial neural crest cell survival and stem-cell like properties. Dev Biol 2013; 383:186-200. [PMID: 24080509 DOI: 10.1016/j.ydbio.2013.09.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/17/2013] [Accepted: 09/17/2013] [Indexed: 12/20/2022]
Abstract
The integration of multiple morphogenic signalling pathways and transcription factor networks is essential to mediate neural crest (NC) cell induction, delamination, survival, stem-cell properties, fate choice and differentiation. Although the transcriptional control of NC development is well documented in mammals, the role of post-transcriptional modifications, and in particular ubiquitination, has not been explored. Here we report an essential role for the ubiquitin ligase Nedd4 in cranial NC cell development. Our analysis of Nedd4(-/-) embryos identified profound deficiency of cranial NC cells in the absence of structural defects in the neural tube. Nedd4 is expressed in migrating cranial NC cells and was found to positively regulate expression of the NC transcription factors Sox9, Sox10 and FoxD3. We found that in the absence of these factors, a subset of cranial NC cells undergo apoptosis. In accordance with a lack of cranial NC cells, Nedd4(-/-) embryos have deficiency of the trigeminal ganglia, NC derived bone and malformation of the craniofacial skeleton. Our analyses therefore uncover an essential role for Nedd4 in a subset of cranial NC cells and highlight E3 ubiquitin ligases as a likely point of convergence for multiple NC signalling pathways and transcription factor networks.
Collapse
Affiliation(s)
- Sophie Wiszniak
- Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmeisser MJ, Kühl SJ, Schoen M, Beth NH, Weis TM, Grabrucker AM, Kühl M, Boeckers TM. The Nedd4-binding protein 3 (N4BP3) is crucial for axonal and dendritic branching in developing neurons. Neural Dev 2013; 8:18. [PMID: 24044555 PMCID: PMC3849298 DOI: 10.1186/1749-8104-8-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/28/2013] [Indexed: 11/22/2022] Open
Abstract
Background Circuit formation in the nervous system essentially relies on the proper development of neurons and their processes. In this context, the ubiquitin ligase Nedd4 is a crucial modulator of axonal and dendritic branching. Results Herein we characterize the Nedd4-binding protein 3 (N4BP3), a Fezzin family member, during nerve cell development. In developing rat primary hippocampal neurons, endogenous N4BP3 localizes to neuronal processes, including axons and dendrites. Transient in vitro knockdown of N4BP3 in hippocampal cultures during neuritogenesis results in impaired branching of axons and dendrites. In line with these findings, in vivo knockdown of n4bp3 in Xenopus laevis embryos results in severe alteration of cranial nerve branching. Conclusions We introduce N4BP3 as a novel molecular element for the correct branching of neurites in developing neurons and propose a central role for an N4BP3-Nedd4 complex in neurite branching and circuit formation.
Collapse
|
33
|
Mulet JM, Llopis-Torregrosa V, Primo C, Marqués MC, Yenush L. Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Curr Genet 2013; 59:207-30. [PMID: 23974285 DOI: 10.1007/s00294-013-0401-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/24/2013] [Accepted: 07/29/2013] [Indexed: 12/30/2022]
Abstract
The relative concentrations of ions and solutes inside cells are actively maintained by several classes of transport proteins, in many cases against their concentration gradient. These transport processes, which consume a large portion of cellular energy, must be constantly regulated. Many structurally distinct families of channels, carriers, and pumps have been characterized in considerable detail during the past decades and defects in the function of some of these proteins have been linked to a growing list of human diseases. The dynamic regulation of the transport proteins present at the cell surface is vital for both normal cellular function and for the successful adaptation to changing environments. The composition of proteins present at the cell surface is controlled on both the transcriptional and post-translational level. Post-translational regulation involves highly conserved mechanisms of phosphorylation- and ubiquitylation-dependent signal transduction routes used to modify the cohort of receptors and transport proteins present under any given circumstances. In this review, we will summarize what is currently known about one facet of this regulatory process: the endocytic regulation of alkali metal transport proteins. The physiological relevance, major contributors, parallels and missing pieces of the puzzle in mammals, yeast and plants will be discussed.
Collapse
Affiliation(s)
- José Miguel Mulet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avd. de los Naranjos s/n, 46022, Valencia, Spain
| | | | | | | | | |
Collapse
|
34
|
Christie K, Zochodne D. Peripheral axon regrowth: New molecular approaches. Neuroscience 2013; 240:310-24. [DOI: 10.1016/j.neuroscience.2013.02.059] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/26/2013] [Accepted: 02/27/2013] [Indexed: 02/06/2023]
|
35
|
PTEN plasticity: how the taming of a lethal gene can go too far. Trends Cell Biol 2013; 23:374-9. [PMID: 23578748 DOI: 10.1016/j.tcb.2013.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
PTEN loss drives many cancers and recent genetic studies reveal that often PTEN is antagonised at the protein level without alteration of DNA or RNA expression. This scenario can already cause malignancy, because PTEN is haploinsufficient. We here review normally occurring mechanisms of PTEN protein regulation and discuss three processes where PTEN plasticity is needed: ischaemia, development, and wound healing. These situations demand transient PTEN suppression, whereas cancer exploits them for continuous proliferation and survival advantages. Therefore, increased understanding of PTEN plasticity may help us better interpret tumour development and ultimately lead to drug targets for PTEN supporting cancer therapy.
Collapse
|
36
|
Breaking it down: the ubiquitin proteasome system in neuronal morphogenesis. Neural Plast 2013; 2013:196848. [PMID: 23476809 PMCID: PMC3586504 DOI: 10.1155/2013/196848] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 12/31/2012] [Indexed: 01/20/2023] Open
Abstract
The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body. In recent years, the UPS has come under increasing scrutiny in neurons, as elements of the UPS have been found to regulate such diverse neuronal functions as synaptic strength, homeostatic plasticity, axon guidance, and neurite outgrowth. Here we focus on recent advances detailing the roles of the UPS in regulating the morphogenesis of axons, dendrites, and dendritic spines, with an emphasis on E3 ubiquitin ligases and their identified regulatory targets.
Collapse
|